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THE e-POSITIVITY OF MULTIVARIATE k-ORDER EULERIAN

POLYNOMIALS

SHI-MEI MA, JUN MA, JEAN YEH, AND YEONG-NAN YEH

Abstract. Inspired by the recent work of Chen and Fu on the e-positivity of trivariate second-

order Eulerian polynomials, we show the e-positivity of a family of multivariate k-order Eulerian

polynomials. A combinatorial interpretation of the coefficients of the e-positive expansion is also

established. In particular, we give a grammatical proof of the fact that the joint distribution of

the ascent, descent and j-plateau statistics over k-Stirling permutations are symmetric distribu-

tion. By using Chen-Fu’s transformation, a symmetric expansion of trivariate Schett polynomial

is also established.

Keywords: Eulerian polynomials, e-Positivity, Plane trees, Schett polynomials

1. Introduction

Let n be a positive integer and let X n = {x1, x2, . . . , xn} be a set of commuting variables.

Define

Sn(x) =
n
∏

i=1

(x− xi) =
n
∑

k=0

(−1)kekx
n−k.

Then e0 = 1 and

ek =
∑

16i1<i2<···<ik6n

xi1xi2 · · · xik

is the kth elementary symmetric function associated with X n. A function f(x1, x2, · · · ) ∈

R[x1, x2, · · · ] is said to be symmetric if it is invariant under any permutation of its indeter-

minates. We say that a symmetric function is e-positive if it can be written as a nonnegative

linear combination of elementary symmetric functions. Recently, Chen and Fu [4] discovered the

e-positivity of the trivariate second-order Eulerian polynomials [4]. As a continuation, in this

paper we shall show the e-positivity of a family of multivariate k-order Eulerian polynomials.

Let [n] = {1, 2, . . . , n}. The Stirling numbers of the second kind
{

n
k

}

is the number of ways to

partition [n] into k non-empty blocks. The second-order Eulerian polynomials are defined by

∞
∑

k=0

{

n+ k

k

}

xk =
Cn(x)

(1− x)2n+1
.
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In [9], Gessel and Stanley found that Cn(x) is the descent polynomial of Stirling permutations

of order n. Below are the polynomials Cn(x) for n 6 5:

C1(x) = x,

C2(x) = x+ 2x2,

C3(x) = x+ 8x2 + 6x3,

C4(x) = x+ 22x2 + 58x3 + 24x4,

C5(x) = x+ 52x2 + 328x3 + 444x4 + 120x5.

A Stirling permutation of order n is a permutation of {1, 1, 2, 2, . . . , n, n} such that for each

i, 1 6 i 6 n, all entries between the two occurrences of i are larger than i. Denote by Qn the

set of Stirling permutations of order n. Let σ = σ1σ2 · · · σ2n ∈ Qn. In this paper, we always set

σ0 = σ2n+1 = 0. Following [1, 9], for 0 6 i 6 2n, we say that an index i is a descent (resp. ascent,

plateau) of σ if σi > σi+1 (resp. σi < σi+1, σi = σi+1). Let des (σ), asc (σ) and plat (σ) be the

number of descents, ascents and plateaus of σ, respectively. The notion a plateau introduced by

Bóna was named as repetition by Dumont [7]).

The trivariate second-order Eulerian polynomials are defined as follows:

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)ydes (σ)zplat (σ).

It is now well known that

Cn+1(x, y, z) = xyz

(

∂

∂x
+

∂

∂y
+

∂

∂z

)

Cn(x, y, z), C0(x, y, z) = 1. (1)

As pointed out by Chen and Fu [4], the recursion (1) first appeared in the work of Dumont [7,

p. 317], which implies that Cn(x, y, z) is symmetric in the variables x, y and z. The symmetry of

Cn(x, y, z) was rediscovered by Janson [11, Theorem 2.1] by constructing an urn model. In [10],

Haglund and Visontai introduced a refinement of the polynomial Cn(x, y, z) by indexing each

ascent, descent and plateau by the value where they appear. The symmetry of Cn(x, y, z) is

follows from the symmetry of the recursion [10, Eq. (17)].

For an alphabet A, let Q[[A]] be the ring of the rational commutative ring of formal power

series in monomials formed from letters in A. Following Chen [2], a context-free grammar over

A is a function G : A → Q[[A]] that replaces a letter in A with an element of Q[[A]]. The formal

derivative DG is a linear operator defined with respect to the grammar G. In other words, DG is

the unique derivation satisfying DG(x) = G(x) for x ∈ A. Recently, two methods are developed

in the theory of context-free grammar, i.e., grammatical labeling and change of the grammars.

A grammatical labeling is an assignment of the underlying elements of a combinatorial structure

with variables, which is consistent with the substitution rules of a grammar (see [3]). A change of

grammars is a substitution method in which the original grammars are replaced with functions

of other grammars. In particular, the following type of change of grammars can be used to study

the γ-positivity and partial γ-positivity of several enumerative polynomials (see [13, 14]):
{

u = xy,

v = x+ y.
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Let G be the following grammar

G = {x → xyz, y → xyz, z → xyz}. (2)

It has been shown by Dumont [7], Chen etal. [5], Haglund-Visontai [10] that

Dn
G(x) = Cn(x, y, z).

Very recently, Chen and Fu [4] introduced a new type of change of grammars:











u = x+ y + z,

v = xy + yz + zx,

w = xyz,

(3)

which stimulates the proposal of a novel approach for studying symmetric functions.

A rooted tree of order n with the vertices labelled 1, 2, . . . , n, is an increasing tree if the node

labelled 1 is distinguished as the root, and for each 2 6 i 6 n, the labels of the nodes in the

unique path from the root to the node labelled i form an increasing sequence. In this paper, the

degree of a vertex in a rooted tree is meant to be the number of its children (sometimes called

outdegree). A plane tree is a rooted tree in which the children of each vertex are linearly ordered

(from left to right, say). A 3-ary increasing plane tree on [n] is an increasing plane tree for which

each vertex has at most three children. It follows from (2) and (3) that DG(u) = 3w, DG(v) =

2uw, DG(w) = vw. Let

H = {u → 3w, v → 2uw, w → vw}.

By using the grammar H, Chen and Fu [4] obtained the following result.

Theorem 1. For n > 1, one has

Cn(x, y, z) =
∑

k>1

(xyz)k
∑

j>0

γn,k,j(xy + yz + zx)j(x+ y + z)2n+1−2j−3k,

where the coefficient γn,k,j equals the number of 3-ary increasing plane trees on [n] with k leaves,

j degree one vertices and i degree two vertices.

Corollary 2. For n > 1, one has

Cn(x) =
∑

k>1

xk
∑

j>0

γn,k,j(1 + 2x)j(2 + x)2n+1−2j−3k.

As a natural extension of (3), it is natural to introduce the following definition.

Definition 3. Let G be the grammar defined by

G = {x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), · · · , xn → fn(x1, x2, . . . , xn)}.

Suppose that fi(x1, x2, . . . , xn) are symmetric function for all 1 6 i 6 n. The Chen-Fu’s trans-

formation of G is defined by uj = gj(e1, e2, . . . , en), where 1 6 j 6 n and eℓ is the ℓth elementary

symmetric function associated with {x1, x2, . . . , xn} and gj(x1, x2, . . . , xn) is a function.
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Let jk denote k times of the letter j. A k-Stirling permutation of order n is a multiset

permutation of {1k, 2k, . . . , nk} with the property that all elements between two occurrences

of i are at least i, where i ∈ [n]. Let Qn(k) be the set of k-Stirling permutations of order n.

Following [18, p. 657], an k-ary tree T is either empty, or else one specially designated vertex

is called the root of T and the remaining vertices (excluding the root) are put into a (weak)

ordered partition (T1, . . . , Tk) of exactly k disjoint (possibly empty) sets T1, . . . , Tk, each of

which is an k-ary tree. A bijection between Qn(k) and the set of (k + 1)-ary increasing trees

was independently established by Gessel [15] and Janson-Kuba [12, Theorem 1].

In the next section, we first present the e-positive expansion of multivariate k-order Euler-

ian polynomials by using Chen-Fu’s transformation of grammars. We then present a similar

expansion of trivariate Schett polynomials.

2. Main results

In this section, we always let X k+1 = {x1, x2, . . . , xk, xk+1} and let ei be the ith elementary

symmetric function associated with X k+1. In particular,

e0 = 1, e1 = x1 + x2 + · · · + xk+1, ek+1 = x1x2 · · · xk+1.

2.1. Multivariate k-order Eulerian polynomials.

Let k be a given positive integer, and let σ ∈ Qn(k). The ascents, descents and plateaux of

σ of are defined as before, where we always set σ0 = σkn+1 = 0. More precisely, an index i is

called an ascent (resp. descent, plateau) of σ if σi < σi+1 (resp. σi > σi+1, σi = σi+1). It is

clear that asc (σ)+des (σ)+plat (σ) = kn+1. As a natural refinement of ascents, descents and

plateaux, Janson and Kuba [12] introduced the following definition, and related the distribution

of j-ascents, j-descents and j-plateaux in k-Stirling permutations with certain parameters in

(k + 1)-ary increasing trees.

Definition 4 ([12]). An index i is called a j-plateau (resp. j-descent, j-ascent) if i is a plateau

(resp. descent, ascent) and there are exactly j − 1 indices ℓ < i such that aℓ = ai.

Let platj(σ) be the number of j-plateaux of σ. For σ ∈ Qn(k), it is clear that platj(σ) 6 k−1.

Example 5. Consider the 4-Stirling permutation σ = 111223333221. The set of 1-plateaux is

given by {1, 4, 6}, the set of 2-plateaux is given by {2, 7}, and the set of 3-plateaux is given by

{8, 10}. Thus plat1(σ) = 3 and plat2(σ) = plat3(σ) = 2.

The multivariate k-order Eulerian polynomials Cn(x1, . . . , xk+1) are defined by

Cn(x1, x2, . . . , xk+1) =
∑

σ∈Qn(k)

x1
plat1(σ)x2

plat2(σ) · · · xk−1
platk−1(σ)xk

des(σ)xk+1
asc(σ).

In particular, when x1 = z, x2 = · · · = xk−1 = 0, xk = y and xk+1 = x, the polynomials

Cn(x1, x2, . . . , xk+1) reduce to Cn(x, y, z). The following lemma is fundamental.

Lemma 6. Let G1 be the grammar defined by

G1 = {x1 → ek+1, x2 → ek+1, . . . , xk+1 → ek+1},

where ek+1 = x1x2 · · · xk+1. For n > 1, one has Dn
G1

(x1) = Cn(x1, x2, . . . , xk+1).
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Proof. We shall show that the grammar G1 can be used to generate k-Stirling permutations.

We first introduce a grammatical labeling of σ ∈ Qn(k) as follows:

(L1) If i is an ascent, then put a superscript label xk+1 right after σi;

(L2) If i is a descent, then put a superscript label xk right after σi;

(L3) If i is a j-plateau, then put a superscript label xj right after σi.

The weight of σ is defined as the product of the labels, that is

w(σ) = x1
plat1(σ)x2

plat2(σ) · · · xk−1
platk−1(σ)xk

des(σ)xk+1
asc(σ).

Recall that we always set σ0 = σkn+1 = 0. Thus the index 0 is always an ascent and the index

kn is always a descent. For n = 1, we have Q1(k) = {xk+11x11x21x3 · · · 1xk}. The are k + 1

elements in Q2(k) and they can be labeled as follows, respectively:

xk+11x11x2 · · · 1xk−11xk+12x12x2 · · · 2xk−12xk ,

xk+11x11x2 · · · 1xk−21xk+12x12x2 · · · 2xk−12xk1xk ,

· · ·

xk+12x12x2 · · · 2xk−12xk1x11x2 · · · 1xk−11xk .

Note that DG1
(x1) = ek+1 and D2

G2
(x1) = ekek+1. Then the weight of the element in Q1(k)

is given by DG1
(x1), and the sum of weights of the elements in Q2(k) is given by D2

G1
(x).

Hence the result holds for n = 1, 2. We proceed by induction on n. Suppose we get all labeled

permutations in Qn−1(k), where n > 3. Let σ′ be obtained from σ ∈ Qn−1(k) by inserting the

string nn · · ·n with length k. Then the changes of labeling are illustrated as follows:

· · · σ
xj

i σi+1 · · · 7→ · · · σ
xk+1

i nx1nx2 · · ·nxkσi+1 · · · ;

σxk 7→ σxk+1nx1nx2 · · ·nxk ; xk+1σ 7→xk+1 nx1nx2 · · ·nxkσ.

In each case, the insertion of the string nn · · ·n corresponds to one substitution rule in G1. Then

the action of DG1
on the set of weights of elements in Qn−1(k) gives the set of weights of all

elements in Qn(k). Therefore, we get a grammatical interpretation of Cn(x1, x2, . . . , xk+1), and

this completes the proof. �

From the symmetry of the grammar G1 and the fact that DG1
(x1) = ek+1, one can immedi-

ately get the following result, which has been obtained by Janson and Kuba [12, Theorem 2, The-

orem 8] by using an urn model for the exterior leaves.

Corollary 7. The multivariate k-order Eulerian polynomial Cn(x1, x2, . . . , xk+1) is symmetric

in the variables x1, x2, . . . , xk+1.

A (k + 1)-ary increasing plane tree on [n] is an increasing plane tree for which each vertex

has degree at most k + 1. We can now conclude the following result.

Theorem 8. For n > 2 and k > n− 2, we have

Cn(x1, x2, . . . , xk+1) =
∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1, (4)

where the summation is over all sequences (i1, i2, . . . , in) of nonnegative integers such that i1 +

i2 + · · · + in = n, 1 6 i1 6 n − 1, in = 0 or in = 1. When in = 1, one has i1 = n − 1. The
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number γ(n; i1, i2, . . . , in) equals the number of (k + 1)-ary increasing plane trees with ij degree

j − 1 vertices for all 1 6 j 6 n.

Proof. Let G1 be the grammar given in Lemma 6. We first consider a change of the grammar

G1. Note that

DG1
(x1) = ek+1, DG1

(ei) = (k − i+ 2)ei−1ek+1 for 1 6 i 6 k + 1.

Let G2 be the grammar defined by

G2 = {x1 → ek+1, ei → (k − i+ 2)ei−1ek+1 for 1 6 i 6 k + 1}, (5)

Note that

DG2
(x1) = ek+1, D2

G2
(x1) = ekek+1, D3

G2
(x1) = e2kek+1 + 2ek−1e

2
k+1,

D4
G2

(x1) = e3kek+1 + 8ek−1eke
2
k+1 + 6ek−2e

3
k+1,

D5
G2

(x1) = e4kek+1 + 22e2kek−1e
2
k+1 + 16e2k−1e

3
k+1 + 42ek−2eke

3
k+1 + 24ek−3e

4
k+1.

In general, we assume that

Dn
G2

(x1) =
∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1. (6)

Note that

Dn+1
G2

(x1)

= DG2

(

∑

γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1
k+1

)

=
∑

ninγ(n; i1, i2, . . . , in)ek−n+1e
in−1
k−n+2e

in−1

k−n+3 · · · e
i2
k e

i1+1
k+1 +

∑

(n− 1)in−1γ(n; i1, i2, . . . , in)e
in+1
k−n+2e

in−1−1
k−n+3 · · · e

i2
k e

i1+1
k+1 + · · ·+

∑

2i2γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i3+1
k−1 e

i2−1
k ei1+1

k+1 +
∑

i1γ(n; i1, i2, . . . , in)e
in
k−n+2e

in−1

k−n+3 · · · e
i2+1
k ei1k+1.

Then the expansion (6) holds for n+1. Combining Lemma 6 and (6), we get (4). By induction,

one can easily deduce that in the right hand side of (6), one has i1+i2+· · ·+in = n, 1 6 i1 6 n−1,

in = 1 or in = 0.

Along the same lines as the proof of [4, Theorem 4.1], by using (5), we can now deduce the

combinatorial interpretation of γ(n; i1, i2, . . . , in). Let T be a (k + 1)-ary increasing plane tree

on [n]. The labeling of T is given by labeling a degree i vertex by ek−i+1 for all 0 6 i 6 k + 1.

In particular, label a leaf by ek+1 and label a degree k + 1 vertex by 1. Let T ′ be a (k + 1)-ary

increasing plane tree on [n + 1] by adding n + 1 to T as a leaf. We can add n + 1 to T only

as a child of a vertex v that is not of degree k + 1. For 1 6 i 6 k + 1, if the vertex v is a

degree k− i+1 vertex with label ei, there are k− i+2 cases to attach n+1 (from left to right,

say). In either case, in T ′, the vertex v becomes a degree k − i + 2 with label ei−1 and n + 1

becomes a leaf with label ek+1. Hence the insertion of n + 1 corresponds to the substitution

rule ei → (k − i+ 2)ei−1ek+1. Therefore, DG2
(x1) equals the sum of the weights of (k + 1)-ary

increasing plane trees on [n]. This completes the proof. �
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By using Dn+1
G2

(x1) = DG2

(

Dn
G2

(x1)
)

, it is routine to verify that

γ(n+ 1; 1, n, 0 . . . , 0) = γ(n; 1, n − 1, 0, . . . , 0) = 1,

γ(n+ 1;n, 0, . . . , 0, 1) = nγ(n;n− 1, 0, . . . , 0, 1) = n!,

γ(n+ 1; i1, i2, . . . , in, 0) = i1γ(n; i1, i2 − 1, i3, . . . , in)+

n−1
∑

j=2

j(ij + 1)γ(n; i1 − 1, i2, . . . , ij−1, ij + 1, ij+1 − 1, ij+2 . . . , in).

Note that γ(3; 2, 0, 1, 0, . . . , 0) = 2, γ(4; 2, 1, 1, 0, . . . , 0) = 8 and

γ(n+ 1; 2, n − 2, 1, 0, . . . , 0) = 2γ(n; 2, n − 3, 1, 0, . . . , 0) + 2(n− 1)γ(n; 1, n − 1, 0, . . . , 0).

Then by induction, one can derive that

γ(n; 2, n − 3, 1, 0, . . . , 0) = 2n − 2n for n > 3.

Let Cn(x) =
∑n

j=1C(n, j)xj . Following [9], the second-order Eulerian numbers C(n, j) satisfy

the recurrence relation

C(n+ 1, j) = jC(n, j) + (2n + 2− j)C(n, j − 1),

with the initial conditions C(1, 1) = 1 and C(1, j) = 0 if j 6= 1. Based on empirical evidence,

we propose the following.

Conjecture 9. When n > 2 and k > n − 2, the second-order Eulerian number C(n, j) equals

the the number of (k + 1)-ary increasing plane trees with j leaves. In other words, one has

C(n, j) =
∑

i1+i2+···+in−1=n−j

γ(n; j, i2, . . . , in−1, in).

Let G3 be the grammar defined by

G3 = {I → qIek+1, ei → (k − i+ 2)ei−1ek+1 for 1 6 i 6 k + 1},

where q is a constant. Below are the Dn
G3

(I) for n 6 4:

DG3
(I) = qIek+1, D2

G3
(I) = qIekek+1 + q2Ie2k+1,

D3
G3

(I) = qI(e2kek+1 + 2ek−1e
2
k+1) + 3q2Ieke

2
k+1 + q3Ie3k+1.

For n > 1, we define

Dn
G3

(I) = I

n−1
∑

i=0

qn−ifn,i. (7)

It is evident that fn,i is a function of ek−i+1, ek−i+2, . . . , ek+1. Thus we can write Dn
G3

(I) as

follows:

Dn
G3

(I) = I

n−1
∑

i=0

qn−ifn,i(ek−i+1, ek−i+2, . . . , ek+1).

In particular, fn,0 = 1, f1,0 = f2,1 = 1. By using the Leibnitz rule, we get

Dn+1
G3

(I) = q

n
∑

k=0

(

n

k

)

Dk
G3

(I)Dn−k
G3

(ek+1).
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Recall that an unordered forest of increasing plane trees is an unordered forest of plane trees

with the same type of labeling. By using the same labeling of (k + 1)-ary increasing plane tree

that given in the proof of Theorem 8, it is routine to verify that fn,i(ek−i+1, ek−i+2, . . . , ek+1) is

the generating polynomial for unordered forests of increasing plane trees on the vertex set [n]

with n − i trees, in which each degree k − i + 1 vertex with label ei. In particular, for n > 1,

one has

fn,n−1(ek−n+2, ek−n+3, . . . , ek+1) = Dn
G2

(x1).

It should be noted that a variation of
∑n−1

i=0 qn−ifn,i has been introduced by Pétréolle and

Sokal [16] in the name of generic Lah polynomials.

2.2. Trivariate Schett polynomials.

Let π = π(1)π(2) · · · π(n) ∈ Sn. A value i ∈ [n] is called a cycle peak of π if π−1(i) < i > π(i).

Let cpko (π) and cpke (π) denote the number of odd and even cycle peaks of π, respectively.

Let DJ be the derivative operator, acting on three commuting variables {x, y, z}, that is given

by

DJ = yz
∂

∂x
+ xz

∂

∂y
+ xy

∂

∂z
.

Following an approach due to Schett for computing the Taylor expansion coefficients of Jacobian

elliptic functions [17], Dumont [6] gave a connection between the coefficients of the expansion

of Dn
J(x) and cycle peak statistics. Let {sn,i,j}i,j>0 be the arrays defined by

D2n
J (x) =

∑

i,j>0

s2n,i,jx
2i+1y2jz2n−2i−2j ,

D2n+1
J (x) =

∑

i,j>0

s2n+1,i,jx
2iy2j+1z2n−2i−2j+1.

Dumont [6] found that

sn,i,j = #{π ∈ Sn | cpko (π) = i, cpke (π) = j}.

The reader is referred to [14] for more details on this topic.

Following [8, Section 4], the trivariate Schett polynomials Sn := Sn(x, y, z) are defined by the

following induction relation:

S1 = 2xyz, Sn = yz
∂

∂x
Sn−1 + xz

∂

∂y
Sn−1 + xy

∂

∂z
Sn−1 for n > 2.

Let

S(u;x, y, z) =

∞
∑

n=1

Sn(x, y, z)
un

n!
.

Dumont [8, Eq. (4.7)] found that S := S(u;x, y, z) is the solution of the differential equation:

dS

du
= 2

√

(x2 + S)(y2 + S)(z2 + S), S(0;x, y, z) = 0.

As pointed out by Dumont [8], the polynomials Sn(x, y, z) can be used to compute the square

of the Jacobian elliptic function sn(u, k).
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In the following, we shall present a symmetric expansion of the Schett polynomials. Let G4

be the grammar defined by

G4 = {x → yz, y → xz, z → xy}.

Then we have

Sn+1(x, y, z) = Dn
G4

(2xyz) = 2Dn
G4

(xyz).

Let u = x2 + y2 + z2, v = x2y2 + y2z2 + x2z2 and w = xyz. Then

DG4
(u) = 6w, DG4

(w) = v, DG4
(v) = 4uw.

Define

G5 = {w → v, v → 4uw, u → 6w}.

Note that

Sn+1(x, y, z) = 2Dn
G5

(w).

By induction, it is routine to deduce the following result.

Theorem 10. For n > 1, there exist nonnegative integers ξn,k,j such that

Sn(x, y, z) = 2
∑

k>0

(xyz)k
∑

j>0

ξn,k,j(x
2y2 + y2z2 + z2x2)j(x2 + y2 + z2)⌊

n+2−4j−3k

2
⌋.

It should be noted that ξn,k,j equals the number of weighted 3-ary increasing plane trees

on [n]. We leave the precise definition to the interested readers, because it can be performed

completely similarly as in [4].
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