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Abstract

We obtain a formula which reduces the evaluation of a 2ψ2 series to two 2φ1 series. In

some sense, this identity may be considered as a companion of Slater’s formulas. We also

find that a two-term 2ψ2 summation formula due to Slater can be derived from a unilateral

summation formula of Andrews by bilateral extension and parameter augmentation.
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1 Introduction

It is well known that many bilateral basic hypergeometric identities can be derived from

unilateral identities. Using Cauchy’s method [5, 15, 20, 21] one may obtain bilateral

basic hypergeometric identities from terminating unilateral identities. Starting with

nonterminating unilateral basic hypergeometric series, Chen and Fu [8] developed a

method to construct semi-finite forms by shifting the summation index by m. Then

the bilateral summations are consequences of the semi-finite forms by letting m tend

to infinity. We call this method bilateral extension. In this paper we use bilateral

extensions of a 3φ2 series and an identity of Andrews [2] to study the bilateral series

2ψ2:

2ψ2

[

a, b

c, d
; q, z

]

. (1.1)
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The above 2ψ2 series is closely related to the question of finding a q-extension of

Dougall’s bilateral hypergeometric series summation formula [10]:

∞
∑

k=−∞

(a)k(b)k

(c)k(d)k

=
Γ(c)Γ(d)Γ(1 − a)Γ(1 − b)Γ(c+ d− a− b− 1)

Γ(c− a)Γ(c− b)Γ(d− a)Γ(d− b)
, (1.2)

where Re(c+ d− a− b− 1) > 0, (a)k = a(a+ 1) · · · (a+ k − 1), k = 1, 2, · · · , (a)0 = 1

and (a)k = (−1)k/(1 − a)
−k when k is a negative integer.

Bailey [6] first suggested that there did not exist any q-extension of (1.2). Since

(1.2) is an extension of the Gauss 2F1 summation formula, one naturally expects that

a q-analogue of (1.2) should be concerned with the following series:

2ψ2

[

a, b

c, d
; q,

cd

abq

]

. (1.3)

Clearly, when c or d equals q, (1.3) reduces to the q-Gauss sum [13, Appendix II.8]:

2φ1

[

a, b

c
; q,

c

ab

]

=
(c/a, c/b; q)

∞

(c, c/ab; q)
∞

, |c/ab| < 1. (1.4)

Even for the above series (1.3), Gasper [12] pointed out that one could not use analytic

continuation to derive an infinite product representation.

On the other hand, many results on the bilateral 2ψ2 series (1.1) have been obtained.

In [6], Bailey found several transformation formulas for the 2ψ2 series (1.1). Later,

Slater obtained a general transformation formula for an rψr series in [23] based on

Sears’ transformation on the r+s+1φr+s series in [22] subject to suitable substitutions

and the following relation

∞
∑

n=0

f(n) =
−1
∑

n=−∞

f(−n− 1) (1.5)

to combine two unilateral series to form a bilateral series.

Gasper and Rahman [13] have shown that based on Slater’s transformation formula,

one could obtain two expansions of an rψr series in terms of r rφr−1 series [13, Eq.

(5.4.4), (5.4.5)]. When r = 2, they become

2ψ2

[

a, b

c, d
; q, z

]

=
a(q, qa/b, c/a, d/a, az, q/az, qb, 1/b; q)

∞

(a/b, qb/a, c, d, q/a, q/b, z, q/z; q)
∞

×2φ1

[

qa/c, qa/d

qa/b
; q,

cd

abz

]

+ idem(a; b) (1.6)

and

2ψ2

[

a, b

c, d
; q, z

]

=
q

c

(q, c/a, c/b, abz/dq, dq2/abz, q/d; q)
∞

(c, c/d, q/a, q/b, abz/cd, qcd/abz; q)
∞

×2φ1

[

qa/c, qb/c

qd/c
; q, z

]

+ idem(c; d), (1.7)
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where the symbol “idem(a; b)” after an expression means that the preceding expression

is repeated with a and b interchanged.

Setting d = q, (1.6) reduces to a three-term transformation formula [13, Appendix

III.32] for the 2φ1 series:

2φ1

[

a, b

c
; q, z

]

=
(b, c/a, az, q/az; q)

∞

(c, b/a, z, q/z; q)
∞

2φ1

[

a, aq/c

aq/b
; q,

cq

abz

]

+ idem(a; b). (1.8)

However, it should be noted that when c or d equals q, (1.7) does not lead to any

nontrivial identity.

The first result of this paper is to give a new formula for the 2ψ2 series (1.1) in terms

of two 2φ1 series which is different from Slater’s formulas (1.6) and (1.7). It reduces to a

different three-term transformation formula (2.4) when c = q compared with the three-

term transformation formula (1.8) deduced by Slater’s transformation. Moreover, this

identity may be considered as a companion of Slater’s formulas (1.6) and (1.7). Note

that Slater’s formulas do not seem to imply the special cases that can be deduced from

our formula except for Ramanujan’s 1ψ1 summation formula [13, Appendix II.29]. As

a consequence, our formula yields a two-term closed product form for the 2ψ2 series:

2ψ2

[

b, c

aq/b, aq/c
; q,−

aq

bc

]

=
(−b, aq/bc,−q/b, b/a, q; q)

∞
(aq2/c2; q2)

∞

(aq/c,−1, q/c, q/b,−aq/bc; q)
∞

(b2/a; q2)
∞

+
(aq/bc, b,−aq/b,−b/a, q; q)

∞
(aq2/c2; q2)

∞

(aq/b, aq/c,−1,−aq/bc, q/c; q)
∞

(b2/a; q2)
∞

. (1.9)

For comparison, we recall the known formula for the well-poised 2ψ2 series [13, Ap-

pendix II.30]:

2ψ2

[

b, c

aq/b, aq/c
; q,−

aq

bc

]

=
(aq/bc; q)

∞
(aq2/b2, aq2/c2, q2, aq, q/a; q2)

∞

(aq/b, aq/c, q/b, q/c,−aq/bc; q)
∞

. (1.10)

Let us turn our attention back to Dougall’s formula. As pointed out by Askey [4],

Bailey seemed to have been partly right concerning his opinion towards the q-extension

of Dougall’s formula. According to Askey [4], in certain sense the following q-extension

of Cauchy’s beta integral was similar to a q-extension of Dougall’s formula:
∫

∞

−∞

(ct,−dt; q)
∞

(at,−bt; q)
∞

dqt = 2
(1 − q)(c/a, d/b,−c/b,−d/a, ab, q/ab; q)

∞
(q2; q2)2

∞

(cd/abq, q; q)
∞

(a2, q2/a2, b2, q2/b2; q2)
∞

. (1.11)

In fact, this integral can be recast as a two-term summation formula for the 2ψ2 series

(1.3):

(c,−d; q)
∞

(a,−b; q)
∞

2ψ2

[

a, −b

c, −d
; q, q

]

+
(−c, d; q)

∞

(−a, b; q)
∞

2ψ2

[

−a, b

−c, d
; q, q

]

= 2
(1 − q)(c/a, d/b,−c/b,−d/a, ab, q/ab; q)

∞
(q2; q2)2

∞

(cd/abq, q; q)
∞

(a2, q2/a2, b2, q2/b2; q2)
∞

. (1.12)
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As observed by Ismail and Rahman [14], the above two-term summation formula is

a special of a transformation formula due to Slater [23]. When r = 2, by substitutions

and the q-Gauss sum (1.4), Slater’s general transformation on the rψr series reduces

to the following two-term summation formula:

(c/ef, qef/c, q, q/a, q/b, c/a, c/b; q)
∞

(e, f, q/e, q/f, c/ab; q)
∞

=
q

e

(c/qf, q2f/c, e/a, e/b, qc/e, q2/e; q)
∞

(e, q/e, e/f, qf/e; q)
∞

×2ψ2

[

e/c, e/q

e/a, e/b
; q, q

]

+ idem(e; f). (1.13)

The second result of this paper is concerned with the above two-term summation

formula (1.13) for 2ψ2. Andrews [2] established a three-term transformation formula

which is the key to proving many of Ramanujan’s identities for partial θ-functions. In

view of the symmetry in this formula, he obtained a generalization of Ramanujan’s 1ψ1

summation:

d

∞
∑

n=0

(q/bc, acdf ; q)n

(ad, df ; q)n+1

(bd)n − c

∞
∑

n=0

(q/bd, acdf ; q)n

(ac, cf ; q)n+1

(bc)n

= d
(q, qd/c, c/d, abcd, acdf, bcdf ; q)

∞

(ac, ad, bc, bd, cf, df ; q)
∞

, |bc|, |bd| < 1. (1.14)

Using the approach of parameter augmentation developed by Chen and Liu [9], we

find that the two-term summation formula (1.13) for 2ψ2 series is a consequence of the

above identity (1.14) of Andrews by bilateral extension and parameter augmentation.

As is customary, we employ the notation and terminology of basic hypergeometric

series in [13]. For |q| < 1, the q-shifted factorial is defined by

(a; q)
∞

=
∞
∏

k=0

(1 − aqk) and (a; q)n =
(a; q)

∞

(aqn; q)
∞

, for n ∈ Z.

For convenience, we shall adopt the following notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is an integer or infinity. In particular, for a nonnegative integer k, we have

(a; q)
−k =

1

(aq−k; q)k

. (1.15)

The (unilateral) basic hypergeometric series rφs is defined by

rφs

[

a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]

=
∞

∑

k=0

(a1, a2, . . . , ar; q)k

(q, b1, b2, . . . , bs; q)k

[

(−1)kq(
k

2
)
]1+s−r

zk, (1.16)

while the bilateral basic hypergeometric series rψs is defined by

rψs

[

a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]

=

∞
∑

k=−∞

(a1, a2, . . . , ar; q)k

(b1, b2, . . . , bs; q)k

[

(−1)kq(
k

2
)
]s−r

zk. (1.17)
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2 An Expansion Formula for the 2ψ2 Series

In this section, we derive a representation for the 2ψ2 series (1.1) in terms of two

2φ1 series. This formula can be considered as a companion of Slater’s formulas (1.6)

and (1.7). We also present some consequences including a two-term infinite product

representation for the sum of a well-poised 2ψ2 series (1.9).

Theorem 2.1 We have

2ψ2

[

a, b

c, d
; q, z

]

=
(c/b, abz/d, dq/abz, q/d, q; q)

∞

(c, az/d, q/a, q/b, cd/abz; q)
∞

2φ1

[

cd/abz, d/a

dq/az
; q,

bq

d

]

−
(cq/d, b, d/a, az/q, q2/az, q/d, q; q)

∞

(d/q, c, bq/d, az/d, dq/az, q2/d, q/a; q)
∞

2φ1

[

aq/d, bq/d

cq/d
; q, z

]

, (2.1)

where |cd/ab| < |z| < 1 and |bq/d| < 1.

Proof. We start with a three-term transformation of 3φ2 series [13, Appendix III.33]:

3φ2

[

a, b, c

d, e
; q,

de

abc

]

=
(e/b, e/c, cq/a, q/d; q)

∞

(e, cq/d, q/a, e/bc; q)
∞

3φ2

[

c, d/a, cq/e

cq/a, bcq/e
; q,

bq

d

]

−
(q/d, eq/d, b, c, d/a, de/bcq, bcq2/de; q)

∞

(d/q, e, bq/d, cq/d, q/a, e/bc, bcq/e; q)
∞

3φ2

[

aq/d, bq/d, cq/d

q2/d, eq/d
; q,

de

abc

]

,

where |bq/d|, |de/abc| < 1.

Shifting the index of summation on the left hand side of the above identity by m

such that the new sum runs from −m to infinity, and then replacing a, b, d, e by aq−m,

bq−m, dq−m, eq−m, respectively, we get

∞
∑

k=−m

(a, b, cqm; q)k

(qm+1, d, e; q)k

(

de

abc

)k

=
(cq/e, q/d, q; q)m

(c, q/a, q/b; q)m

(e/b, e/c, cq1+m/a, q1+m/d; q)
∞

(e, cq1+m/d, q1+m/a, e/bc; q)
∞

×3φ2

[

c, d/a, cq1+m/e

cq1+m/a, bcq/e
; q,

bq

d

]

−
(bcq2/de, q/d, q; q)m

(q2/d, q/a, c; q)m

(q1+m/d, eq/d, b; q)
∞

(d/q, e, bq/d; q)
∞

×
(c, d/a, de/bcq, bcq2+m/de; q)

∞

(cq1+m/d, q1+m/a, e/bc, bcq/e; q)
∞

3φ2

[

aq/d, bq/d, cq1+m/d

q2+m/d, eq/d
; q,

de

abc

]

, (2.2)

where |bq/d|, |de/abc| < 1.

Setting m → ∞ in (2.2) and assuming |c| < 1, Tannery’s theorem [7] enables us to

interchange the limit and the summation. This gives

2ψ2

[

a, b

d, e
; q,

de

abc

]

=
(cq/e, q/d, q, e/b, e/c; q)

∞

(c, q/a, q/b, e, e/bc; q)
∞

2φ1

[

c, d/a

bcq/e
; q,

bq

d

]

−
(bcq2/de, q/d, q, eq/d, b, d/a, de/bcq; q)

∞

(q2/d, q/a, d/q, e, bq/d, e/bc, bcq/e; q)
∞

2φ1

[

aq/d, bq/d

eq/d
; q,

de

abc

]

, (2.3)
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where |bq/d|, |c|, |de/abc| < 1.

By the substitutions c→ de/abz and e→ c in (2.3), we get the desired formula.

Note that Theorem 2.1 may be considered as a bilateral extension of the following

three-term transformation formula [13, Appendix III.31]

2φ1

[

a, b

d
; q, z

]

=
(abz/d, q/d; q)

∞

(az/d, q/a; q)
∞

2φ1

[

d/a, dq/abz

dq/az
; q,

bq

d

]

−
(b, d/a, az/q, q2/az, q/d; q)

∞

(d/q, bq/d, az/d, dq/az, q/a; q)
∞

2φ1

[

aq/d, bq/d

q2/d
; q, z

]

, (2.4)

where |bq/d|, |z| < 1. It is clear that (2.4) is a special case of (2.1) for c = q.

Since Slater’s formula (1.7) and our formula (2.1) deal with the same series, we

are naturally led to an identity on 2φ1 series. The right hand sides of (1.7) and (2.1)

give rise to the following identity by replacing a, b, c, z by d/b, dz/q, adz/c, bq/c,

respectively,

2φ1

[

a, b

c
; q, z

]

=
(abz/c, q/c; q)

∞

(az/c, q/a; q)
∞

2φ1

[

cq/abz, c/a

cq/az
; q,

bq

c

]

+

(

q(1 − a)(b, q/z, d/aq, aq2/d, cq/adz, adz/c, q/c; q)
∞

d(d, c/az, 1/a, aq/c, dz/c, cq/dz, q/d; q)
∞

+
(azq/c, dz/q, b, d/c, cq/d, q2/dz, a; q)

∞

(d/q, z, c, q2/d, aq/c, dz/c, cq/dz; q)
∞

)

2φ1

[

q/b, z

azq/c
; q,

bq

c

]

. (2.5)

It is worth noting that the parameter d occurs only in the factors of the second term

on the right hand side of (2.5). Hence the sum of the two products in the parentheses

does not depend on d. This fact does not seem to be obvious by direct verification.

Setting d = aq, it follows that

2φ1

[

a, b

c
; q, z

]

=
(abz/c, q/c; q)

∞

(az/c, q/a; q)
∞

2φ1

[

cq/abz, c/a

cq/az
; q,

bq

c

]

+
(az, b, c/a, q/az; q)

∞

(z, c, q/a, c/az; q)
∞

2φ1

[

q/b, z

azq/c
; q,

bq

c

]

. (2.6)

From Heine’s transformation [13, Appendix III.1]

2φ1

[

a, b

c
; q, z

]

=
(b, az; q)

∞

(c, z; q)
∞

2φ1

[

c/b, z

az
; q, b

]

, (2.7)

it is easily seen that (2.6) is equivalent to (2.4) by the substitution c→ d.

Corollary 2.2 We have

2ψ2

[

a, b

c, d
; q, z

]

=
(abz/d, c/b, dq/abz, q/d, q; q)

∞

(c, az/d, q/a, q/b, cd/abz; q)
∞

2φ1

[

cd/abz, d/a

dq/az
; q,

bq

d

]

+
(d/a, b, az, q/az, q; q)

∞

(d, c, d/az, z, q/a; q)
∞

2φ1

[

c/b, z

azq/d
; q,

bq

d

]

, (2.8)
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where |cd/ab| < |z| < 1 and |bq/d| < 1.

Proof. By Heine’s transformation (2.7), the second term on the right hand side of

(2.1) equals

−
(cq/d, b, d/a, az/q, q2/az, q/d, q; q)

∞

(d/q, c, bq/d, az/d, dq/az, q2/d, q/a; q)
∞

2φ1

[

aq/d, bq/d

cq/d
; q, z

]

= −
(b, d/a, az/q, q2/az, q/d, q, azq/d; q)

∞

(d/q, c, az/d, dq/az, q2/d, q/a, z; q)
∞

2φ1

[

c/b, z

azq/d
; q,

bq

d

]

= −
(d/a, b, az, q/az, q; q)

∞

(d, c, d/az, z, q/a; q)
∞

(1 − az/q)(1 − q/d)(1 − d/az)

(1 − d/q)(1 − az/d)(1 − q/az)

×2φ1

[

c/b, z

azq/d
; q,

bq

d

]

=
(d/a, b, az, q/az, q; q)

∞

(d, c, d/az, z, q/a; q)
∞

2φ1

[

c/b, z

azq/d
; q,

bq

d

]

. (2.9)

Remark 2.3 Corollary 2.2 can also be obtained from the following three-term transfor-

mation formula [13, Appendix III.34]

3φ2

[

a, b, c

d, e
; q,

de

abc

]

=
(e/b, e/c; q)

∞

(e, e/bc; q)
∞

3φ2

[

d/a, b, c

d, bcq/e
; q, q

]

+
(d/a, b, c, de/bc; q)

∞

(d, e, bc/e, de/abc; q)
∞

3φ2

[

e/b, e/c, de/abc

de/bc, eq/bc
; q, q

]

.

Shifting the summation index by m on the left hand side and replacing a, c, d, e by

aq−m, cq−m, dq−m, eq−m, respectively, we are led to (2.8) by taking the limit m → ∞

and making suitable substitutions.

As a consequence of Corollary 2.2, we may deduce the following expansion of a 2ψ2

series in terms of a 2φ1 series [11, Eq. (3.13.1.7)]. Setting z = q/a in (2.8), the second

summation on the right hand side vanishes. It follows from (2.7) that

2ψ2

[

a, b

c, d
; q,

q

a

]

=
(c/b, d/b, bq/a, q; q)

∞

(c, d, q/a, q/b; q)
∞

2φ1

[

bq/c, bq/d

bq/a
; q,

cd

bq

]

, (2.10)

which was originally derived from a double sum transformation formula of Slater, see

[11, Section 3.13].

Corollary 2.4 We have

2ψ2

[

b, c

aq/b, aq/c
; q,−

aq

bc

]

=
(−b, aq/bc,−q/b, b/a, q; q)

∞
(aq2/c2; q2)

∞

(aq/c,−1, q/c, q/b,−aq/bc; q)
∞

(b2/a; q2)
∞

+
(aq/bc, b,−aq/b,−b/a, q; q)

∞
(aq2/c2; q2)

∞

(aq/b, aq/c,−1,−aq/bc, q/c; q)
∞

(b2/a; q2)
∞

, (2.11)

where |aq/bc| < 1.
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Proof. Setting c = cq/a, d = cq/b, and z = −cq/ab in (2.8), we find that the

summations on the right hand side of the identity are both equal to

∞
∑

k=0

(c2q2/a2b2; q2)k

(q2; q2)k

(

b2

c

)k

, (2.12)

which can be summed by the Cauchy q-binomial theorem [13, Appendix II.3]

∞
∑

n=0

(a; q)n

(q; q)n

zn =
(az; q)

∞

(z; q)
∞

, |z| < 1. (2.13)

Thus the following relation holds

2ψ2

[

a, b

cq/a, cq/b
; q,−

cq

ab

]

=
(−b, cq/ab,−q/b, b/c, q; q)

∞
(cq2/a2; q2)

∞

(cq/a,−1, q/a, q/b,−cq/ab; q)
∞

(b2/c; q2)
∞

+
(cq/ab, b,−cq/b,−b/c, q; q)

∞
(cq2/a2; q2)

∞

(cq/b, cq/a,−1,−cq/ab, q/a; q)
∞

(b2/c; q2)
∞

.

The proof is thus completed by interchanging a and c.

Combining (2.11) and (1.10), we are led to the following identity

(−b,−q/b, b/a, aq/b; q)
∞

+ (b, q/b,−b/a,−aq/b; q)
∞

=
2(aq, q/a, b2/a, aq2/b2; q2)

∞

(q; q2)2
∞

. (2.14)

To restate the above identity in a symmetric form, we replace a by b/a in (2.14).

Theorem 2.5 We have

(a,−b, q/a,−q/b; q)
∞

+ (−a, b,−q/a, q/b; q)
∞

=
2(ab, q2/ab, aq/b, bq/a; q2)

∞

(q; q2)2
∞

. (2.15)

More identities on sums of infinite products have been found by Bailey [5] and

Slater [24–26].

While no attempt will be made to derive a closed product formula for the series (1.3),

we obtain a formula involving a product and a summation which has the advantage

that it reduces to the q-Gauss summation (1.4) when c = q or d = q. Combining

Corollary 2.2 and Cauchy’s q-binomial theorem (2.13), we deduce

Corollary 2.6

2ψ2

[

a, b

c, d
; q,

cd

abq

]

=
(c/b, c/q, q2/c, q/d; q)

∞

(c, c/bq, q/a, q/b; q)
∞

∞
∑

k=0

(d/a; q)k

(bq2/c; q)k

(

bq

d

)k

+
(c/a, d/a, b, cd/bq, bq2/cd, q; q)

∞

(c, d, bq/c, bq/d, q/a, cd/abq; q)
∞

, (2.16)

where |bq/d|, |cd/abq| < 1.

8



3 A Two-term Summation Formula for 2ψ2

In this section, we show that a two-term summation formula for the 2ψ2 series (1.13)

due to Slater can be derived from an identity of Andrews (1.14) by bilateral extension

and parameter augmentation.

We recall that the q-difference operator, or Euler derivative, is defined as

Dq{f(a)} =
f(a) − f(aq)

a
. (3.1)

The q-shift operator η in the literature [1, 19] is defined as follows:

η{f(a)} = f(aq) and η−1{f(a)} = f(aq−1), (3.2)

which was introduced by Rogers in [16–18].

In [19], Roman combined q-differential operator and the q-shift operator to built an

operator which was denoted by θ in [9]:

θ = η−1Dq. (3.3)

In [9], Chen and Liu introduced the operator:

E(bθ) =

∞
∑

n=0

(bθ)nq(
n

2
)

(q; q)n

, (3.4)

and proved the following basic relations:

E(bθ) {(at; q)
∞
} = (at, bt; q)

∞
, (3.5)

E(bθ) {(as, at; q)
∞
} =

(as, at, bs, bt; q)
∞

(abst/q; q)
∞

, |abst/q| < 1. (3.6)

The procedure to apply the operator E(bθ) in order to derive a new identity is called

parameter augmentation.

The following theorem is equivalent to Slater’s formula (1.13), as pointed out by

Ismail and Rahman [14]. We proceed to demonstrate how to derive it from the identity

(1.14) of Andrews by bilateral extension and parameter augmentation.

Theorem 3.1 We have

2ψ2

[

a, b

c, d
; q,

cd

abq

]

−
α

q

(q/c, q/d, α/a, α/b; q)
∞

(q/a, q/b, α/c, α/d; q)
∞

2ψ2

[

aq/α, bq/α

cq/α, dq/α
; q,

cd

abq

]

=
(α, q/α, cd/αq, αq2/cd, q, c/a, c/b, d/a, d/b; q)

∞

(c/α, αq/c, d/α, αq/d, c, d, q/a, q/b, cd/abq; q)
∞

, (3.7)

where |cd/abq| < 1.
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Proof. Shifting the index of summation by m and then replacing a, b, f by aq−m,

bqm, fq−m in (1.14), respectively, we obtain

d(q1−m/bc, acdfq−2m; q)m (bdqm)m

(1 − adq−m)(1 − dfq−m)(adq1−m, dfq1−m; q)m

∞
∑

k=−m

(q/bc, acdfq−m; q)k

(adq, dfq; q)k

(bdqm)k

−
c(q1−m/bd, acdfq−2m; q)m (bcqm)m

(1 − acq−m)(1 − cfq−m)(acq1−m, cfq1−m; q)m

∞
∑

k=−m

(q/bd, acdfq−m; q)k

(acq, cfq; q)k

(bcqm)k

=
d(q, qd/c, c/d, abcd, acdfq−2m, bcdf ; q)

∞

(acq−m, adq−m, bcqm, bdqm, cfq−m, dfq−m; q)
∞

. (3.8)

Letting m→ ∞ in (3.8) and employing Tannery’s theorem, we get

c(bc; q)
∞

(1/ad, 1/df ; q)
∞

∞
∑

k=−∞

(q/bc; q)k

(adq, dfq; q)k

(

−abcd2f
)k
q(

k

2
)

−
d(bd; q)

∞

(1/ac, 1/cf ; q)
∞

∞
∑

k=−∞

(q/bd; q)k

(acq, cfq; q)k

(

−abc2df
)k
q(

k

2
)

=
acd2f(q, qd/c, c/d, abcd, acdf, bcdf, q/acdf ; q)

∞

(ac, ad, cf, df, q/ac, q/ad, q/cf, q/df ; q)
∞

. (3.9)

Now, (3.9) can be written as

c

(1/ad, 1/df ; q)
∞

∞
∑

k=−∞

(bcq−k; q)
∞

(adq, dfq; q)k

(

ad2fq
)k
q2(k

2
)

−
d

(1/ac, 1/cf ; q)
∞

∞
∑

k=−∞

(bdq−k; q)
∞

(acq, cfq; q)k

(

ac2fq
)k
q2(k

2
)

=
acd2f(q, qd/c, c/d, abcd, acdf, bcdf, q/acdf ; q)

∞

(ac, ad, cf, df, q/ac, q/ad, q/cf, q/df ; q)
∞

. (3.10)

Next, applying E(gθ) to both sides of (3.10) with respect to the parameter b gives

c

(1/ad, 1/df ; q)
∞

∞
∑

k=−∞

(ad2fq)
k
q2(k

2
)

(adq, dfq; q)k

E(gθ)
{

(bcq−k; q)
∞

}

−
d

(1/ac, 1/cf ; q)
∞

∞
∑

k=−∞

(ac2fq)
k
q2(k

2
)

(acq, cfq; q)k

E(gθ)
{

(bdq−k; q)
∞

}

=
acd2f(q, qd/c, c/d, acdf, q/acdf ; q)

∞

(ac, ad, cf, df, q/ac, q/ad, q/cf, q/df ; q)
∞

E(gθ) {abcd, bcdf ; q)
∞
} . (3.11)

From (3.5) and (3.6), it is evident that

E(gθ)
{

(bcq−k; q)
∞

}

= (bcq−k, cgq−k; q)
∞
, (3.12)

E(gθ)
{

(bdq−k; q)
∞

}

= (bdq−k, dgq−k; q)
∞
, (3.13)
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and

E(gθ) {abcd, bcdf ; q)
∞
} =

(abcd, acdg, bcdf, cdfg; q)
∞

(abc2d2fg/q; q)
∞

. (3.14)

Substituting (3.12), (3.13), and (3.14) into (3.11), we see that

c(bc, cg; q)
∞

(1/ad, 1/df ; q)
∞

2ψ2

[

q/bc, q/cg

adq, dfq
; q,

abc2d2fg

q

]

−
d(bd, dg; q)

∞

(1/ac, 1/cf ; q)
∞

2ψ2

[

q/bd, q/dg

acq, cfq
; q,

abc2d2fg

q

]

=
acd2f(q, qd/c, c/d, abcd, acdf, acdg, bcdf, q/acdf, cdfg; q)

∞

(ac, ad, cf, df, q/ac, q/ad, q/cf, q/df, abc2d2fg/q; q)
∞

, (3.15)

where |abc2d2fg/q| < 1.

Finally, the proof is completed by replacing a, b, c, d, f , g by c/fq, e, q/ae, f , d/fq,

ae/b, respectively, and then setting aef = α.

Substitute a, b, c, d, α with qa/e, qb/e, qc/e, q2/e, fq/e in (3.7), respectively, we

may recover the original formula (1.13) due to Slater.

If we set d = q in (3.7), then the second term on the left hand side vanishes, and so

we get the q-Gauss summation (1.4) as a special of (3.7).

To conclude this paper, we represent (3.7) in an equivalent form and give the explicit

substitutions to reach Askey’s q-extension of Cauchy’s beta integral (1.11). By the

relation

2ψ2

[

a, b

c, d
; q, z

]

= 2ψ2

[

q/c, q/d

q/a, q/b
; q,

cd

abz

]

, (3.16)

we may rewrite (3.7) as

(q/a, q/b; q)
∞

(q/c, q/d; q)
∞

2ψ2

[

q/c, q/d

q/a, q/b
; q, q

]

−
α

q

(α/a, α/b; q)
∞

(α/c, α/d; q)
∞

2ψ2

[

α/c, α/d

α/a, α/b
; q, q

]

=
(α, q/α, cd/αq, αq2/cd, q, c/a, c/b, d/a, d/b; q)

∞

(c/α, αq/c, d/α, αq/d, c, d, q/c, q/d, cd/abq; q)
∞

, (3.17)

where |cd/abq| < 1. Replacing a, b, c, d, α by q/c, −q/d, q/a, −q/b, q, respectively,

then (3.17) takes the form of Askey’s q-extension of Cauchy’s beta integral.
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