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Abstract. We observe that the classical Faulhaber’s theorem on sums of odd
powers also holds for an arbitrary arithmetic progression, namely, the odd power
sums of any arithmetic progression a+b, a+2b, . . . , a+nb is a polynomial in na+
n(n + 1)b/2. While this assertion can be deduced from the original Fauhalber’s
theorem, we give an alternative formula in terms of the Bernoulli polynomials.
Moreover, by utilizing the central factorial numbers as in the approach of Knuth,
we derive formulas for r-fold sums of powers without resorting to the notion of
r-reflexive functions. We also provide formulas for the r-fold alternating sums of
powers in terms of Euler polynomials.
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1 Introduction

The classical theorem of Faulhaber states that the sums of odd powers

12m−1 + 22m−1 + . . . + n2m−1

can be expressed as a polynomial of the triangular number Tn = n(n + 1)/2; see
Knuth [9]. Moreover, Faulhaber observed that the r-fold summation of nm is a
polynomial in n(n + r) when m is positive and m − r is even [9]. The classical
Faulhaber theorem for odd power sums was proved by Jacobi; see Edwards [3].
Let us recall the notation on the r-fold power sums:

∑0 nm = nm, and

∑r
nm =

∑r−1
1m +

∑r−1
2m + · · · +

∑r−1
nm. (1.1)

For example,
∑1 nm = 1m + 2m + · · · + nm, and

∑2 nm =
∑1 1m +

∑1 2m + · · ·+
∑1 nm =

n
∑

i=1

(n + 1 − i)im.

For even powers, it has been shown that the sum 12m +22m + · · ·+n2m is a poly-
nomial in the triangular number Tn multiplied by a linear factor in n. Gessel and
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Viennot [5] had a remarkable discovery that the alternating sum
∑n

i=1(−1)n−ii2m

is also a polynomial in the triangular number Tn.

Faulhaber’s theorem has drawn much attention from various points of view.
Grosset and Veselov [6] investigated a generalization of the Faulhaber polynomials
related to elliptic curves. Warnaar [12] and Schlosser [11] derived the q-analogues
of the formulas for the first few power sums. Garrett [4] found a combinatorial
proof of the formula for sums of q-cubes. Guo and Zeng [7] obtained the q-
analogue formula in the general case.

In this paper, we first formulate Faulhaber’s theorem in a more general frame-
work, that is, in terms of power sums of an arithmetic progression. Given an
arithmetic progression:

a + b, a + 2b, . . . , a + nb,

Faulhaber’s theorem implies that odd power sums of the above series are poly-
nomials in na + n(n + 1)b/2. In particular, an odd power sum of the first n odd
numbers

12m−1 + 32m−1 + · · ·+ (2n − 1)2m−1

is a polynomial in n2, and the sum

12m−1 + 42m−1 + 72m−1 + · · · + (3n − 2)2m−1

is a polynomial in the pentagonal number n(3n − 1)/2.

Because of the relation (a+ bi)m = bm(a/b+ i)m, there is no loss of generality
to consider the series

x + 1, x + 2, . . . , x + n. (1.2)

Let
λ = n(n + 2x + 1) (1.3)

be the sum of the sequence x + 1, x + 2, . . . , x + n. The the power sums

S2m−1 = (x + 1)2m−1 + (x + 2)2m−1 + · · ·+ (x + n)2m−1

is a polynomial in λ. For exmaple,

S3 =
λ2

4
+

(x2 + x)

2
λ;

S5 =
λ3

6
+

1

12
(6x2 + 6x − 1)λ2 +

1

6
(3x4 + 6x3 + 2x2 − x)λ;

S7 =
λ4

8
+

1

6
(3x2 + 3x − 1)λ3 +

1

12
(9x4 + 18x3 + 3x2 − 6x + 1)λ2

+
1

6
(3x6 + 9x5 + 6x4 − 3x3 − 2x2 + x)λ.

It should be noticed that the above more general setting of Faulhaber’s theo-
rem can be deduced on the the original version of Faulhaber’s theorem. When x
is a positive integer, we have the relation

n
∑

i=1

(x + i)m =
n+x
∑

i=1

im −

x
∑

i=1

im.
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By Faulhaber’s theorem,
∑n+x

i=1 im and
∑x

i=1 im are polynomials in (n+x)(n+x+1)
and x(x + 1), respectively. Using the following simple but important relation

(n + x)(n + x + 1) = n(n + 2x + 1) + x(x + 1), (1.4)

we see that

[(n + x)(n + x + 1)]i − [x(x + 1)]i =

i
∑

k=1

(

i

k

)

[n(n + 2x + 1)]k[x(x + 1)]i−k, (1.5)

which is a polynomial in n(n+2x+1). Clearly, one sees that the above assertion
holds for all real numbers x.

Although in principle Faulhaber’s theorem is valid for any arithmetic pro-
gression, from a computational point of view it still seems worthwhile to find a
formula for the coefficients in terms Bernoulli polynomials. The main result of
this paper is an approach to the study of the r-fold sums of powers without re-
sorting to the properties of r-reflective functions as in the approach of Knuth [9].
In the last section, we obtain formulas for the r-fold alternating sums of powers
in terms of the Euler polynomials.

2 An Alternative Formula

In this section, we give an explicit formula for the coefficients regarding Faul-
haber’s theorem for the series x + 1, x + 2, . . . , x + n, which reduces to an al-
ternative formula to the Gessel-Viennot formula when setting x = 0. We first
recall some basic facts about Bernoulli polynomials Bn(x) which are defined by
the following generating function:

∞
∑

n=0

Bn(x)tn

n!
=

text

et − 1
. (2.1)

The power sums of the first n positive integers can be expressed in terms of Bi(x):

n
∑

i=1

im =
1

m + 1
(Bm+1(n + 1) − Bm+1(1)).

Moreover, we have

n
∑

i=1

(x + i)2m−1 =
1

2m
(B2m(x + n + 1) − B2m(x + 1)) . (2.2)

The Bernoulli numbers Bn are given by Bn = Bn(0). Note that the Bernoulli
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polynomials satisfy the following relations

Bn(x + 1) − Bn(x) = nxn−1, (2.3)

Bn(1 − x) = (−1)nBn(x), (2.4)

d

dx
Bn(x) = nBn−1(x), (2.5)

Bn(x + y) =

n
∑

i=0

(

n

i

)

Bi(x)yn−i. (2.6)

The evaluation of Bernoulli polynomials at 1/2 is of special interest. For n ≥ 0,
we have

B2n+1(1/2) = 0, B2n(1/2) = (21−2n − 1)B2n. (2.7)

From (2.6) and (2.7), we can deduce the following form of Faulhaber’s theorem.

Theorem 2.1 Let λ = n(n + 2x + 1). Then we have

n
∑

i=1

(x + i)2m−1 =
m
∑

k=1

F
(m)
k (x)λk, (2.8)

where

F
(m)
k (x) =

1

2m

m
∑

i=k

(

2m

2i

)(

i

k

)(

x +
1

2

)2i−2k

B2m−2i

(

1

2

)

. (2.9)

Proof. From the binomial expansion (2.6), we get

B2m(x + n + 1) =
2m
∑

i=0

(

2m

i

)

B2m−i

(

1

2

)

·

(

x + n +
1

2

)i

. (2.10)

It follows from (2.2) and (2.7) that

∑

(x + n)2m−1 =
1

2m

m
∑

i=0

(

2m

2i

)

B2m−2i

(

1

2

)

·

(

x + n +
1

2

)2i

−
1

2m
B2m(x + 1).

Since

(

x + n +
1

2

)2i

=

(

λ +

(

x +
1

2

)2
)i

=

i
∑

k=0

(

i

k

)(

x +
1

2

)2i−2k

λk, (2.11)

we immediately get (2.9) for k > 1. For k = 0, we have

F
(m)
0 (x) =

1

2m

m
∑

i=0

(

2m

2i

)

B2m−2i

(

1

2

)(

x +
1

2

)2i

=
1

2m
B2m(x + 1).

This completes the proof.
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The above formula can be viewed as an alternative form of the formula of
Gessel and Viennot [5] for the coefficients A

(m)
k = F

(m)
k (0):

A
(m)
k = (−1)m−k

∑

j

(

2m

m − k − j

)(

m − k + j

j

)

m − k − j

m − k + j
Bm+k+j, 0 ≤ k < m.

Note that B0 = 1 and B1 = −1/2 are used in the above formula whereas
the formula (2.9) does not involve B1. The equivalence between the formulas

for F
(m)
k (0) and A

(m)
k can be established via the following generating function for

the coefficients F
(m+1)
k (x). The proof is analogous to that given by Gessel and

Viennot [5] for the case x = 0.

Theorem 2.2 We have

∞
∑

m=0

∞
∑

k=1

F
(m+1)
k (x)tk

y2m+1

(2m + 1)!
=

cosh y
√

(x + 1
2
)2 + t − cosh y(x + 1

2
)

2 sinh(y
2
)

. (2.12)

Similarly, the theorem of Gessel and Viennot on the alternating sums of even
powers of the first n natural numbers can be extended to an arithmetic progression
x+1, x+2, . . . , x+n. It turns out that the Euler polynomials play the same role
as the Bernoulli polynomials for sums of odd powers.

The Euler polynomials En(x) are defined by

∞
∑

n=0

En(x)
tn

n!
=

2ext

et + 1
. (2.13)

The following expansion formula holds:

En(x + y) =
n
∑

k=0

(

n

k

)

Ek(x)yn−k. (2.14)

For positive even number n, we have En(1) = 0 . The Euler numbers En and the
Euler polynomials are related by

E2n+1 = 0, En = 2nEn(1/2), n ≥ 0. (2.15)

Theorem 2.3 Let λ = n(n + 2x + 1). Then we have

n
∑

i=1

(−1)n−i(x + i)2m =
m
∑

k=0

G
(m)
k (x)λk,

where

G
(m)
k (x) =

1

2

m
∑

i=k

(

2m

2i

)(

i

k

)

E2m−2i

(

1

2

)(

x +
1

2

)i−k

, 1 ≤ k ≤ m;

G
(m)
0 (x) =

1

2
(1 − (−1)n)E2m(x + 1).
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The generating function for G
(m)
k (x) is given below, which is a straightforward

extension of the formula of Gessel and Viennot [5].

Theorem 2.4 We have

∞
∑

m=0

∞
∑

k=0

G
(m)
k (x)tk

y2m

(2m)!
=

cosh y
√

(x + 1
2
)2 + t

2 cosh(y
2
)

. (2.16)

3 r-Fold Sums of Powers

In this section, we derive a formula for the r-fold sums of powers of the series
x + 1, x + 2, . . . , x + n in terms of the central factorial numbers as used in the
approach of Knuth [9]. A key step in our approach is the r-fold summation
formula for the lower factorials. It can be seen from our formula that if r and m
have the same parity then the r-fold power sum

∑r(n + x)m is a polynomial in
n(n + 2x + r) plus a term that vanishes when x = 0. The cases when r and m
have different parities can be dealt with some care, and the details are omitted.

Recall the notation for the lower factorials (x)k = x(x−1) · · · (x−k+1). The
definition of the central factorials x[k] [10, p. 213], is given by

x[k] = x(x + k/2 − 1)k−1.

The central factorial numbers T (m, k) are determined by the following relation:

xm =

m
∑

k=1

T (m, k)x[k], m ≥ 1. (3.1)

Note that T (m, k) = 0 when m − k is odd. In particular, we need the following
relation

x2m−1 =

m
∑

k=1

T (2m, 2k)(x + k − 1)2k−1. (3.2)

We first give a formula for the r-fold sums of lower factorials. From the
recursive definition (1.1) of r-fold summations, we have

∑r
(x + n)l =

∑

16i16i26···6ir6n

(x + i1)l. (3.3)

The above multiple summation can be simplified to a single sum.

Theorem 3.1 We have

∑r
(x + n)l =

(x + n + r)l+r

(l + r)r
−

r
∑

i=1

(

n + r − i − 1

r − i

)

(x + i)l+i

(l + i)i
.
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Proof. Setting

F (n) =
1

l + 1
(x + n + 1)l+1

gives F (i) − F (i − 1) = (x + i)l. Hence we get

∑

16i16i2

(x + i1)l =

i2
∑

i1=1

(

F (i1) − F (i1 − 1)
)

=
1

l + 1
(x + i2 + 1)l+1 −

1

l + 1
(x + 1)l+1. (3.4)

Iterating (3.4) r − 1 times and using the following identity

n
∑

i=1

(

l + i − 1

l

)

=

(

l + n

l + 1

)

,

we obtain the desired formula.

From Theorem 3.1 and the relation (3.2), we derive two formulas for the r-fold
sums of the m-th powers when r and m have the same parity.

Theorem 3.2 For m ≥ 1, we have

∑2r+1
(x + n)2m−1 =

m
∑

k=1

T (2m, 2k)

{

(x + n + k + 2r)2k+2r

(2k + 2r)2r+1

−

2r+1
∑

i=1

(

n + 2r − i

2r − i + 1

)

(x + k + i − 1)2k+i−1

(2k + i − 1)i

}

.

We remark that the second summation in the above formula vanishes when
x = 0, and the lower factorial (n + k + 2r)2k+2r can be rewritten as

k+r
∏

i=1

(n + k + 2r + 1 − i)(n − k + i) =
k+r
∏

i=1

[n(n + 2r + 1) − (k + 2r − i + 1)(k − i)].

Hence we obtain Faulhaber’s theorem for the (2r +1)-fold sums of odd powers of
the first n positive integers.

Applying Theorem 3.1 together with the following relation

(x + n)(x + n + k − 1)2k−1 =
1

2
(x + n + k)2k +

1

2
(x + n + k − 1)2k, (3.5)

we arrive at the following formula for the (2r)-fold summation of even powers.

Theorem 3.3 For m ≥ 1, we have,

∑2r
(x + n)2m =

m
∑

k=1

T (2m, 2k)

{

(x + n + r)(x + n + k + 2r − 1)2k+2r−1

(2k + 2r)2r

−

2r
∑

i=1

(

n + 2r − i − 1

2r − i

)

(2x + i)(x + k + i − 1)2k+i−1

2(2k + i)i

}

.
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Setting x = 0 in the above formula, the second summation vanishes. One
sees that the (2r)-fold summation becomes a polynomial in n(n + 2r) because
(n + r)(n + k + 2r − 1)2k+2r−1 can be rewritten as

k+r
∏

i=1

(n + k + 2r − i)(n − k + i) =
k+r
∏

i=1

[n(n + 2r) + (k + 2r − i)(i − k)].

4 r-Fold Alternating Sums of Powers

In this section, we investigate the r-fold alternating sums of powers. Following
the notation of Faulhaber, we define

∑r
(−1)n(n + x)m :=

∑

1≤i1≤···≤ir≤n

(−1)i1(i1 + x)m. (4.1)

We will show that the 2r-fold alternating sum of even powers
∑2r(−1)nn2m is a

polynomial in n(n + r). For other cases concerning the parities of r, m, we will
outline the results without proofs.

Define

E(r)
m [x1, . . . , xr] :=

∑

i1+···+ir=m

(

m

i1, . . . , ir

)

Ei1(x1) · · ·Eir(xr). (4.2)

The following lemma holds. The proof is based on induction and is omitted.

Lemma 4.1 Let r, m be positive integers. Then
∑r

(−1)n(n + x)m

= (−1)n2−rE(r)
m

[

1/2, . . . , 1/2, (x + n + r/2 + 1/2)
]

+

r
∑

k=1

(

n + r − k − 1

r − k

)

2−kE(k)
m

[

1/2, . . . , 1/2, x + (k + 1)/2
]

.

We now give recursive formulas for E
(k)
2m in order to compute the multiple sums

in the above lemma.

Lemma 4.2 Let k, m be positive integers. Then E
(k)
2m [1/2, . . . , 1/2, (k + 1)/2]

equals
k/2
∑

i=0

(

k

2i

) i
∑

j=0

(

i

j

)

(−1)jE
(2j)
2m [1/2, . . . , 1/2] , (4.3)

and E
(k)
2m+1 [1/2, . . . , 1/2, (k + 1)/2] equals

k/2
∑

i=0

(

k

2i + 1

) i
∑

j=0

(

i

j

)

(−1)j+1E
(2j+1)
2m+1 [1/2, . . . , 1/2, 1] . (4.4)
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Proof. From the generating function of Em(x), one sees that the exponential

generating function of E
(k)
m

[

1/2, . . . , 1/2, (k + 1)/2
]

equals

∞
∑

m=0

E(k)
m

[

1/2, . . . , 1/2, (k + 1)/2
] tm

m!
=

(

2et

1 + et

)k

.

Observe that
(

2et

1 + et

)2

= 2 ·
2et

1 + et
−

(

2e
t

2

1 + et

)2

.

Denote the exponential generating functions of En(1) and En(1/2) by A(t) and
B(t), respectively. Then the above relation implies that A(t)2 = 2A(t) − B(t)2,
which yields

A(t) = 1 −
√

1 − B(t)2.

Taking the k-th power, we obtain

A(t)k =

k/2
∑

i=0

(

k

2i

) i
∑

j=0

(

i

j

)

(−1)jB(t)2j

+

(k−1)/2
∑

i=0

(

k

2i + 1

) i
∑

j=0

(

i

j

)

(−1)jB(t)2j(1 − A(t)).

Since E2m+1(1/2) = 0 and E2m = 0 for m ≥ 1, equating the coefficients of
both sides of above identity yields the desired recurrence relations.

The following theorem is concerned with 2r-fold alternating sums of even
powers.

Theorem 4.3 Let r, m be positive integers. Then the 2r-fold alternating sum
∑2r(−1)nn2m is of the form (−1)nF (n(n + 2r)) + G(n(n + 2r)), where F and G
are polynomials of degree m and r − 1 respectively.

Proof. Applying Lemma 4.1 with 2r replaced by 2, m replaced by 2m, and setting
x = 0, we get

∑2r
(−1)nn2m

= (−1)n2−2rE
(2r)
2m

[

1/2, . . . , 1/2, (n + r + 1/2)
]

(4.5)

+

2r
∑

k=1

(

n + 2r − k − 1

2r − k

)

2−kE
(k)
2m

[

1/2, . . . , 1/2, (k + 1)/2
]

. (4.6)

In the expansion of (4.5) indexed by 2i1+2i2+· · ·+2i2r = 2m, each term contains
a factor of the form E2ir(n + r + 1/2). According to (2.14), we find that

E2i2r

(

n + r +
1

2

)

=

i2r
∑

k=0

(

2i2r

2k

)

E2i2r−2k

(

1

2

)

(n + r)2k.
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Since (n + r)2k = (n(n + 2r) + r2)k, it is easily seen that (4.5) is a polynomial
in n(n + 2r) of degree m. We need to show that (4.6) is also a polynomial in
n(n + 2r). Applying (4.3), we find that (4.6) equals

2r
∑

k=1

(

n + 2r − k − 1

2r − k

)

2−k

k/2
∑

i=0

(

k

2i

) i
∑

j=0

(

i

j

)

(−1)jE
(2j)
2m [1/2, . . . , 1/2]

=
r
∑

j=0

(−1)jE
(2j)
2m [1/2, . . . , 1/2]

×

r
∑

k=j

(

n + 2r − k − 1

2r − k

)

2−k

k/2
∑

i=j

(

k

2i

)(

i

j

)

. (4.7)

Using the identity

n/2
∑

i=j

(

n

2i

)(

i

j

)

= 2n−2j−1

(

n − j

j

)

n

n − j
, (4.8)

we deduce that the second sum in (4.7) equals

r
∑

k=j

(

n + 2r − k − 1

2r − k

)(

k − j − 1

j − 1

)

k

j
2−1−2j. (4.9)

In view of the following relation,

∑

k

(

n − k

i

)(

m + k

j

)

=

(

m + n + 1

i + j + 1

)

.

the above sum (4.9) simplifies to

(

n + 2r − j − 1

2r − 2j − 1

)

n + r

r − j
2−1−2j . (4.10)

Now, (n + r)(n + 2r − j − 1)2r−2j−1 can be rewritten as

r−j
∏

i=1

(n + i + j)(n + 2r − i − j) =

r−j
∏

i=1

[n(n + 2r) + (2r − j − i)(i + j)].

which is a polynomial in n(n + 2r) of degree r − j. Since E
(0)
2m[·] = 0, (4.6) is a

polynomial in n(n + 2r) of degree r − 1. This completes the proof.

For the remaining three cases with respect to the parities of r and m, we have
the following theorem. The proof is omitted.
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Theorem 4.4 For r, m ≥ 0, we have

∑2r+1
(−1)nn2m (4.11)

= (−1)nF (1)
m (n(n + 2r + 1)) + (2n + 2r + 1)G

(1)
r−1(n(n + 2r + 1)),

∑2r
(−1)nn2m+1 (4.12)

= (−1)n(n + r)F (2)
m (n(n + 2r)) + (n + r)G

(2)
r−1(n(n + 2r)),

∑2r+1
(−1)nn2m+1 (4.13)

= (−1)n(n + r)F (3)
m (n(n + 2r + 1)) + G(3)

r (n(n + 2r + 1)),

where F
(i)
m (x) and G

(i)
r (x) (i = 1, 2, 3) stand for polynomials of degrees m and r

respectively, and G
(i)
−1 = 0 for i = 1, 2.
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