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Abstract

In a prize winning expository article, V. Pozdnyakov and J.M. Steele

gave a beautiful demonstration of the ramifications of a basic bijection for

permutations. The aim of this note is to connect this correspondence to a

seemingly unrelated problem concerning odd cycles and even cycles, aris-

ing in the combinatorial study of the Cayley continuants by E. Munarini and

D. Torri. As extreme cases, one encounters two special classes of permuta-

tions of 2n elements with the same cardinality. A bijection of this appealing

relation has been found by E. Sayag. A combinatorial study of permutations

with only odd cycles has been carried out by M. Bóna, A. Mclennan and D.

White. We find an intermediate structure which leads to a linkage between

these two antipodal structures. A recursive setting reveals that everything

boils down to only one trick – the Pozdnyakov-Steele bijection, even though

not entirely obvious.
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1 Introduction

In a prize winning exposition, V. Pozdnyakov and J.M. Steele [6] elaborated on

many a facet of a basic property of the cycle representation of permutations, viz.,

the number of permutations of [n] = {1, 2, . . . , n} (n ≥ 2) for which 1 and 2

occur in the same cycle equals the number of permutations of [n] for which 1 and

2 do not occur in the same cycle. The heart of the plot lies in the operation of

breaking a cycle into two cycles.

More precisely, given a cycle containing both 1 and 2, we can split it into

two segments, one starting with with 1 and ending with the element preceding 2,

whereas the other starting with 2 and ending with the element preceding 1. Keep

in mind that a cycle can be expressed as a sequence starting with the minimum

element.

The objective of this note is to supplement the showcase of Pozdnyakov-Steele

with one more story. On a different scene, we meet up with two classes of permu-

tations of [2n] (n ≥ 1). Let An denote the set of permutations of [n] consisting

of odd cycles, let B2n denote the set of permutations of [2n] consisting of even

cycles. A bijection between A2n and B2n can be found in [1, Section 6.2]. Let

an = |An| and b2n = |B2n|. As pointed out by Munarini and Torri [4], the gen-

erating function of the Cayley continuants specializes to the generating functions

for a2n and b2n. In fact, we have

a2n = b2n = ((2n− 1)!!)2. (1.1)

The sequence {an} is listed as #A000246 in OEIS [5], and the sequence {b2n} is

referred to as #A001818. A further study of the sequence {an} can be found in

Bóna-Mclennan-White [2].

We take a different avenue to provide a combinatorial interpretation by em-

ploying the Pozdnyakov-Steele bijection with a twist of the roles of 1 and 2 in

certain circumstances. As an intermediate step, we establish the following corre-
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spondence. Let P2n be the set of permutations of [2n] consisting of odd cycles

except that the element 1 is in an even cycle.

Theorem 1.1 There exists a bijection between A2n and P2n.

2 A bijection

Before presenting the proof, let us consider how to apply the map in Theorem

1.1 to transform a permutation in A2n to a permutation in B2n. Starting with a

permutation in A2n, at the first step, we get a permutation with 1 appearing in

an even cycle. Iterating this procedure for the rest of odd cycles, we are led to a

permutation of even cycles. This proves that a2n = b2n.

The following inductive proof is essentially a description of a recursive algo-

rithm.

Inductive Proof of Theorem 1.1. For n = 1, the required correspondence is merely

the only way to break the even cycle (12) into two odd cycles (1)(2).

Assume that n > 1 and that there is a one-to-one correspondence between

A2m and P2m for m < n. We are going to put together a bijection between A2n

and P2n. To this end, we define P 12
2n to be the set of permutations in P2n such 1

and 2 belong to the same even cycle, and denote by P 1−2
2n the set of permutations

in P2n such that 1 appears in an even cycle but 2 appears in an odd cycle. Thus,

P2n = P 12
2n ∪ P 1−2

2n . (2.2)

For an even cycle containing both 1 and 2, we may break it into two cycles with

one containing 1 and the other containing 2. Taking the parities into account, we

find that

P 12
2n ⇔ A1−2

2n ∪ Q1−2
2n , (2.3)
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where A1−2
2n is the set of permutations of [2n] of odd cycles such that 1 and 2 do

not appear in the same cycle, and Q1−2
2n is the set of permutations of [2n] such that

1 and 2 occur in different even cycles, whereas all other cycles are odd.

Thus, it suffices to justify the following one-to-one correspondence

P 1−2
2n ∪ Q1−2

2n ⇔ A12
2n, (2.4)

where A12
2n is the set of permutations of [2n] of odd cycles such that 1 and 2 appear

in the same cycle. By splitting a permutation in A12
2n, we see that

A12
2n = P 1−2

2n ∪ U1−2
2n , (2.5)

where U1−2
2n is the set of permutations of [2n] such that 1 is in an odd cycle, 2 is in

an even cycles and all other cycles are odd.

In order to justify (2.4), we only need to establish the following correspon-

dence

Q1−2
2n ⇔ U1−2

2n . (2.6)

By exchanging the roles of 1 and 2, U1−2
2n can be identified with the set of permu-

tations such that 1 occurs in an even cycle and all other cycles are odd.

Notice that the relation (2.6) is nothing but a recursive statement of A2n ⇔
P2n. To be more specific, let V 1−2

2n denote the set of permutations obtained from

those U1−2
2n by exchanging 1 and 2. Assume that σ is a permutation in V 1−2

2n and

C is the even cycle of σ containing 1.

Invoking the induction hypothesis with respect to all the odd cycles in σ, we

get an even cycle containing 2 along with all other odd cycles, which is precisely

a permutation in Q1−2
2n . This completes the proof.
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[1] M. Bóna, A Walk Through Combinatorics, World Scientific, 2005.
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