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Abstract. Based on the recurrence relations on the coefficients of the Boros-Moll poly-
nomials Pm(a) =

∑

i di(m)ai derived independently by Kauers and Paule, and Moll, we
are led to the discovery of the reverse ultra log-concavity of the sequence {di(m)}. We
also show that the sequence {i!di(m)} is log-concave for m ≥ 1. Two conjectures are
proposed.
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1 Introduction

The main objective of this paper is to prove the reverse ultra log-concavity of the Boros-
Moll polynomials. Boros and Moll [1, 2, 3, 7] studied a class of Jacobi polynomials in
connection with the following integral:

Theorem 1.1
∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a + 1)m+1/2
Pm(a).

where Pm(a) can be represented by

Pm(a) = 2−2m
∑

k

2k

(

2m − 2k

m − k

)(

m + k

k

)

(a + 1)k.

The polynomials Pm(a) are called Boros-Moll polynomials. Let

Pm(a) =

m
∑

i=0

di(m)ai.

The coefficients di(m) are positive. They are also log-concave, as conjectured by Moll [7],
and recently proved by Kauers and Paule [5].
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Theorem 1.2 For 0 < i < m, we have

d2

i (m) ≥ di−1(m)di+1(m). (1.1)

Recall that a sequence (an)n≥0 of real numbers is said to be log-concave if

a2

n ≥ an+1an−1, (1.2)

for all n ≥ 1. If the sequence satisfies (1.2) with strict inequality, then it is said to be
strictly log-concave. A polynomial is said to be (strictly) log-concave if its sequence of
coefficients is (strictly) log-concave. Log-concave sequences and polynomials often arise
in combinatorics, algebra and geometry, see, for example, Brenti [4] and Stanley [9].

A sequence {ak}0≤k≤n is called ultra log-concave if
{

ak

/

(

n

k

)}

0≤k≤n

(1.3)

is log-concave, see Liggett [6]. Note that this condition can be rewritten as

k(n − k)a2

k − (n − k + 1)(k + 1)ak−1ak+1 ≥ 0. (1.4)

It is well known that if a polynomial has only real roots, then its coefficients form an ultra
log-concave sequence. The above relation (1.4) implies the following inequality

ka2

k − (k + 1)ak−1ak+1 ≥ 0,

from which we can deduce that the sequence {k!ak} is log-concave. This further implies
that {ak} is strictly log-concave.

The first result of this paper is to show that i!{di(m)} is log-concave, as stated below
in an equivalent form.

Theorem 1.3 For 1 ≤ i ≤ m − 1, we have

i d2

i (m) > (i + 1)di−1(m)di+1(m). (1.5)

Despite the above property of di(m), we will show that the reverse ultra log-concavity
holds, as described in the following theorem. This is the main result of this paper.

Theorem 1.4 For 1 ≤ i ≤ m − 1, we have

di−1(m)
(

m
i−1

)

di+1(m)
(

m
i+1

) >

(

di(m)
(

m
i

)

)2

, (1.6)

or, equivalently,

(m − i + 1)(i + 1)di−1(m)di+1(m) − (m − i)idi(m)2 > 0. (1.7)

We conclude this paper with two conjectures. Roughly speaking, the first conjecture
says that in spite of the reverse ultra log-concavity, the ultra log-concavity almost holds
in the asymptotic sense. The second conjecture is concerned with the log-concavity of the
sequence di−1(m)di+1(m)/d2

i (m) for m ≥ 2.
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2 The Reverse Ultra Log-Concavity

In this section, we give the proofs of and Theorem 1.3 Theorem 1.4. We will need the
following three recurrence formulas derived independently by Kauers and Paule [5] and
Moll [8]:

di(m + 1) =
m + i

m + 1
di−1(m) +

4m + 2i + 3

2(m + 1)
di(m), 0 ≤ i ≤ m + 1, (2.1)

di(m + 1) =
(4m − 2i + 3)(m + i + 1)

2(m + 1)(m + 1 − i)
di(m)

− i(i + 1)

(m + 1)(m + 1 − i)
di+1(m), 0 ≤ i ≤ m, (2.2)

di(m + 2) =
−4i2 + 8m2 + 24m + 19

2(m + 2 − i)(m + 2)
di(m + 1)

− (m + i + 1)(4m + 3)(4m + 5)

4(m + 2 − i)(m + 1)(m + 2)
di(m), 0 ≤ i ≤ m + 1, (2.3)

Recall that Kauers and Paule [5] obtained the following lower bound on di(m + 1)/di(m)
for 0 ≤ i ≤ m,

di(m + 1)

di(m)
≥ Q(m, i), (2.4)

where

Q(m, i) =
4m2 + 7m + i + 3

2(m + 1 − i)(m + 1)
. (2.5)

Proof of Theorem 1.3. As the first step, by the recurrence relations (2.1) and (2.2) we
may transform Theorem 1.3 to the following equivalent form

4(m + 1)2(m − i + 1)di(m + 1)2 − 4(m + 1)(4m2 + 7m − 2i2 + 3)di(m)di(m + 1)

+ (4m + 4i + 3)(4m2 + 7m − i + 3)di(m)2 > 0,

which can be recast as

4(m + 1)2(m − i + 1)

(

di(m + 1)

di(m)

)2

− 4(m + 1)(4m2 + 7m − 2i2 + 3)
di(m + 1)

di(m)

+ (4m + 4i + 3)(4m2 + 7m − i + 3) > 0. (2.6)

Notice that the discriminant of the above quadratic form is positive, since

4 = 16i2(2i − 1)2(m + 1)2 > 0.
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Thus the quadratic function on the left hand side of (2.6) has two real roots,

x1 =
4m2 + 7m + 3 − i

2(m − i + 1)(m + 1)
, x2 =

4m + 4i + 3

2(m + 1)
.

Using the lower bound Q(m, i) for di(m + 1)/di(m), we deduce that for 1 ≤ i ≤ m − 1,

di(m + 1)

di(m)
≥ Q(m, i) > x1 > x2.

Thus we obtain (2.6), and the proof is complete.

In order to prove Theorem 1.4, we need an upper bound for the ratio di(m+1)/di(m).

Theorem 2.1 We have for all m ≥ 2, 1 ≤ i ≤ m − 1,

di(m + 1)

di(m)
< T (m, i), (2.7)

where

T (m, i) =
4m2 + 7m + 3 + i

√
4m + 4i2 + 1 − 2i2

2(m − i + 1)(m + 1)
, (2.8)

and for m ≥ 1,
d0(m + 1)

d0(m)
= T (m, 0),

dm(m + 1)

dm(m)
= T (m, m). (2.9)

Proof. First, we consider (2.9). Setting i = 0 in (2.1) gives that for any m ≥ 1,

d0(m + 1)

d0(m)
=

4m + 3

2(m + 1)
,

which agrees with T (m, 0). While i = m, (2.1) implies

dm(m + 1)

dm(m)
=

(2m + 3)(2m + 1)

2(m + 1)
= T (m, m).

Thus (2.9) holds for m ≥ 1.

We now proceed to conduct induction on m to show that (2.7) is valid for i ≥ 1. When
m = 2 and i = 1, we have

d1(3)

d1(2)
=

43

15
< T (2, 1) =

31 +
√

13

12
.

We assume that the theorem holds for m, where m > 2. Then we aim to show that it
also holds for m + 1, namely, for 1 ≤ i ≤ m,

di(m + 2) < T (m + 1, i)di(m + 1). (2.10)

4



Using the recurrence (2.3), we may rewrite (2.10) in the following form

−4i2 + 8m2 + 24m + 19

2(m − i + 2)(m + 2)
di(m + 1)

− (m + i + 1)(4m + 3)(4m + 5)

4(m + 1)(m + 2)(m − i + 2)
di(m) < T (m + 1, i)di(m + 1). (2.11)

In order to derive an upper bound for di(m + 1)/di(m), it is necessary to show that

R(m, i) =
−4i2 + 8m2 + 24m + 19

2(m − i + 2)(m + 2)
− T (m + 1, i) (2.12)

is positive. Since m ≥ i, we have 4m + 4i2 + 5 < 12m + 4m2 + 9. It follows that

R(m, i) =
4m2 + 9m + 5 − 2i2 − i

√
4m + 4i2 + 5

2(m − i + 2)(m + 2)

≥ 4m2 + 9m + 5 − 2i2 − i(2m + 3)

2(m − i + 2)(m + 2)

=
(4m2 − 2i2 − 2mi) + (9m − 3i) + 5

2(m − i + 2)(m + 2)
,

which is positive for 1 ≤ i ≤ m. Hence (2.11) is equivalent to the following inequality

di(m + 1)

di(m)
<

(m + i + 1)(4m + 3)(4m + 5)

4(m + 1)(m + 2)(m − i + 2)R(m, i)
. (2.13)

Note that the right hand side of (2.13) can be expressed as

F (m, i) =
(m + i + 1)(4m + 3)(4m + 5)

2(m + 1)(4m2 − 2i2 + 9m + 5 − i
√

4m + 4i2 + 5)
. (2.14)

By the inductive hypothesis, it suffices to show that for 1 ≤ i ≤ m − 1,

T (m, i) ≤ F (m, i). (2.15)

Let A =
√

4m + 4i2 + 1 and B =
√

4m + 4i2 + 5. It is easy to check that F (m, i)−T (m, i)
equals

(i2 − 4i4) − i(5 + 4m2 + 9m − 2i2)A + i(3 + 4m2 + 7m − 2i2)B + i2AB

2(m + 1)(m − i + 1)(4m2 + 9m + 5 − 2i2 − iB)
. (2.16)

Since

(4m2 + 9m + 5 − 2i2)2 − (iB)2 = (4m + 5)2(m + i + 1)(m − i + 1) > 0,
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the denominator of (2.16) is positive. It remains to show that the numerator of (2.16) is
also positive. Observe that every term in the numerator contains a factor i. So we may
divide this factor. Put

X = (i − 4i3) + iAB

Y = (5 + 4m2 + 9m − 2i2)A − (3 + 4m2 + 7m − 2i2)B.

We claim that X > 0 and X > Y . Since m ≥ i, we have A ≥ 2i + 1 and B ≥ 2i + 1.
Moreover, since i ≥ 1, we find

X = (i − 4i3) + iAB ≥ i − 4i3 + i(2i + 1)2 = 4i2 + 2i > 0.

To show that X − Y > 0, we will consider X2 − Y 2. Let us introduce G(m, i) and
H(m, i) as given by

G(m, i) = (32m4 − 32m2i2 + 128m3 − 64mi2 + 190m2 − 30i2 + 124m + 30)AB,

H(m, i) = 128m5 + 608m4 + 1128m3 + 1014m2 + 436m + 128m4i2 + 384m3i2

+ 408m2i2 − 128m2i4 + 200mi2 − 256mi4 − 120i4 + 50i2 + 70.

It can be checked that
X2 − Y 2 = G(m, i) − H(m, i). (2.17)

Since i ≤ m − 1, it is easily seen that G(m, i) > 0. To verify G(m, i) > H(m, i), we will
show that G(m, i)2 − H(m, i)2 > 0. In fact, for 1 ≤ i ≤ m − 1

G(m, i)2 − H(m, i)2 = 16(4m + 5)2(16mi2 + 12i2 − 1)(m + i + 1)2(m − i + 1)2 > 0.

This implies that X > Y . Hence the numerator of (2.16) is positive. Consequently, (2.15)
holds for 1 ≤ i ≤ m − 1.

Up to now, we still need to consider the case i = m. It remains to show that

dm(m + 2)

dm(m + 1)
< T (m + 1, m).

By direct computation, we find that

dm(m + 2) =
(m + 1)(4m2 + 18m + 21)

2m+4(2m + 3)

(

2m + 4

m + 2

)

and

dm(m + 1) =
2m + 3

2m+2

(

2m + 2

m + 1

)

.

We get
dm(m + 2)

dm(m + 1)
=

(m + 1)(4m2 + 18m + 21)

2(2m + 3)(m + 2)
.
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On the other hand,

T (m + 1, m) =
2m2 + 15m + 14 + m

√
4m2 + 4m + 5

4(m + 2)
.

We see that for m ≥ 2,

T (m + 1, m) >
dm(m + 2)

dm(m + 1)

⇐⇒(2m2 + 15m + 14 + m
√

4m2 + 4m + 5)(2m + 3) − 2(m + 1)(4m2 + 18m + 21) > 0

⇐⇒(2m2 + 3m)
√

4m2 + 4m + 5 > 4m3 + 8m2 + 5m

⇐⇒
(

(2m2 + 3m)
√

4m2 + 4m + 5
)2

−
(

4m3 + 8m2 + 5m
)2

> 0

⇐⇒4m2(4m + 5) > 0,

which is evident. This completes the proof of the theorem.

We are now ready to prove Theorem 1.4. Like the first step in the proof of Theorem
1.3, we use the recurrences (2.1) and (2.2) to restate (1.7) as follows

4(m − i + 1)2(m + 1)2

(

di(m + 1)

di(m)

)2

− 4(m − i + 1)(m + 1)(4m2 − 2i2 + 7m + 3)
di(m + 1)

di(m)

− (32mi2 − 56m3 − 73m2 − 42m + 13i2 − 9 − 16m4 + 16i2m2) < 0. (2.18)

Observe that the discriminant of the above quadratic form is positive for i ≥ 1, since

4 = 16i2(m + 1)2(4i2 + 4m + 1)(m − i + 1)2 > 0.

It follows that the quadratic function on the left hand side of (2.18) has two real roots

x1 =
4m2 − 2i2 + 7m + 3 − i

√
4m + 4i2 + 1

2(m − i + 1)(m + 1)
,

x2 =
4m2 − 2i2 + 7m + 3 + i

√
4m + 4i2 + 1

2(m − i + 1)(m + 1)
.

By the definition of Q(m, i) in (2.5), we see that x1 < Q(m, i). Note that x2 = T (m, i) as
given in Theorem 2.1. In view of Theorem 2.1, we deduce that

x1 <
di(m + 1)

di(m)
< x2,
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for 1 ≤ i ≤ m − 1. Hence we conclude that (2.18) holds. This completes the proof of
Theorem 1.4.

We conclude this paper with two conjectures. Let

ci(m) =
d2

i (m)

di−1(m)di+1(m)
, 1 ≤ i ≤ m − 1.

Then Theorem 1.3 and Theorem 1.4 lead to the following bounds on ci(m) for 1 ≤ i ≤
m − 1,

1 +
1

i
≤ ci(m) ≤

(

1 +
1

i

)(

1 +
1

m − i

)

. (2.19)

Numerical evidence indicates that the upper bound in (2.19) is very close to ci(m) even
when m is small. Let ui(m) =

(

1 + 1

i

) (

1 + 1

m−i

)

. For example, when m = 6, the values
of ci(m)/ui(m) are given below

0.9462708849, 0.9642110408, 0.9752109510, 0.9821688283, 0.9867303609.

Conjecture 2.2 For 1 ≤ i ≤ m − 1, we have

lim
m→∞

ci(m)

ui(m)
= 1. (2.20)

Conjecture 2.3 For m ≥ 2, the sequence {1/ci(m)}m−2

i=2
is log-concave.

Conjecture 2.2 implies that the Boros-Moll polynomials are almost ultra log-concave.
Further conjectures can be made based on Conjecture 2.3 in the spirit of Moll’s conjectures
on the k-log-concavity [7].
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Mem. Amer. Math. Soc. 413 1989, 1–106.

[5] M. Kausers and P. Paule, A computer proof of Moll’s log-concavity conjecture, Proc.
Amer. Math. Soc. 135(2007), 3847–3856.

[6] T.M. Liggett, Ultra logconcave sequence and negative dependence, J. Combin. The-
ory. Ser. A 79(1997), 315–325.

[7] V.H. Moll, The evaluation of integrals: A personal story, Notices Amer. Math. Soc.
49(2002), 311–317.

[8] V.H. Moll, Combinatorial sequences arising from a rational integral, Online Journal
of Analytic Combinatorics Issue 2 (2007), #4.

[9] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and
geometry, Ann. New York Acad. Sci 576(1989), 500–535.

9


