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Abstract

We give a solution to a problem posed by Corteel and Nadeau concerning per-
mutation tableaux of length n and the number of occurrences of the dashed pattern
32–1 in permutations on [n]. We introduce the inversion number of a permutation
tableau. For a permutation tableau T and the permutation � obtained from T by
the bijection of Corteel and Nadeau, we show that the inversion number of T equals
the number of occurrences of the dashed pattern 32–1 in the reverse complement of
�. We also show that permutation tableaux without inversions coincide with L-Bell
tableaux introduced by Corteel and Nadeau.
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1 Introduction

Permutation tableaux were introduced by Steingŕımsson and Williams [13] in the study
of totally positive Grassmannian cells [11, 12, 16]. They are closely related to the PASEP
(partially asymmetric exclusion process) model in statistical physics [5, 8, 9, 10, 14].
Permutation tableaux are also in one-to-one correspondence with alternative tableaux
introduced by Viennot [15].

A permutation tableau is defined by a Ferrers diagram possibly with empty rows such
that the cells are filled with 0’s and 1’s subject to the following conditions:

(1) Each column contains at least one 1.

(2) There does not exist a 0 with a 1 above (in the same column) and a 1 to the left
(in the same row).

The length of a permutation tableau is defined as the number of rows plus the number
of columns. A 0 in a permutation tableau is said to be restricted if there is a 1 above.
Among the restricted 0’s in a row, the rightmost one plays a special role, which is called a
rightmost restricted 0. A row is said to be unrestricted if it does not contain any restricted
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0. A permutation tableau T of length n is labeled by the elements in [n] = {1, 2, . . . , n}
in increasing order from the top right corner to the bottom left corner. The set [n] is
referred to as the label set of T . We use (i, j) to denote the cell with row label i and
column label j.

For example, Figure 1.1 exhibits a permutation tableau of length 11 which contains
an empty row. There are two rightmost restricted 0’s at cells (5,9) and (8,10), and there
are four unrestricted rows labeled by 1, 2, 7, and 11.
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Figure 1.1: Permutation tableau

It is known that the number of permutation tableaux of length n is n!. There are sev-
eral bijections between permutation tableaux and permutations, see Corteel and Nadeau
[7], Steingŕımsson and Williams [13]. The second bijection in [13] connects the number of
0’s in a permutation tableau to the total number of occurrences of the dashed patterns
31–2, 21–3 and 3–21. This bijection also yields a relationship between the number of
1’s and the number of occurrences of the dashed pattern 2–31 in a permutation, as well
as a relationship between the number of cells in the Ferrers diagram and the number of
occurrences of dashed patterns 1–32 and 32–1 in a permutation. In answer to a question
of Steingŕımsson and Williams [13], Burstein [2] found a classification of zeros in permu-
tation tableaux and its connection to the total number of occurrences of dashed patterns
31–2 and 21–3 , and the number of occurrences of the dashed pattern 3–21.

On the other hand, the second bijection of Corteel and Nadeau [7] implies that the
number of non topmost 1’s in a permutation tableau equals the number of occurrences of
the dashed pattern 31–2 in the corresponding permutation. They raised the problem of
finding a statistic on permutation tableaux that has the same distribution as the number
of occurrences of the dashed pattern 32-1 in permutations.

Let us recall the definition of dashed permutation patterns introduced by Babson and
Steingŕımsson [1]. A dashed pattern is a permutation of [k] for k ≤ n containing dashes
indicating that the entries in a permutation of [n] need not occur consecutively. In this
notation, a permutation pattern � = �1�2 . . . �k in the usual sense may be rewritten as
� = �1–�2–. . .–�k. For example, we say that a permutation � on [n] avoids a dashed
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pattern 32–1 if there are no subscripts i < k such that �i−1 > �i > �k. Claesson and
Mansour [4] found explicit formulas for the number of permutations containing exactly i

occurrences of a dashed pattern � of length 3 for i = 1, 2, 3.

The main idea of this paper is to introduce the inversion number of a permutation
tableau (see Definition 2.2). We show that the inversion number of a permutation tableau
of length n has the same distribution as the number of occurrences of dashed pattern 32-
1 in a permutation of [n]. To be more specific, for a permutation tableau T and the
permutation � obtained from T by the first bijection of Corteel and Nadeau, we prove
that the inversion number of T equals the number of occurrences of the dashed pattern
32–1 in the reverse complement of �. This gives a solution to the problem proposed
Corteel and Nadeau [7].

This paper is ended with a connection between permutation tableaux without inver-
sions and L-Bell tableaux introduced by Corteel and Nadeau in [7]. We show that a
permutation tableau has no inversions if and only if it is an L-Bell tableau.

2 The inversion number of a permutation tableau

In this section, we define the inversion number of a permutation tableau (see Definition
2.2). We show that the inversion number of permutation tableau T equals the number of
occurrences of the dashed pattern 32–1 in the reverse complement of the permutation �

corresponding to T under the bijection � of Corteel and Nadeau.

Let � = �1�2 . . . �n. Denote by f�(�) the number of occurrences of dashed pattern �

in �. The reverse complement of � is denoted by

�̄ = (n+ 1− �n, . . . n+ 1− �2, n+ 1− �1),

here a permutation is also written in the form of a vector.

The main result of this paper is stated as follows. Throughout this paper � denotes
the bijection of Corteel and Nadeau. For completeness, a brief description of � will be
given later.

Theorem 2.1. Let T be a permutation tableau. Let inv(T ) be the number of inversions

of T . Then we have

inv(T ) = f32–1(�̄). (2.1)

Since an occurrence of the dashed pattern 32–1 in �̄ corresponds to an occurrence of
the dashed pattern 3-21 in �, relation (2.1) can be restated as

inv(T ) = f3–21(�). (2.2)

Corteel and Nadeau [7] have shown that a permutation tableau is uniquely determined
by the topmost 1’s and the rightmost restricted 0’s. For a permutation tableau T , the
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alternative representation of T is defined by Corteel and Kim [6] as the diagram obtained
from T by replacing the topmost 1’s with ↑’s, replacing the rightmost restricted 0’s with
←’s and leaving the remaining cells blank. In this paper, we use black dots and white dots
to represent the topmost 1’s and rightmost restricted 0’s in an alternative representation,
as illustrated in Figure 2.1.

Note that for each dot in an alternative representation of a permutation tableau, there
is an unique path, called an alternating path, to a black dot on an unrestricted row. More
precisely, an alternating paths is defined as follows. For a white dot we can find a black
dot at the top as the next dot. For a black dot which is not on an unrestricted row, there
is a white dot to the left as the next dot. Figure 2.1 shows two alternating paths.

For an alternative representation of a permutation tableau, we may use the row and
column labels to represent an alternating path. It is evident that a black dot is determined
by a column label and a white dot is determined by a row label. Hence an alternating
path can be represented by an alternating sequence of row and column labels ending with
a column label of a black dot on an unrestricted row.

For example, for the black dot in cell (5, 6), the alternating path can be expressed as
(6, 5, 12). For the white dot in cell (7, 10), the corresponding alternating path takes the
form (7, 10, 4, 11).
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Figure 2.1: Alternative representation of a permutation tableau

For two alternating paths P and Q of T , we say that P contains Q if Q is a segment
of P . Assume that P and Q does not contain each other. We proceed to define the order
relation on P and Q. Clearly, if P and Q intersect at some point, then they will share
the same ending segment after this point. If this is the case, we will remove the common
dots of P and Q, and then consider the resulting alternating paths P ′ and Q′. We say
that P > Q (P < Q) if one of the following four conditions holds:

(1) The paths P and Q do not intersect, and the ending dot of P is below (above) the
ending dot of Q.

4



(2) The paths P and Q do not intersect, and the ending dot of P is to the right (to the
left) of the ending dot of Q.

(3) The paths P and Q intersect, and the ending dot of P ′ is below (above) the ending
dot of Q′.

(4) The paths P and Q intersect, and the ending point of P ′ is to the right (to the left)
of the ending dot of Q′.

For any two alternating paths P and Q that do not contain each other, it can be seen
that either P > Q or P < Q holds. Using this order, we can define the inversion number
of an alternative representation T of a permutation tableau, which is also considered as
the inversion number of the original permutation tableau.

Definition 2.2. Suppose that j is a column label of T and Pj is the alternating path

starting with the black dot with column label j. Let k be a label of T with j < k such

that k is not a label of a dot on Pj. In other words, Pk is not contained in Pj, where Pk

denotes the alternating path with the dot with label k. We say that the pair of labels (j, k)
is an inversion of T if Pj > Pk. The total number of inversions of T is denoted by inv(T).

Analogous to the inversion code of a permutation, for a column label j we define wj(T )
as the number of inversions of T that are of the form (j, k). Hence

inv(T ) =
∑

j∈C(T )

wj(T ),

where C(T ) is the set of column labels of T .

For example, Figure 2.2 gives two permutation tableaux in the form of their alternative
representations. For the alternative representation T on the left, we have C(T ) = {2, 3}.
Since P2 > P3, we see that w2(T ) = 1, w3(T ) = 0, and inv(T ) = 1. For the alternative
representation T ′ on the right, we have C(T ′) = {3, 5}. Since P3 > P4 and P3 > P5, we
find w3(T

′) = 2, w5(T
′) = 0, and inv(T ′) = 2.
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Figure 3.2: Two examples

We now proceed to present a proof of Theorem 2.1. For completeness, we give a
brief description of the bijection � of Corteel and Nadeau from permutation tableaux to
permutations.
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Assume that T is the alternative representation of a permutation tableau. Let �(T ) =
� = �1�2 . . . �n. The bijection is a recursive procedure to construct �. Starting with
the sequence of the labels of free rows in increasing order. Then successively insert the
column labels of T . Let j be the maximum column label to be inserted. If the cell (i, j)
is filled with a black dot, then insert j immediately to the left of i. If column j contains
white dots in rows i1, i2, . . . , ik, then insert i1, i2, . . . , ik in increasing order to the left of
j. Repeating this process, we obtain a permutation �.

For the sake of presentation, we give three lemmas that will be needed in the proof of
theorem 2.1. The first lemma was established by Corteel and Nadeau [7].

Lemma 2.3. Let � = �(T ). Then �i > �i+1 if and only �i is a column label of T .

The next lemma states that the labels representing an alternating path of T form a
subsequence of �(T ).

Lemma 2.4. Let P = p1p2 ⋅ ⋅ ⋅ pr be an alternating path of T starting with a dot labeled

by p1 and ending with a black dot labeled by pr. Then p1p2 ⋅ ⋅ ⋅ pr is a subsequence of �(T ).

Proof. Assume that the alternating path P ends with a black dot at cell (i, pr), where
i is an unrestricted row label. Since the ending dot represents a topmost 1, by the
construction of �, we see that pr is inserted to the left of i. Note that the cell (pr−1, pr) is
filled with a white dot representing a rightmost restricted 0, so pr−2 is inserted to the left
of pr−1. Since the path P is alternating with respect to black and white dots, we deduce
that pr−3, ⋅ ⋅ ⋅ , p2, p1 are inserted one by one such that pi is inserted to the left of pi+1 for
i = 1, 2, . . . , r − 1. It follows that p1p2 ⋅ ⋅ ⋅ pr is a subsequence of the permutation �(T ).
This completes the proof.

Given two labels i and j of T , the following lemma shows that the relative order of i
and j in �(T ) can be determined by the order of the alternating paths starting with the
two dots labeled by i and j.

Lemma 2.5. Let Pi and Pj be two alternating paths of T starting with two dots labeled

by i and j respectively. Then i is to the left of j in �(T ) if and only if Pi < Pj or Pj is

contained in Pi.

Proof. If Pj is contained in Pi, by Lemma 2.4 we see that i is to the left of j. Otherwise,
let Pi = i1i2 . . . is and Pj = j1j2 . . . jt, where i = i1 and j = j1 respectively. Assume that
Pi and Pj do not intersect. We wish to prove that j1 is to the right of is in �(T ), since i1
is to the left of is by Lemma 2.4.

If Pi and Pj intersect at some dot, let P ′

i and P ′

j be the alternating paths by removing
the common dots of Pi and Pj . Suppose that the ending dot of P ′

i is labeled by is−m.
Then the ending dot of P ′

j is labeled by jt−m. In this case, we aim to show that j1 is to
the right of is−m in �(T ), since i1 is to the left of is−m by Lemma 2.4.
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Consider the following four cases corresponding to the order on Pi and Pj . In the
first two cases, Pi and Pj do not intersect, that is, im ∕= jr for any m = 1, 2, . . . , s and
r = 1, 2, . . . , t. Suppose that the ending black dots of Pi and Pj are in cells (rPi

, is) and
(rPj

, jt) respectively, where rPi
and rPj

are the labels of unrestricted rows.

Case 1. rPi
< rPj

. First of all, rPi
is to the left of rPj

in �(T ). Since both cells (rPi
, is)

and (rPj
, jt) are filled with black dots, the element is is inserted immediately to the left of

rPi
, while jt is inserted immediately to the left of rPj

. This implies that jt is to the right
of rPi

in �(T ). Hence jt is to the right of is.

Since the path Pj alternates with black and white dots, the cell (jt, jt−1) is filled with
a white dot. Thus jt−1 is inserted to the left of jt but to the right of rP , that is, jt−1 is to
the right of is. Repeating the above procedure, we reach the conclusion that the label jr
is to the right of is for r = t, t− 1, . . . , 1. In particular, j1 is to the right of is, so that j1
is to the right of i1.

Case 2. rPi
= rPj

and jt < is. In the implementation of the algorithm �, is is inserted
immediately to the left of rPi

and then jt is inserted immediately to the left of rPj
= rPi

.
Hence jt is to the right of is. Inspecting the relative positions of is and jr for r < t like
we have done in Case 1, we infer that jr is to the right of is for r = t, t− 1, . . . , 1. So we
arrive at the assertion that j1 is to the right of i1.

Case 3. The ending point of P ′

j is below the ending point of P ′

i , that is, jt−m > is−m.
In this case, both cells (is−m, is−m+1) and (jt−m, jt−m+1) are filled with white dots. To
construct � from T according to �, both elements is−m and jt−m are inserted to the left
of the element is−m+1 = jt−m+1 in increasing order. Hence it−m is to the left of jt−m.
Considering the relative positions of is−m and jr for r < t −m as in Case 1, we deduce
that jr is to the right of is−m for 1 ≤ r < t−m. Therefore j1 is to the right of is−m, and
hence to the right of i1.

Case 4. The ending point of P ′

j is to the right of the ending point of P ′

i , that is, jt−m <

is−m. Observe that the element is−m is inserted immediately to the left of is−m+1. Then
the element jt−m is inserted immediately to the left of jt−m+1 = is−m+1. It follows that
jt−m is to the right of is−m. Using the same argument as in Case 1 for the elements is−m

and jr with r < t − m, we conclude that jr is to the right of is−m for 1 ≤ r < t − m.
Consequently, j1 is to the right of is−m, and hence to the right of i1.

In summary, we see that if Pi < Pj , then i is to the left of j in �(T ). It remains to
show that if i is to the left of j in �(T ), then we have Pi < Pj or Pj is contained in Pi.
The proof is essentially the reverse procedure of the above argument, and is omitted.

Proof of Theorem 2.1. Let �(T ) = � = �1�2 . . . �n. Combining Lemma 2.3 and Lemma
2.5, we find that the subsequence �i�j�j+1 of � is an occurrence of the dashed pattern
3–21 if and only if (�j, �i) is an inversion of T . It follows that

inv(T ) = f3–21(�),

which is equivalent to the statement of the theorem.
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Figure 3.4 gives a permutation tableau T of length 10 and its alternative representa-
tion. For this example, we see that C(T ) = {5, 6, 7, 9}, w5(T ) = 4, w6(T ) = 3, w8(T ) = 1
and w9(T ) = 0. Hence we have inv(T ) = 8. On the other hand,

� = �(T ) = (9, 2, 7, 8, 1, 6, 5, 3, 4).

This gives �̄ = (6, 5, 7, 4, 9, 2, 3, 8, 1). It can be checked that the number of occurrences of
the dashed pattern 32–1 in �̄ equals 8.
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Figure 3.2: A permutation tableau and its alternative representation

3 Connection with L-Bell tableaux

In this section, we show that a permutation tableau has no inversions if and only if it is
an L-Bell tableau as introduced by Corteel and Nadeau [7]. Recall that an L-Bell tableau
is a permutation tableau such that any topmost 1 is also a left-most 1.

It has been shown by Claesson [3] that the number of permutations of [n] avoiding the
dashed pattern 32–1 is given by the n-th Bell number Bn. Together with Theorem 2.1 we
are led to the following correspondence.

Theorem 3.1. The number of permutation tableaux T of length n such that inv(T ) = 0
equals Bn.

On the other hand, the following relation was proved by Corteel and Nadeau [7].

Theorem 3.2. The number of L-Bell permutation tableaux of length n equals Bn

By the definition of an inversion of a permutation tableau, it is straightforward to
check that an L-Bell tableau has no inversion. Combining Theorem 3.2 and Theorem 3.3,
we obtain the following connection.

8



Theorem 3.3. Let T be a permutation tableau. Then inv(T ) = 0 if and only if T is an

L-Bell tableau.

Here we give a direct reasoning of the above theorem. Let T be an alternative represen-
tation of a permutation tableau without inversions. It can be seen that the permutation
tableau corresponding to T is an L-Bell tableau if and only T satisfies the following
conditions:

(1) Each row contains at most one black dot.

(2) There is no empty cell that has a black dot above and a black dot immediately to
the right.

We wish to prove that if inv(T ) = 0, then T satisfies the above conditions.

Assume that there is a row containing two black dots, say, at cells (i, j) and (i, k) with
j < k. Then (j, k) is an inversion of T , a contradiction. Thus condition (1) holds.

For condition (2), assume to the contrary that there exists an empty cell (i, j) such
that there is a black dot above and a black dot immediately to the right. Without loss
of generality, we may assume that i is the minimal row label of an empty cell subject
to the above assumption. Now we choose j to be the maximal column label. Assume
that the black dot in row i and the black dot in column j appear at cells (i, k) and (t, j)
respectively. Note that we have t < i. Since j < k and inv(T ) = 0, we must have
Pj < Pk. This implies that the unrestricted row containing the ending black dot of Pj

must be above row t. Assume that this ending black dot is in column m. Then there
exists a white dot in row t. Suppose that it occurs at cell (t, s). Clearly, we have s ≤ m.
Moreover, we see that no cell (x, y) for x > t, y > s can be filled with a white dot. On
the other hand, no cell (x, y) for x < t, j < y < s can be filled with a black dot.

By walking backwards from the ending black dot along the path Pj , we can find a
black dot in column s on the alternating path Pj which is also on the alternating path
Pk. So we deduce that the next white dot on Pj is below the next white dot on Pk, that
is, Pj > Pk. But this implies that (j, k) is an inversion of T , again a contradiction. Hence
the proof is complete.
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