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CROSSINGS AND NESTINGS IN TANGLED-DIAGRAMS

WILLIAM Y. C. CHEN, JING QIN AND CHRISTIAN M. REIDYS ⋆

Abstract. A tangled-diagram over [n] = {1, . . . , n} is a graph of degree less than two whose

vertices 1, . . . , n are arranged in a horizontal line and whose arcs are drawn in the upper halfplane

with a particular notion of crossings and nestings. Generalizing the construction of Chen et.al.

we prove a bijection between generalized vacillating tableaux with less than k rows and k-

noncrossing tangled-diagrams and study their crossings and nestings. We show that the number

of k-noncrossing and k-nonnesting tangled-diagrams are equal and enumerate tangled-diagrams.

1. Introduction

The main objective of this paper is to study tangled-diagrams by generalizing the concept of

vacillating tableaux introduced by Chen et.al. [2]. Tangled-diagrams are motivated from intra-

molecular interactions of RNA nucleotides as follows: the primary sequence of an RNA molecule

is the sequence of nucleotides A, G, U and C together with the Watson-Crick (A-U, G-C) and

(U-G) base pairing rules specifying the pairs of nucleotides can potentially form bonds. Single

stranded RNA molecules form helical structures whose bonds satisfy the above base pairing rules

and which, in many cases, determine their function. One question of central importance is now

to predict the 3D-arrangement of the nucleotides, vital for the molecule’s functionality. For this

purpose it is important to capture the sterical constraints of the base pairings, which then allows

to systematically search the configuration space. For a particular class of RNA structures, the

pseudoknot RNA structures [6], the notion of diagrams [5] has been used in order to translate the

biochemistry of the nucleotide interactions [3, 7] into crossings and nestings of arcs. A diagram

is a labeled, partial one-factor graph over [n], represented as follows: all vertices are drawn in a

horizontal line and all arcs (representing interactions) are drawn in the upper halfplane. Since a
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priori restricted to degree ≤ 1 diagrams do not allow to express helix-helix, loop-helix and multiple

nucleotide interactions in general [3]. The tangled-diagrams studied in the following are tailored to

express these interactions. A tangled-diagram is a labeled graph over the vertices 1, . . . , n, drawn

in a horizontal line and arcs in the upper halfplane. In general, it has isolated points and the

following types of arcs

For instance

are two tangled-diagrams and diagrams in which all vertices j of degree two are either incident

to loops (j, j) or crossing arcs (i, j) and (j, h), where i < j < h are called braids. In particular

matchings and partitions are tangled-diagrams. A matching over the set [2n] = {1, 2, . . . , 2n} is

just a 1-regular tangled-diagram and a partition corresponds to a tangled-diagram in which any

vertex of degree two, j, is incident to the arcs (i, j) and (j, s), where i < j < s. For instance
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Chen et al. observed that there is a bijection between vacillating tableaux and partitions [2]

derived from an RSK-insertion idea due to Stanley. In addition they studied enhanced partitions

via hesitating tableaux. In the following we integrate both frameworks by generalizing vacillating

tableaux as follows: a generalized vacillating tableaux V 2n
λ of shape λ and length 2n is a sequence

(λ0, λ1, . . . , λ2n) of shapes such that λ0 = ∅ and λ2n = λ, and (λ2i−1, λ2i) is derived from λ2i−2,

for 1 ≤ i ≤ n by an elementary move, i.e. a step of the form (∅,∅): do nothing twice; (−�,∅):

first remove a square then do nothing; (∅,+�): first do nothing then adding a square; (±�,±�):

add/remove a square at the odd and even steps, respectively. For instance the below sequence is

a generalized vacillating tableaux

We prove a bijection between V 2n
∅

, referred to from now on as simply vacillating tableaux, and

tangled-diagrams over [n]. We show that the notions of k-noncrossing tangled-diagrams and k-

nonnesting in tangled-diagrams are in fact dual and enumerate k-noncrossing tangled-diagrams.

Restricting the steps of the vacillating tableaux we obtain three wellknown bijections, the bijection

between vacillating tableaux with elementary moves {(−�,∅), (∅,+�)} and matchings [2], the bi-

jection between the vacillating tableaux with elementary moves {(−�,∅), (∅,+�), (∅,∅), (−�,+�)}

and partitions and finally the bijection between the vacillating tableaux with elementary moves

{(−�,∅), (∅,+�), (∅,∅), (+�,−�)} and enhanced partitions.

2. Tangled-diagrams and vacillating tableaux

2.1. Tangled-diagrams. A tangled-diagram is a labeled graph, Gn, over [n] with degree ≤ 2,

represented by drawing its vertices in a horizontal line and its arcs (i, j) in the upper halfplane

having the following properties: two arcs (i1, j1) and (i2, j2) such that i1 < i2 < j1 < j2 are

crossing and if i1 < i2 < j2 < j1 they are nesting. Two arcs (i, j1) and (i, j2) (common lefthand

endpoint) and j1 < j2 can be drawn in two ways: either draw (i, j1) strictly below (i, j2) in which

case (i, j1) and (i, j2) are nesting (at i) or draw (i, j1) starting above i and intersecting (i, j2) once,

in which case (i, j1) and (i, j2) are crossing (at i): The cases of two arcs (i1, j), (i2, j), where i1 < i2
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(common righthand endpoint)

and of two arcs (i, j), (i, j), i.e. where i and j are both: right- and lefthand endpoints are completely

analogous. Suppose i < j < h and that we are given two arcs (i, j) and (j, h). Then we can draw

them intersecting once or not. In the former case (i, j) and (j, h) are crossing: The cases of two

arcs (i1, j), (i2, j), where i1 < i2 (common righthand endpoint)

The set of all tangled-diagrams is denoted by Gn. A tangled-diagram is k-noncrossing if it contains

no k-set of mutually intersecting arcs and k-nonnesting if it contains no k-set of mutually nesting

arcs. The set of k-noncrossing and k-nonnesting tangled-diagrams is denoted by Gn,k and Gk
n,

respectively.

2.2. Inflation. A key observation allowing for the combinatorial interpretation of tangled-diagrams

is their “local” inflation. Intuitively, a tangled-diagram with ℓ vertices of degree 2 is resolved into

a partial matching over n+ ℓ vertices. For this purpose we consider the following linear ordering

over {1, 1′, . . . , n, n′}

(2.1) 1 < 1′ < 2 < 2′ < · · · < (n− 1) < (n− 1)′ < n < n′ .

Let Gn be a tangled-diagram with exactly ℓ vertices of degree 2. Then the inflation of Gn, ι(Gn),

is a combinatorial graph over {1, . . . , n+ ℓ} vertices with degree ≤ 1 obtained as follows:

i < j1 < j2: if (i, j1), (i, j2) are crossing, then ((i, j1), (i, j2)) 7→ ((i, j1), (i
′, j2)) and if (i, j1), (i, j2)

are nesting then ((i, j1), (i, j2)) 7→ ((i, j2), (i
′, j1)), i.e.: The cases of two arcs (i1, j), (i2, j), where

i1 < i2 (common righthand endpoint)
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i1 < i2 < j: if (i1, j), (i2, j) are crossing then ((i1, j), (i2, j)) 7→ ((i1, j), (i2, j
′)) and if (i1, j), (i2, j)

are nesting then ((i1, j), (i2, j)) 7→ ((i1, j
′), (i2, j)), i.e.:

i < j: if (i, j), (i, j) are crossing, then ((i, j), (i, j)) 7→ ((i, j), (i′, j′)) and if (i, j), (i, j) are nesting,

then we set ((i, j), (i, j)) 7→ ((i, j′), (i′, j)) and if (i, i) is a loop we map (i, i) 7→ (i, i′):

i < j < h: if (i, j), (j, h) are crossing, then ((i, j), (j, h)) 7→ ((i, j′), (j′, h)) and ((i, j), (j, h)) 7→

((i, j), (j′, h)), otherwise, i.e. we have the following situation

Identifying all vertex-pairs (i, i′) allows us to recover the original tangled-diagram and we accord-

ingly have the bijection

(2.2) ι : Gn −→ ι(Gn) .

ι preserves by definition the maximal number crossing and nesting arcs, respectively. Equivalently,

a tangled-diagram Gn is k-noncrossing if and only if its inflation ι(Gn) is k-noncrossing or k-

nonnesting, respectively. For instance the inflation of the tangled-diagram of Section 1 is



6 WILLIAM Y. C. CHEN, JING QIN AND CHRISTIAN M. REIDYS ⋆

2.3. Vacillating tableaux. A Young diagram (shape) is a collection of squares arranged in left-

justified rows with weakly decreasing number of boxes in each row. A standard Young tableau

(SYT) is a filling of the squares by numbers which is strictly decreasing in each row and in each

column. We refer to standard Young tableaux as Young tableaux. Elements can be inserted

into SYT via the RSK-algorithm [8]. In the following we will refer to SYT simply as tableaux.

Our first lemma is instrumental for constructing the bijection between vacillating tableaux and

tangled-diagrams in Section 3.

Lemma 1. [2] Suppose we are given two shapes λi ( λi−1, which differ by exactly one square and

Ti−1 is a SYT of shape λi−1. Then there exists a unique j contained in Ti−1 and a unique tableau

Ti such that Ti−1 is obtained from Ti by inserting j via the RSK-algorithm.

Proof. Suppose we have two shapes λi ( λi−1, which differ by exactly one square and Ti−1 is a

tableau of shape λi−1. Let us first assume that λi−1 differs from λi by the rightmost square in

its first row, containing j. Then j is the unique element of Ti−1 which, if RSK-inserted into Ti,

produces the tableau Ti−1. Suppose next the square which is being removed from λi−1 is at the

end of row ℓ. Then we remove the square and RSK-insert its element x into the (ℓ − 1)-th row

in the square containing y, where y is maximal subject to y < x and such that y, if inserted into

row (ℓ − 1), would push down x in its original position. Since each column is strictly increasing

such an y always exists. We can conclude by induction on ℓ that this process results in exactly one

element j being removed from Ti−1 and a filling of λi, i.e. a unique tableau Ti. By construction,

RSK-insertion of j recovers the tableaux Ti−1. �

Definition 1. (Vacillating Tableau) A vacillating tableaux V 2n
λ of shape λ and length 2n is a

sequence (λ0, λ1, . . . , λ2n) of shapes such that (i) λ0 = ∅ and λ2n = λ, and (ii) (λ2i−1, λ2i) is

derived from λ2i−2, for 1 ≤ i ≤ n by either (∅,∅): do nothing twice; (−�,∅): first remove a

square then do nothing; (∅,+�): first do nothing then adding a square; (±�,±�): add/remove

a square at the odd and even steps, respectively. Let V2n
λ denote the set of vacillating tableaux.

3. The bijection

Lemma 2. There exists a mapping from the set of vacillating tableaux of shape ∅ and length 2n,

V 2n
∅

, into the set of inflations of tangled-diagrams

(3.1) φ : V 2n
∅

−→ ι(Gn) .
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Proof. In order to define φ we recursively define a sequence of triples

(3.2) ((P0, T0, V0), (P1, T1, V1), . . . , (P2n, T2n, V2n))

where Pi is a set of arcs, Ti is a tableau of shape λi, and Vi ⊂ {1, 1′, 2, 2′, . . . , n, n′} is a set

of vertices. P0 = ∅, T0 = ∅ and V0 = ∅. We assume that the lefthand and righthand end-

points of all Pi-arcs and the entries of the tableau Ti are contained in {1, 1′, . . . , n, n′}. Given

(P2j−2, T2j−2, V2j−2) we derive (P2j−1, T2j−1, V2j−1) and (P2j , T2j, V2j) as follows:

(∅,∅). If λ2j−1 = λ2j−2 and λ2j = λ2j−1, we have (P2j−1, T2j−1) = (P2j−2, T2j−2) and (P2j , T2j) =

(P2j−1, T2j−1) and V2j−1 = V2j−2 ∪ {j}, V2j = V2j−1.

(−�,∅). If λ2j−1 ( λ2j−2 and λ2j = λ2j−1, then T2j−1 is the unique tableau of shape λ2j−1 such

that T2j−2 is obtained by RSK-inserting the unique number i via the RSK-algorithm into T2j−1

(Lemma 1) and P2j−1 = P2j−2 ∪ {(i, j)} and (P2j , T2j) = (P2j−1, T2j−1) and V2j−1 = V2j−2 ∪ {j},

V2j = V2j−1.

(∅,+�). If λ2j−1 = λ2j−2 and λ2j ) λ2j−1, then (P2j−1, T2j−1) = (P2j−2, T2j−2) and P2j = P2j−1

and T2j is obtained from T2j−1 by adding the entry j in the square λ2j \λ2j−1 and V2j−1 = V2j−2,

V2j = V2j−1 ∪ {j}.

(−�,+�). If λ2j−1 ( λ2j−2 and λ2j ) λ2j−1, then T2j−1 is the unique tableau of shape λ2j−1 such

that T2j−2 is obtained from T2j−1 by RSK-inserting the unique number i, via the RSK-algorithm

(Lemma 1). Then we set P2j−1 = P2j−2 ∪ {(i, j)} and P2j = P2j−1 and T2j is obtained from T2j−1

by adding the entry j′ in the square λ2j \ λ2j−1 and V2j−1 = V2j−2 ∪ {j}, V2j = V2j−1 ∪ {j′}.

(+�,−�). If λ2j−2 ( λ2j−1 and λ2j ( λ2j−1 then T2j−1 is obtained from T2j−2 by adding the

entry j in the square λ2j−1 \ λ2j−2 and the tableau T2j is the unique tableau of shape λ2j such

that T2j−1 is obtained from T2j by RSK-inserting the unique number i, via the RSK-algorithm

(Lemma 1). We then set P2j−1 = P2j−2 and P2j = P2j−1 ∪ {(i, j′)} and V2j−1 = V2j−2 ∪ {j},

V2j = V2j−1 ∪ {j′}.

(−�,−�). If λ2j−1 ( λ2j−2 and λ2j ( λ2j−1, let T2j−1 be the unique tableau of shape λ2j−1

such that T2j−2 is obtained from T2j−1 by RSK-inserting i1 (Lemma 1) and T2j be the unique

tableau of shape λ2j such that T2j−1 is obtained from T2j by RSK-inserting i2 (Lemma 1)

P2j−1 = P2j−2 ∪ {(i1, j)} and P2j = P2j−1 ∪ {(i2, j
′)} and V2j−1 = V2j−2∪{j}, V2j = V2j−1∪{j′}.

(+�,+�). If λ2j−1 ) λ2j−2 and λ2j ) λ2j−1, we set P2j−1 = P2j−2, and T2j−1 is obtained from

T2j−2 by adding the entry j in the square λ2j−1 \ λ2j−2. Furthermore we set P2j = P2j−1 and T2j

is obtained from T2j−1 by adding the entry j′ in the square λ2j \ λ2j−1 and V2j−1 = V2j−2 ∪ {j},

V2j = V2j−1 ∪ {j′}.

Claim. φ(V 2n
∅

) is the inflation of a tangled-diagram.

First, if (i, j) ∈ P2n, then i < j and secondly any vertex j can occur only as either as lefthand or

righthand endpoint of an arc, whence φ(V 2n
∅

) is a 1-diagram. Each step (+�,+�) induces a pair
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of arcs of the form (i, j1), (i′, j2) and each step (−�,−�) induces a pair of arcs of the form (i1, j),

(i2, j
′). Each step (−�,+�) corresponds to a pair of arcs (h, j), (j′, s) where h < j < j′ < s and

each step (+�,−�) induces a pair of arcs of the form (j, s), (h, j′), where h < j < j′ < s or a 1-arcs

of the form (i, i′). Let ℓ be the number of steps not containing ∅. By construction each of these

adds the 2-set {j, j′}, whence (V2n, P2n) corresponds to the inflation of a unique tangled-diagram

with ℓ vertices of degree 2 and the claim follows. �

Remark 1. The mapping φ: if squares are added the corresponding numbers are inserted, if squares

are deleted Lemma 1 is used to extract a unique number, which then forms the lefthand endpoint

of the derived arcs.

Remark 2. As an illustration of the mapping φ : V 2n
∅

−→ ι(Gn) we display systematically all

arc-configurations of inflated tangled-diagrams induced by the vacillating tableaux

We proceed by explicitly constructing the inverse of φ.
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Lemma 3. There exists a mapping from the set of inflations of tangled-diagrams over n vertices,

ι(Gn), into the set of vacillating tableaux of shape ∅ and length 2n, V2n
∅

(3.3) ψ : ι(Gn) −→ V2n
∅
.

Proof. We define ψ as follows. Let ι(Gn) be the inflation of the tangled-diagram Gn. We set

(3.4) ιi =







(i, i′) iff i has degree 2 in Gn,

i otherwise.

Let T2n = ∅ be the empty tableau. We will construct inductively a sequence of tableaux Th of

shape λh
ι(Gn), where h ∈ {0, 1, . . .2n} by considering ιi for i = n, n− 1, n− 2, . . . , 1. For each ιj we

inductively define the pair of tableaux (T2j, T2j−1):

(I) ιj = j is an isolated vertex in ι(Gn), then we set T2j−1 = T2j and T2j−2 = T2j−1. Accordingly,

λ
2j−1
ι(Gn) = λ

2j

ι(Gn) and λ2j−2
ι(Gn) = λ

2j−1
ι(Gn) (left to right: (∅,∅)).

(II) ιj = j is the righthand endpoint of exactly one arc (i, j) but not a lefthand endpoint, then we

set T2j−1 = T2j and obtain T2j−2 by adding i via the RSK-algorithm to T2j−1. Consequently we

have λ2j−1
ι(Gn) = λ

2j

ι(Gn) and λ2j−2
ι(Gn) ) λ

2j−1
ι(Gn). (left to right: (−�,∅)).

(III) j is the lefthand endpoint of exactly one arc (j, k) but not a righthand endpoint, then first set

T2j−1 to be the tableau obtained by removing the square with entry j from T2j and let T2j−2 =

T2j−1. Therefore λ2j−1
ι(Gn) ( λ

2j

ι(Gn) and λ2j−2
ι(Gn) = λ

2j−1
ι(Gn). (left to right: (∅,+�)).

(IV) j is a lefthand and righthand endpoint, then we have the two ι(Gn)-arcs (i, j) and (j′, h), where

i < j < j′ < h. T2j−1 is obtained by removing the square with entry j′ in T2j first and T2j−2 via

inserting i in T2j−1 via the RSK-algorithm. Accordingly we derive the shapes λ2j−1
ι(Gn) ( λ

2j

ι(Gn) and

λ
2j−2
ι(Gn) ) λ

2j−1
ι(Gn). (left to right: (−�,+�)).

(V) j is a righthand endpoint of degree 2, then we have the two ι(Gn)-arcs (i, j) and (h, j′). T2j−1

is obtained by inserting h via the RSK-algorithm into T2j and T2j−2 is obtained by RSK-inserting

i into T2j−1 via the RSK-algorithm. We derive λ
2j−1
ι(Gn) ) λ

2j

ι(Gn) and λ
2j−2
ι(Gn) ) λ

2j−1
ι(Gn) (left to

right:(−�,−�)).

(VI) j is a lefthand endpoint of degree 2, then we have the two ι(Gn)-arcs (j, r) and (j′, h). T2j−1

is obtained by removing the square with entry j′ from the tableau T2j and T2j−2 is obtained by

removing the square with entry j from the T2j−1. Then we have λ2j−1
ι(Gn) ( λ

2j

ι(Gn) and λ2j−2
ι(Gn) ( λ

2j−1
ι(Gn)

(left to right: (+�,+�)).

(VII) j is a lefthand and righthand endpoint of crossing arcs or a loop, then we have the two

ι(Gn)-arcs (j, s) and (h, j′), h < j < j′ < s or an arc of the form (j, j′). T2j−1 is obtained by

RSK-inserting h (j) into the tableau T2j and T2j−2 is obtained by removing the square with entry
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j (j) from the T2j−1 (left to right: (+�,−�)).

Therefore ψ maps the inflation of a tangled-diagram into a vacillating tableau and the lemma

follows. �

Remark 3. From inflations of tangled-diagrams to vacillating tableaux: starting from right to left

the vacillating tableaux is obtained via the RSK-algorithm as follows: if j is a righthand endpoint

it gives rise to RSK-insertion of its (unique) lefthand endpoint and if j is a lefthand endpoint the

square containing j is removed.

Theorem 1. There exists a bijection between the set of vacillating tableaux of shape ∅ and length

2n, V2n
∅

and the set of tangled-diagrams over n vertices, Gn

(3.5) β : V2n
∅

−→ Gn .

Proof. According to Lemma 2 and Lemma 3 we have the following mappings φ : V2n
∅

−→ ι(Gn)

and ψ : ι(Gn) −→ V2n
∅

. We next show that φ and ψ are indeed inverses with respect to each

other. By definition φ extracts arcs such that their respective lefthand-endpoints if RSK-inserted

(Lemma 1) recover the tableaux of the preceding step. We observe that by definition, ψ reverses

this extraction: it explicitly RSK-inserts the lefthand-endpoints of arcs. Therefore we have the

following situation

(3.6) φ ◦ ψ(ι(Gn)) = φ((λι(Gn))
2n
0 ) = ι(Gn) and ψ ◦ φ(V2n

∅
) = V2n

∅
,

from which we conclude that φ and ψ are bijective. Since Gn is in one to one correspondence with

ι(Gn) the proof of the theorem is complete. �

By construction the bijection ι : Gn −→ ι(Gn) preserves the maximal number crossing and nesting

arcs, respectively. Equivalently, a tangled-diagram Gn is k-noncrossing if and only if its inflation

ι(Gn) is k-noncrossing or k-nonnesting [2]. Indeed, this follows immediately from the definition of

the inflation.
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Theorem 2. A tangled-diagram Gn is k-noncrossing if and only if all shapes λi in its corresponding

vacillating tableau have less than k rows, i.e. φ : V2n
∅

−→ Gn maps vacillating tableaux having less

than k rows into k-noncrossing tangled-diagrams. Furthermore there is a bijection between the set

of k-noncrossing and k-nonnesting tangled-diagrams.

Theorem 2 is the generalization of the corresponding result in [2] to tangled-diagrams. Since the

inflation map allows to interpret a tangled-diagram with ℓ vertices of degree 2 over n vertices as a

partial matching over n+ ℓ vertices its proof is analogous.

We next observe that restricting the steps for vacillating tableaux produces the bijections of Chen

et.al. [2]. Let Mk(n), Pk(n) and Bk(n) denote the set of k-noncrossing matchings, partitions

and braids, respectively. If a tableaux-sequence V 2n
∅

is obtained via certain steps s ∈ S we write

V 2n
∅

|= S.

Corollary 1. Let βi denote the restriction of the bijection β : V2n
∅

−→ Gn in Theorem 1. Then β

induces the bijections

(3.7) β1 : {V 2n
∅

| V 2n
∅

|= (−�,∅), (∅,+�) and has ≤ k rows} → Mk(n) .

(3.8) β2 : {V 2n
∅

| V 2n
∅

|= (−�,∅), (∅,+�), (∅,∅), (−�,+�) and has ≤ k rows} → Pk(n) .

(3.9) β3 : {V 2n
∅

| V 2n
∅

|= (−�,∅), (∅,+�), (∅,∅), (+�,−�) and has ≤ k rows} → Bk(n) .

Remark 4. For partitions we can illustrate the correspondences between the elementary steps and

associated tangled-diagram arc-configurations as follows:

Remark 5. For braids we derive the following correspondences. They illustrate one key difference

between partitions and braids: for fixed crossing number braids are more restricted due to the fact

that they already have a priori “local” crossings at their non-loop-vertices of degree 2.
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Let D2,k(n) and D̃2,k(n) be the numbers of k-noncrossing tangled-diagrams and tangled-diagrams

without isolated points over [n], respectively. Furthermore let fk(2n − ℓ) be the number of k-

noncrossing matchings over 2n − ℓ vertices. We show that the enumeration of tangled-diagrams

can be reduced to the enumeration of matchings via the inflation map. W.l.o.g. we can restrict

our analysis to the case of tangled-diagrams without isolated points since the number of tangled-

diagrams over [n] is given by D2,k(n) =
∑n

i=0

(

n
i

)

D̃2,k(n− i).

Theorem 3. The number of k-noncrossing tangled-diagrams over [n] is given by

(3.10) D̃2,k(n) =

n
∑

ℓ=0

(

n

ℓ

)

fk(2n− ℓ) .

and in particular for k = 3 we have

(3.11) D̃2,3(n) =

n
∑

ℓ=0

(

n

ℓ

)

(

C 2n−ℓ

2

C 2n−ℓ

2
+2 − C2

2n−ℓ

2
+1

)

.

Proof. Let D̃2,k(n, V ) denote the set of tangled-diagrams in which V = {i1, . . . , ih} is the set of

vertices of degree 1 (where h ≡ 0 mod 2 by definition of D̃2,k(n, V )) and let Mk({1, 1′, . . . , n, n′}\

V ′), where V ′ = {i′1, . . . , i
′

h} denote the set of matchings over {1, 1′, . . . , n, n′}\V ′. By construction,

(eq. (??), eq. (??) and eq. (??)) the inflation is a well defined mapping

(3.12) ι : D̃2,k(n, V ) −→ Mk({1, 1′, . . . , n, n′} \ V ′)

with inverse κ defined by identifying all pairs (x, x′), where x, x′ ∈ {1, 1′, . . . , n, n′}\V ′. Obviously,

we have |Mk({1, 1′, . . . , n, n′} \ V ′)| = fk(2n− ℓ) and we obtain

(3.13) D̃2,k(n) =
∑

V ⊂[n]

D̃2,k(n, V ) =

n
∑

ℓ=0

(

n

ℓ

)

fk(2n− ℓ) .

Suppose n ≡ 0 mod 2 and let Cm denote the m-th Catalan number, then we have [4]

(3.14) f3(n) = Cn

2
Cn

2
+2 − C2

n

2
+1 .

and the theorem follows. �

Remark 6. The first 10 numbers of 3-noncrossing tangled-diagrams are given by

n 1 2 3 4 5 6 7 8 9 10

D2,3(n) 2 7 39 292 2635 27019 304162 3677313 47036624 629772754
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The enumeration of 3-noncrossing partitions and 3-noncrossing enhanced partitions, which are in

bijection with braids without isolated points has been derived in [1].
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