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Abstract

We obtain congruences for the number a(n) of cubic partitions using modular forms.
The notion of cubic partitions is introduced by Chan and named by Kim in connection
with Ramanujan’s cubic continued fractions. Chan has shown that a(n) has several
analogous properties to the number p(n) of partitions, including the generating function,
the continued fraction, and congruence relations. To be more specific, we show that
a(25n + 22) ≡ 0 (mod 5), a(49n + 15) ≡ a(49n + 29) ≡ a(49n + 36) ≡ a(49n + 43) ≡
0 (mod 7). Furthermore, we prove that a(n) takes infinitely many even values and
infinitely odd values.
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1 Introduction

The main objective of this paper is to study congruence relations for the number of cubic
partitions by constructing suitable modular forms. The number of cubic partitions, denoted
by a(n), originated from the work of Chan [6] in connection with Ramanujan’s cubic continued
fraction which is often denoted by

G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 +···
, |q| < 1.

On page 366 of his Lost Notebook, Ramanujan claimed that there are many properties of
G(q) which are analogous to Rogers-Ramanujan continued fraction R(q) [21]

R(q) :=
q1/5

1 +

q

1+

q2

1 +

q3

1 +···
, |q| < 1.

Motivated by Ramanujan’s observation, many new results on G(q) analogous to those
for R(q) have been found, see, e.g., Chan [9]. To give an overview of recent results on a(n),
it is informative to recall relevant background on the generating function of p(n) and the
Rogers-Ramanujan continued fraction R(q).
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Ramanujan obtained many theorems on R(q), see Andrews and Berndt [1]. In particular,
he discovered the following beautiful identities on R(q) and 1/R(q).

1

R(q)
− 1 − R(q) =

(q1/5; q1/5)∞

q1/5(q5; q5)∞
(1.1)

1

R5(q)
− 11 − R5(q) =

(q; q)6∞
q(q5; q5)6∞

. (1.2)

Here (q; q)∞ is the usual notation for
∞
∏

n=1
(1 − qn).

Berndt [5, p.165] gave a beautiful proof of the following classical identity of Ramanujan
by using the continued fraction R(q):

(q; q)6∞
(q5; q5)5∞

∞
∑

n=0

p(5n + 4)qn = 5. (1.3)

Dividing (1.2) by (1.1), we get

(q; q)6∞
q4/5(q1/5; q1/5)∞(q5; q5)5∞

= R4(q) − R3(q) + 2R2(q) − 3R(q) + 5 + 3
R(q) + 2

R2(q)
+ 1

R3(q)
+ 1

R4(q)
. (1.4)

Now, (1.3) can be easily deduced from (1.4) by extracting the integer powers of qn, n ≥ 0 from
both sides of above identity since R(q) has only terms in the form of qn+1/5. Ramanujan’s
congruence on p(n) modulo 5 can be derived directly from (1.3)

p(5n + 4) ≡ 0 (mod 5). (1.5)

Recently, using two identities of Ramanujan [21] on G(q), see also Berndt [4, p.345, Entry
1], Chan [6] has found the following identities on G(q) and 1/G(q) analogous to the above
identities (1.1) and (1.2):

1

G(q)
− 1 − 2G(q) =

(q1/3; q1/3)∞(q2/3; q2/3)∞

q1/3(q3; q3)∞(q6; q6)∞
, (1.6)

1

G3(q)
− 7 − 8G3(q) =

(q; q)4∞(q2; q2)4∞
q(q3; q3)4∞(q6; q6)4∞

. (1.7)

Motivated by the idea of Berndt, Chan derived the following identity by dividing both
sides of (1.7) by (1.6) and then setting q → q3:

1

(q; q)∞(q2; q2)∞
= q2 (q9; q9)3∞(q18; q18)3∞

(q3; q3)4∞(q6; q6)4∞

(

4G2(q3) − 2G(q3) + 3 +
1

G(q3)
+

1

G2(q3)

)

.(1.8)

Observing that the powers of q in G(q3) are in the form of 3n + 1, we find

∞
∑

n=0

[

q3n
]

(

4G2(q3) − 2G(q3) + 3 +
1

G(q3)
+

1

G2(q3)

)

q3n = 3.
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It is now natural to define a function a(n) by the left hand side of (1.8)

∞
∑

n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
, (1.9)

and it is natural to expect a(n) to have analogous properties to p(n).

Extracting those terms whose powers of q are in the form of 3n+2 on both sides of (1.8),
and then simplifying and setting q3 → q, Chan established the following elegant identity
analogous to (1.3)

∞
∑

n=0

a(3n + 2)qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)4∞(q2; q2)4∞

. (1.10)

The above identity immediately leads to the following congruence

a(3n + 2) ≡ 0 (mod 3), (1.11)

which is analogous to Ramanujan’s congruence (1.5) for p(n).

From the point of view of partitions, it is obvious from the generating function (1.9) that
a(n) is the number of partition pairs (λ, µ) where |λ| + |µ| = n and µ only has even parts.
Chan has called a(n) a certain partition function. Kim [11] called such partitions counted
by a(n) cubic partitions owing to the fact that a(n) is close related to Ramanujan’s cubic
continued fraction.

Based on the cubic partition interpretation of a(n), Chan [8] asked whether there exist
a function analogous to Dyson’s rank that leads to a combinatorial interpretation of the
congruence (1.5). Kim [11] discovered a crank function N a

V (m,n) for cubic partitions. Let
M ′(m,N, n) be the number of cubic partitions of n with crank ≡ m (mod N), Kim proved
that

M ′(0, 3, 3n + 2) ≡ M ′(1, 3, 3n + 2) ≡ M ′(2, 3, 3n + 2) (mod 3),

which implies (1.11).

Our main results are concerned with congruences for a(n) modulo 5 and 7 which are in
the spirit of Ramanujan’s classical congruences modulo 7 and 11. Recall that Ramanujan
obtained more general congruences modulo 5k:

p(5kn + rk) ≡ 0 (mod 5k), (1.12)

where k ≥ 1 and 5krk ≡ 1 (mod 24). In analogy with Ramanujan’s congruences, Chan
considered the general congruences for a(n) modulo powers of 3. Employing the method of
Hirschhorn and Hunt [10] to prove (1.12), Chan [7] derived the following congruence as a
consequence of (1.10).

Theorem 1.1. For k ≥ 1,

a(3kn + ck) ≡ 0 (mod 3k+δ(k)), (1.13)

where ck is the reciprocal modulo 3k of 8, and δ(k) = 1 if k is even and δ(k) = 0 otherwise.
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In the general case, Ramanujan conjectured that there are only three choices for a prime
l such that the congruence p(ln + c) ≡ 0 (mod l) holds, namely, l = 5, 7, 11. This conjecture
has been confirmed by Ahlgren and Boylan [3] based on the work of Kiming and Olsson [12].
Chan [7] raised the problem of finding simple congruences for a(n) besides a(3n + 2) ≡ 0
mod 3. Recently, Sinick [22] has shown that there does not exist other primes l such that
a(ln + c) ≡ 0 (mod l) except that l = 3. In analogy with the results for p(n) due to Ono [17]
and Ahlgren [2], Chan [8] obtained the following theorem concerning congruences for a(n)
modulo powers of a prime.

Theorem 1.2. Let m ≥ 5 be prime and j a positive integer. Then a positive proportion of
the primes Q ≡ −1 (mod 128mj) have the property that

a

(

mQn + 1

8

)

≡ 0 (mod mj),

for every n coprime to Q.

The above theorem implies that for every integer n there exists infinitely many non-nested
arithmetic progressions An + B for prime m ≥ 5 and positive integer j such that

a(An + B) ≡ 0 (mod mj).

It should be noted that although the proof of Theorem 1.2 leads to some Ramanujan-
type congruences modulo mj, it does not cover all the congruences in form of a(An + B) ≡
0 (mod mj). Chan [7] studied the case for m = 3, which is not in the scope of Theorem
1.2. This paper is devoted to finding concrete congruences for the cases m = 5, 7 and j = 1,
which are also out of the range of Theorem 1.2 since the Q is larger than 1278 and 2686 for
m = 5 and 7, respectively. To be precise, we derive the following congruences by constructing
suitable modular forms.

Theorem 1.3. For every nonnegative integer n, we have

a(25n + 22) ≡ 0 (mod 5).

It would be interesting to give a combinatorial interpretation of the above congruence by
finding a suitable crank function. In the following theorem, we present some congruences
modulo 7.

Theorem 1.4. For every nonnegative integer n, we have

a(49n + 15) ≡ a(49n + 29) ≡ a(49n + 36) ≡ a(49n + 43) ≡ 0 (mod 7).

The last section of this paper is focused on the parity of a(n). Recall that Kolberg [13] has
shown that p(n) takes both even and odd values infinitely often. From numerical evidence, we
conjecture that when n tends to infinity the parities of a(1), a(2), . . . , a(n) are equidistributed.
While we have not been able to prove this conjecture, we shall show that there are infinitely
many even values of a(n) and there are infinitely many odd values of a(n).
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2 Preliminaries

To make this paper self-contained, we give an overview of the background relevant to the
proofs of the congruences for a(n) by using modular forms. For more details on the theory
of modular forms, see for example, Koblitz [14] and Ono [18].

For a rational integer N ≥ 1, the congruence subgroup Γ0(N) of SL2(Z) is defined by

Γ0(N) :=

{(

a b
c d

)

∣

∣

∣
c ≡ 0 (mod N)

}

.

Let γ =

(

a b
c d

)

∈ SL2(Z) act on the complex upper half plane

H := {z ∈ C|Im(z) > 0}

by the linear fractional transformation

γz :=
az + b

cz + d
.

Suppose that k is a positive integer and χ is a Dirichlet character modulo N .

Definition 2.1. Let f(z) be a holomorphic function on H and satisfy the following relation
for all γ ∈ Γ0(N) and all z ∈ H,

f(γz) = χ(d)(cz + d)kf(z).

In addition, if f(z) is also holomorphic at the cusps of Γ0(N), we call such a function f(z)
a modular form of weight k on Γ0(N).

The modular forms of weight k on Γ0(N) with Dirichlet character χ form a finite-
dimensional complex vector space denoted by Mk(Γ0(N), χ). For convenience, we write
Mk(Γ0(N)) for Mk(Γ0(N), χ) when χ is the trivial Dirichlet character.

Dedekind’s eta function is defined by

η(z) := q
1

24

∞
∏

n=1

(1 − qn),

where q = e2πiz and Im(z) > 0. It is well-known that η(z) is holomorphic and does not vanish
on H.

A function f(z) is called eta-quotient if it can be written in the form of

f(z) =
∏

δ|N

ηrδ (δz),

where N ≥ 1 and each rδ is an integer. The following two facts is useful to verify whether an
eta-quotient is a modular form, see Ono [18, p.18].
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Proposition 2.1. If f(z) =
∏

δ|N ηrδ(δz) is an eta-quotient with

k =
1

2

∑

δ|N

rδ ∈ Z,

satisfies the following conditions:
∑

δ|N

δrδ ≡ 0 (mod 24) (2.1)

and
∑

δ|N

N

δ
rδ ≡ 0 (mod 24), (2.2)

then f(z) satisfies

f

(

az + b

cz + d

)

= χ(d)(cz + d)kf(z) (2.3)

for each

(

a b
c d

)

∈ Γ0(N). Here the character χ is defined by χ(d) :=
(

(−1)ks
d

)

, where

s :=
∏

δ|N

δrδ

and
(

m
n

)

is Kronecker symbol.

Based on this proposition, for a given eta-quotient f(z), by checking the conditions (2.1)
and (2.2), one can show that f(z) satisfies (2.3). Moreover, if k is a positive integer and f(z)
is holomorphic at the cusps of Γ0(N), then f(z) ∈ Mk(Γ0(N), χ) because η(z) is holomorphic
and does not vanish on H. Combined with the following proposition which gives the analytic
orders of an eta-quotient at the cusps of Γ0(N), we can deduce that f(z) is a modular form.

Proposition 2.2. Let c, d and N be positive integers with d|N and (c, d) = 1. If f(z) is an
eta-quotient satisfying the conditions in Proposition 2.1 for N , then the order of vanishing of
f(z) at the cusp c

d is

N

24

∑

δ|N

(d, δ)2rδ

(d, N
d )dδ

.

In the other words, to prove that the above function f(z) is holomorphic at the cusp c
d ,

it suffices to check that
∑

δ|N

(d, δ)2rδ

δ
≥ 0.

Let M be a positive integer and

f(z) =
∞
∑

n=0

a(n)qn

be a function with rational integer coefficients. Define ordM (f(z)) to be the smallest n such
that a(n) 6≡ 0 (mod M). Sturm [23] provided the following powerful criterion to determine
whether two modular forms are congruent modulo a prime by the verification of a finite
number of cases.
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Proposition 2.3. Let p be a prime and f(z), g(z) ∈ Mk(Γ0(N)) with rational integer coeffi-
cients. If

ordp(f(z) − g(z)) >
kN

12

∏

d

(1 +
1

d
),

where the product is over the prime divisors d of N . Then f(z) ≡ g(z) (mod p), i.e.,
ordp(f(z) − g(z)) = ∞.

We also need the following result due to Lovejoy [15].

Proposition 2.4. Let

f =
∞

∑

n=0

u(n)qn

and

g = 1 +

∞
∑

n=1

v(mn)qmn.

Define w(n) by

fg =
∞
∑

n=0

w(n)qn.

Let d be a residue class modulo m. Then,

(1) If u(mn+d) ≡ 0 (mod M) for 0 ≤ n ≤ N , then w(mn+d) ≡ 0 (mod M) for 0 ≤ n ≤ N .

(2) If w(mn + d) ≡ 0 (mod M) for all n, then u(mn + d) ≡ 0 (mod M) for all n.

The following two propositions will also be used to construct modular forms, see Koblitz
[14].

Proposition 2.5. Suppose f(z) ∈ Mk(Γ0(N)) with Fourier expansion

f(z) =
∞
∑

n=0

u(n)qn.

Then for any positive integer m|N ,

f(z)|U(m) :=
∞

∑

n=0

u(mn)qn

is the Fourier expansion of a modular form in Mk(Γ0(N)).

Proposition 2.6. Let χ1 be a Dirichlet character modulo M , and let χ2 be a primitive
Dirichlet character modulo N . Let

f(z) =
∞

∑

n=0

a(n)qn ∈ Mk(M,χ1)

and

g(z) =

∞
∑

n=0

a(n)χ2(n)qn.

Then g(z) ∈ Mk(MN2, χ1χ
2
2). In particular, if f(z) ∈ Mk(Γ0(M)) and χ2 is quadratic, then

g(z) ∈ Mk(Γ0(MN2)).
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3 Congruences for the Number of Cubic Partitions

In this section, we give the proofs of Theorem 1.3 and Theorem 1.4 using the technique of
modular forms due to Ono [16]. The following congruence relation is well-known, see, for
example, Ono [16]. We include a proof for the sake of completeness.

Lemma 3.1. If p ≥ 3 is a prime, then

(q; q)p
∞

(qp; qp)∞
≡ 1 (mod p). (3.1)

Proof. Using the well-known binomial theorem

(1 + x)n =

n
∑

k=0

(

n

k

)

xk,

it is easily seen that

(1 − X)p

1 − Xp
=

∑p
k=0

(p
k

)

(−1)kXk

1 − Xp
≡ 1 − Xp

1 − Xp
≡ 1 (mod p),

since p |
(p
k

)

for 0 < k < p. It follows that

(q; q)p
∞

(qp; qp)∞
=

∞
∏

k=1

(1 − qk)p

(1 − qkp)
≡ 1 (mod p),

as desired.

We first consider Theorem 1.3, that is, for n ≥ 0,

a(25n + 22) ≡ 0 (mod 5).

Proof. To establish the claimed congruence relation, we shall construct an eta-quotient with
the following expansion in q = e2πiz,

g(z) =
∑

n≥0

b(n)qn.

We assume that g(z) satisfies the following conditions

(1) g(z) is a modular form;

(2) If for all n ≥ 0, b(25n + 25) ≡ 0 (mod 5) then a(25n + 22) ≡ 0 (mod 5);

(3) The function

g(z)|U(25) =
∑

n≥0

b(25n)qn ≡ 0 (mod 5)

is also a modular form.
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In order to satisfy the second condition, we consider the function h(q) of the following
form

h(q) =
∏

i

(q25ri ; q25ri)si
∞

∏

j

( (q; q)5∞
(q5; q5)∞

)tj
,

where ri, si, tj are integers. By the above Lemma 3.1, it is easily seen that for any integers
ri, si and tj the expansion of h(q) has the following form modulo 5,

h(q) ≡ 1 +
∑

m≥1

c(m)q25m (mod 5),

where c(m) are integers. Now, we set

g(z) = h(q)
∞
∑

n=0

a(n)qn+3 = h(q)
∞
∑

n≥3

a(n − 3)qn. (3.2)

Since h(q) is a series in q25 modulo 5 with constant term 1, we can make use of Proposition 2.4
(2) to deduce that if for any n, b(25n+25) ≡ 0 (mod 5), then we have a(25n+22) ≡ 0 (mod 5).

We now proceed to determine the parameters ri, si and tj in g(z) to make it a modular
form. Consider the case r1 = 1, s1 = 1, r2 = 2, s2 = 1 and t1 = 2, namely,

g(z) = (q25; q25)∞(q50; q50)∞

( (q; q)5∞
(q5; q5)∞

)2
∞
∑

n=0

a(n)qn+3. (3.3)

We are going to show that g(z) satisfies the conditions (2.1) and (2.2) in Proposition 2.1.
Recalling the definition of η(z), we can rewrite g(z) as an eta-quotient

g(z) =
η(25z)η(50z)

η(z)η(2z)

(

η5(z)

η(5z)

)2

=
η9(z)η(25z)η(50z)

η(2z)η2(5z)
.

The two conditions (2.1) and (2.2) can be expressed as follows,
∑

δ|50

δrδ = 9 − 2 − 5 × 2 + 25 + 50 ≡ 0 (mod 24),

∑

δ|50

50

δ
rδ = 50 × 9 − 25 − 10 × 2 + 2 + 1 ≡ 0 (mod 24).

To make g(z) a modular form, it remains to compute the order of g(z) at cusps. By Propo-
sition 2.2, it is easily verified that the order of g(z) at the cusps of Γ0(50) are nonnegative,
that is, for any d|50,

∑

δ|50

(d, δ)2rδ

δ
≥ 0.

So we have g(z) ∈ M4(Γ0(50), χ1), where

χ1(d) =

(

25

d

)

=

(

5

d

)2

= 1
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for (d, 50) = 1. This implies that g(z) ∈ M4(Γ0(50)).

Since we have proved that g(z) satisfies the second condition, the following congruence is
valid

a(25n + 22) ≡ 0 (mod 5) (3.4)

provided that for all n ≥ 0,
b(25n + 25) ≡ 0 (mod 5). (3.5)

Let us rewrite (3.5) as
∑

n≥1

b(25n)qn ≡ 0 (mod 5). (3.6)

By Proposition 2.5, we see that the summation on the left hand side of (3.6) is a modular
form, that is,

g(z)|U(25) =
∑

n≥1

b(25n)qn ∈ M4(Γ0(50)).

Hence, by Proposition 2.3, we find that (3.6) is valid if (3.5) holds for

0 ≤ n ≤ 4 × 50

12
(1 +

1

2
)(1 +

1

5
) + 1 = 31.

Applying Lemma 3.1 with p = 5 to (3.3), we have

∑

n≥3

b(n)qn ≡ (q25; q25)∞(q50; q50)∞

∞
∑

n=0

a(n)qn+3 (mod 5). (3.7)

Using the above relation and Proposition 2.4 (1), we see that the verification of (3.5) on
b(n) for 0 ≤ n ≤ 31 can be reduced to the verification of (3.4) on a(n) for a the same range
0 ≤ n ≤ 31. It is readily checked that (3.4) holds for 0 ≤ n ≤ 31. This completes the proof.

Now, we turn to the proof of Theorem 1.4, namely,

a(49n + 15) ≡ a(49n + 29) ≡ a(49n + 36) ≡ a(49n + 43) ≡ 0 (mod 7). (3.8)

Proof of Theorem 1.4. Following the above procedure in the proof of Theorem 1.3, by the
generating function of a(n), we construct an eta-quotient

h(z) =
η(49z)η(98z)

η(z)η(2z)

(

η7(z)

η(7z)

)2

=
η13(z)η(49z)η(98z)

η(2z)η2(7z)

=

(

(q; q)7∞
(q7; q7)∞

)2

(q49; q49)∞(q98; q98)∞

∞
∑

n=0

a(n)qn+6. (3.9)
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Setting N = 98, we see that h(z) satisfies the conditions (2.1) and (2.2) in Proposition
2.1, namely,

∑

δ|98

δrδ = 13 − 2 − 2 × 7 + 49 + 98 ≡ 0 (mod 24),

∑

δ|98

98

δ
rδ = 98 × 13 − 49 − 14 × 2 + 2 + 1 ≡ 0 (mod 24).

Moreover, it is not difficult to verify that the order of h(z) at the cusps of Γ0(98) are non-
negative by Proposition 2.2, that is, for any d|98,

∑

δ|98

(d, δ)2rδ

δ
≥ 0.

Hence we deduce that h(z) is a modular form, i.e., h(z) ∈ M6(Γ0(98), χ2). Moreover,

χ2(d) =

(

49

d

)

=

(

7

d

)2

= 1

for (d, 98) = 1. This implies that h(z) ∈ M6(Γ0(98)).

Write
h(z) =

∑

n≥6

c(n)qn.

Applying Lemma 3.1 with p = 7, (3.9) becomes

∑

n≥6

c(n)qn ≡ (q49; q49)∞(q98; q98)∞
∑

n≥6

a(n − 6)qn (mod 7). (3.10)

Since (q49; q49)∞(q98; q98)∞ can be expanded as series in q49 with constant term 1, we can
make use of Proposition 2.4 (2) to deduce that the four congruences in (3.8) can be derived
from the corresponding congruences for c(n), i.e., for n ≥ 0,

c(49n + 21) ≡ c(49n + 35) ≡ c(49n + 42) ≡ c(49n + 49) ≡ 0 (mod 7). (3.11)

Observing that the arithmetic progressions 49n + 21, 49n + 35, 49n + 42, 49n + 49 in the
above congruences are divided by 7, we construct another function based on c(n) as follows

u(z) =
∑

n≥1

d(n)qn =
∑

n≥1

c(7n)qn.

By Proposition 2.5, we have u(z) ∈ M6(Γ0(98)). Obviously, (3.11) can be restated as

d(7n + 3) ≡ d(7n + 5) ≡ d(7n + 6) ≡ d(7n + 7) ≡ 0 (mod 7). (3.12)

As will be seen, one can combine the above four congruences into a single congruence
relation. Define

v(z) =
∑

n≥1

e(n)qn =
∑

n≥1

d(n)qn −
∑

n≥1

(n

7

)

d(n)qn. (3.13)

11



Since
(

n
7

)

= 1 for n ≡ 1, 2, 4 (mod 7),
(

n
7

)

= −1 for n ≡ 3, 5, 6 (mod 7) and
(

n
7

)

= 0 for
n ≡ 0 (mod 7), v(z) can be expressed as

v(z) =
∑

(n
7
)=−1

2d(n)qn +
∑

n≡0 (mod 7)

d(n)qn. (3.14)

To prove (3.12), it suffices to show that v(z) ≡ 0 (mod 7).

Denote the second summation in (3.13) by

w(z) =
∑

n≥1

(n

7

)

d(n)qn.

By Proposition 2.6, we see that w(z) is a modular form. In other words, w(z) ∈ M6(Γ0(4802)).
Since u(z) is also a modular form, we obtain

v(z) = u(z) − w(z) ∈ M6(Γ0(4802).

By Proposition 2.3, we find that v(z) ≡ 0 (mod 7) can be verified by a finite number of cases.
To be precise, we need to check that

e(n) ≡ 0 (mod 7)

holds for 0 ≤ n ≤ 4117. In view of (3.14), we only need to verify that (3.12) holds for
0 ≤ n ≤ d4117−1

7 e − 1 = 587. Since d(n) = c(7n), it suffices to check (3.11) for 0 ≤ n ≤ 587.
Finally, using (3.10) and Proposition 2.4 (1), it is necessary to verify Theorem 1.4 holds only
for 0 ≤ n ≤ 587, which is an easy task. This completes the proof.

4 The Parity of a(n)

In this section, we show that the function a(n) takes infinitely many even values and infinitely
many odd values. For the partition function p(n), it has been conjectured by Parkin and
Shanks [19] that the parities of p(1), p(2), . . . , p(N) are equidistributed when N tends to
infinity. Using the Euler’s recurrence formula for p(n),

p(n) +
∑

0<ωj≤n

(−1)jp(n − ω(j)) = 0, (4.1)

where ω(j) = j(3j − 1)/2,−∞ < j < ∞, Kolberg [13] proved that p(n) takes both even and
odd values infinitely often.

To prove the analogous property for a(n), we need Jacobi’s identity

∞
∑

n=0

(−1)n(2n + 1)qn(n+1) = (q2; q2)3∞ (4.2)

and Gauss’s identity
∞

∑

n=0

qn(n+1)/2 =
(q2; q2)2∞
(q; q)∞

. (4.3)

We now have the following recurrence relation modulo 2.

12



Theorem 4.1.

a(n) +
∑

0<k+k2≤n

a(n − k − k2) ≡ ∆(n) (mod 2), (4.4)

where ∆(n) = 1, if n = s(s + 1)/2 for some integer s and ∆(n) = 0, otherwise.

Proof. Multiplying both sides of (1.9) by (q2; q2)3∞, we get

(q2; q2)3∞

∞
∑

n=0

a(n)qn =
(q2; q2)2∞
(q; q)∞

. (4.5)

Substituting (4.2) and (4.3) into both sides of (4.5), we find that

∞
∑

n=0

qn(n+1)/2 =
∞

∑

n=0

(−1)n(2n + 1)qn(n+1)
∞

∑

n=0

a(n)qn

≡
∞

∑

n=0

qn(n+1)
∞

∑

n=0

a(n)qn (mod 2). (4.6)

Equating coefficients of qn on both sides of (4.6) gives (4.4). This completes the proof.

With the aid of the formula (4.4) and following the idea of Kolberg [13] for p(n), we
obtain the following theorem for a(n).

Theorem 4.2. There are infinitely many integers n such that a(n) is even and there are
infinitely many integers n such that a(n) is odd.

Proof. We prove by contradiction. Assume that there exists m such that a(n) is odd for any
n ≥ m. Without loss of generality, we may assume that m is an even integer greater than 2.
It is easy to show that there exists an integer m2 +2m ≤ t ≤ m2 +3m+1 such that ∆(t) = 0.
Setting t = m2 + 2m + δ, where 0 ≤ δ ≤ m + 1. Substituting n = t into (4.4) yields

a(m2 + 2m + δ) + a(m2 + 2m + δ − 2) + · · · + a(m + δ) ≡ 0 (mod 2). (4.7)

But the left hand side of (4.7) is the sum of m + 1 odd numbers, so it is also odd since m is
even. This leads to a contradiction with parity of the right hand side of (4.7).

On the other hand, assume that a(n) is even for any n ≥ m, where m ≥ 5. It is easy to
verify the following inequalities for k ≥ 10,

k(k − 1) <

√
2k

(√
2k − 1

)

2
<

√
2k

(√
2k + 1

)

2
< k(k + 1).

Therefore, for k ≥ 10, there are no integers e(e + 1) in the following interval with d
√

2ke
elements,

[

d
√

2ke
(

d
√

2ke − 1
)

2
,
d
√

2ke
(

d
√

2ke + 1
)

2

]

.

Choose k such that d = d
√

2ke > m and set

t =
d(d + 1)

2
.
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Let r be the largest integer k such that k2 + k ≤ t. It follows that

t − r − r2 > d > m.

Substituting n = t into (4.4), we obtain that

a(t) + a(t − 2) + · · · + a(t − r − r2) ≡ ∆(t) ≡ 1 (mod 2).

This is impossible since the left hand side of above congruence are a sum of even numbers.
This completes the proof.
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