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Abstract

For a hypergeometric series
∑

k f(k, a, b, . . . , c) with parameters
a, b, . . . , c, Paule has found a variation of Zeilberger’s algorithm to es-
tablish recurrence relations involving shifts on the parameters. We
consider a more general problem concerning several similar hyperge-
ometric terms f1(k, a, b, . . . , c), f2(k, a, b, . . . , c), . . ., fm(k, a, b, . . . , c).
We present an algorithm to derive a linear relation among the sums
∑

k fi(k, a, b, . . . , c) (1 ≤ i ≤ m). Furthermore, when the summand
fi contains the parameter x, we can require that the coefficients be
x-free. Such relations with x-free coefficients can be used to determine
whether a polynomial sequence satisfies the three term recurrence and
structure relations for orthogonal polynomials. The q-analogue of this
approach is called the extended q-Zeilberger’s algorithm, which can
be employed to derive recurrence relations on the Askey-Wilson poly-
nomials and the q-Racah polynomials.

Keywords: Zeilberger’s algorithm, the Gosper algorithm, hypergeometric
series, orthogonal polynomials
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1. Introduction

Based on Gosper’s algorithm, Zeilberger [14, 16] has developed a power-
ful theory for proving identities on hypergeometric series and basic hyper-
geometric series. Let F (n, k) be a double hypergeometric term, namely,
F (n + 1, k)/F (n, k) and F (n, k + 1)/F (n, k) are both rational functions of
n and k. Zeilberger’s algorithm is devised to find a double hypergeometric
term G(n, k) and polynomials a0(n), a1(n), . . . , am(n) which are independent
of k such that

a0(n)F (n, k)+a1(n)F (n+1, k)+· · ·+am(n)F (n+m, k) = G(n, k+1)−G(n, k).
(1.1)

Writing

S(n) =

∞
∑

k=0

F (n, k).

Summing (1.1) over k, we deduce that

a0(n)S(n)+a1(n)S(n+1)+ · · ·+am(n)S(n+m) = G(n,∞)−G(n, 0). (1.2)

Thus the identity
∞

∑

k=0

F (n, k) = f(n) (1.3)

can be justified by verifying that f(n) also satisfies (1.2) and both sides of
(1.3) share the same initial values.

Paule [12] extended Zeilberger’s algorithm to the multi-variable case and
found many applications. Let n denote the vector of variables (n1, . . . , nr)
and F (n, k) be a multi-variable hypergeometric term, that is,

F (n1 + 1, n2, . . . , nr, k)

F (n1, n2, . . . , nr, k)
, . . . ,

F (n1, n2, . . . , nr + 1, k)

F (n1, n2, . . . , nr, k)
,
F (n1, n2, . . . , nr, k + 1)

F (n1, n2, . . . , nr, k)

are all rational functions of n and k. Given m shifts γ1, . . . , γm ∈ Z
r of the

variables n, he found that one can use a similar procedure to Zeilberger’s al-
gorithm to find a multi-variable hypergeometric term G(n, k) and coefficients
α1(n), . . . , αm(n) which are independent of k such that

m
∑

i=1

αi(n)F (n + γi, k) = G(n, k + 1) − G(n, k). (1.4)
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The main idea of this paper is the observation that Paule’s approach can
be further extended to a more general telescoping problem. Let f1(k, a, b, . . . , c),
. . ., fm(k, a, b, . . . , c) be m similar hypergeometric terms of k with parameters
a, b, . . . , c, namely, the ratios

fi(k, a, b, . . . , c)

fj(k, a, b, . . . , c)
and

fi(k + 1, a, b, . . . , c)

fi(k, a, b, . . . , c)

are all rational functions of k and a, b, . . . , c. Find a hypergeometric term
g(k, a, b, . . . , c), that is, the ratio g(k + 1, a, b, . . . , c)/g(k, a, b, . . . , c) is a ra-
tional function of k and a, b, . . . , c, and polynomial coefficients a1(a, b, . . . , c),
a2(a, b, . . . , c), . . ., am(a, b, . . . , c) which are independent of k such that

a1f1(k) + a2f2(k) + · · ·+ amfm(k) = g(k + 1) − g(k). (1.5)

For brevity, from now on we may omit the parameters a, b, . . . , c and write
fi(k) for fi(k, a, b, . . . , c), ai for ai(a, b, . . . , c), and g(k) for g(k, a, b, . . . , c).
Once the telescoping relation (1.5) is established, summing over k often leads
to a homogenous relation among the sums

∑

k f1(k), . . .,
∑

k fm(k):

a1

∑

k

f1(k) + a2

∑

k

f2(k) + · · ·+ am

∑

k

fm(k) = 0.

Let F (n, k) be a multi-variable hypergeometric term and γi ∈ Z
r. Then

fi(k, n) = F (n + γi, k) are similar hypergeometric terms of k with param-
eters n1, . . . , nr. Therefore, Paule’s equation (1.4) is a special case of (1.5).
However, we should note that the extended Zeilberger’s algorithm is very
much in the spirit of the original algorithm of Zeilberger, and it should be
regarded as a variation as well because the implementation of the extended
algorithm is essentially the same as the original algorithm.

As an application of our algorithm, one can determine whether a given
hypergeometric series satisfies the recurrence relation and the structure re-
lations for orthogonal polynomials. Meanwhile, we obtain the coefficients in
these relations. For instance, let Pn(x) =

∑

k Pn,k(x) be the hypergeometric
representation of the Jacobi polynomials as given in (3.3). Set

f1(k) = Pn,k(x), f2(k) = P ′

n+1,k(x), f3(k) = P ′

n,k(x), f4(k) = P ′

n−1,k(x),

where P ′

n,k(x) denotes the derivative of Pn,k(x) with respect to x. The ex-
tended Zeilberger’s algorithm enables us to find the structure relation for
Pn(x)

Pn(x) = ãnP ′

n+1(x) + b̃nP ′

n(x) + c̃nP ′

n−1(x). (1.6)
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It is worth mentioning that neither the original Zeilberger’s algorithm nor the
variation of Paule is directly applicable to the above relation (1.6) involving
derivatives.

Furthermore, it is important to impose an additional requirement that
the coefficients a1, . . . , am in (1.5) are not only independent of k but also
independent of some other parameters such as the variable x occurring as
the variable of orthogonal polynomials. For example, ãn, b̃n and c̃n in (1.6)
are required to be independent of the variable x. Based on this parameter-
free property of the coefficients, Chen and Sun [6] have developed a computer
algebra approach to proving identities on Bernoulli polynomials and Euler
polynomials.

We should notice that Koepf and Schmersau [10] have shown that one can
derive the recurrence relation and structure relations for orthogonal polyno-
mials by variations of Zeilberger’s algorithm. For each of the three kinds
of relations, they have provided an algorithm. The extended Zeilberger’s
algorithm serves as a unification of their algorithms and applies to more
general cases. For instance, our algorithm can also be used to derive recur-
rence relations for the connection coefficients between two classes of Meixner
polynomials with different parameters.

In another direction, the extended Zeilberger’s algorithm can be adapted
to deal with basic hypergeometric terms. Using the q-analogue of this al-
gorithm, we can recover the three term recurrence relations for the Askey-
Wilson polynomials and the q-Racah polynomials.

Let us recall some terminology and notation. A function t(k) is called a
hypergeometric term if t(k + 1)/t(k) is a rational function of k. A hyperge-
ometric series is defined by

rFs

(

a1, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

z

)

=
∞

∑

k=0

(a1)k · · · (ar)k

(b1)k · · · (bs)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k − 1) is the raising factorial. The q-shifted
factorial is given by (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) and we write

(a1, . . . , am; q)k = (a1; q)k · · · (am; q)k.
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Then a basic hypergeometric series is defined by

rφs

[

a1, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

q; z

]

=
∞

∑

k=0

(a1, · · · , ar; q)k

(b1, · · · bs; q)k

zk

(q; q)k

(

(−1)kq(
k

2
)
)s−r+1

.

2. The Extended Zeilberger’s Algorithm

Let f1(k), f2(k), . . . , fm(k) be similar hypergeometric terms with parameters
a, b, . . . , c. Recall that two hypergeometric terms f(k) and g(k) are said to
be similar if their ratio is a rational function of k and the parameters. We
assume that

f1(k + 1)

f1(k)
=

u(k)

v(k)
and

fi(k)

f1(k)
=

pi(k)

Q(k)
, i = 1, 2, . . . , m, (2.1)

where u(k), v(k), pi(k), Q(k) are polynomials in k and the parameters a, b, . . . , c.
Suppose that fi(k) satisfy (2.1). Then

fi(k + 1)

fi(k)
=

fi(k + 1)/f1(k + 1)

fi(k)/f1(k)

f1(k + 1)

f1(k)
=

pi(k + 1)Q(k)u(k)

pi(k)Q(k + 1)v(k)

and
fi(k)

fj(k)
=

fi(k)/f1(k)

fj(k)/f1(k)
=

pi(k)

pj(k)

are rational functions of k and a, b, . . . , c. Thus (2.1) is equivalent to the
statement that f1(k), f2(k), . . . , fm(k) are similar hypergeometric terms.

Our aim is to find coefficients a1, . . . , am as rational functions in the pa-
rameters a, b, . . . , c but independent of k (called k-free coefficients) such that

a1f1(k) + a2f2(k) + · · · + amfm(k) = g(k + 1) − g(k) (2.2)

for some hypergeometric term g(k) with parameters a, b, . . . , c. By the simi-
larity of f1(k), . . . , fm(k),

tk = a1f1(k) + a2f2(k) + · · · + amfm(k) (2.3)

is a hypergeometric term of k with parameters a, b, . . . , c. So we can apply
Gosper’s algorithm [8] to find g(k) such that tk = g(k + 1) − g(k). Notice
that we always have a trivial solution a1 = a2 = · · · = am = 0 and g(k) = 0.
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Notice that by multiplying the common denominator, the coefficients
a1, . . . , am in (2.2) become polynomials in the parameters a, b, . . . , c. If no
confusion arises, we may not mention the parameters a, b, . . . , c. In the usual
case n is the parameter for identities on finite sums.

It follows from (2.3) that

tk+1

tk
=

f1(k + 1)

f1(k)

∑m
i=1 aifi(k + 1)/f1(k + 1)
∑m

i=1 aifi(k)/f1(k)

=
u(k)Q(k)

v(k)Q(k + 1)

∑m
i=1 aipi(k + 1)
∑m

i=1 aipi(k)
.

Suppose that
u(k)Q(k)

v(k)Q(k + 1)
=

a(k)

b(k)

c(k + 1)

c(k)

is a Gosper representation, i.e., a(k), b(k), c(k) are polynomials such that
gcd(a(k), b(k + h)) = 1 for all non-negative integers h. Then a Gosper rep-
resentation of tk+1/tk is given by

tk+1

tk
=

a(k)

b(k)

c(k + 1)P (k + 1)

c(k)P (k)
,

where

P (k) =

m
∑

i=1

aipi(k). (2.4)

Gosper’s algorithm states that g(k) exists if and only if there exists a poly-
nomial x(k) such that

a(k)x(k + 1) − b(k − 1)x(k) = c(k)P (k). (2.5)

Moreover, the degree bound d for x(k) can be estimated by a(k) and b(k).
Suppose

x(k) =

d
∑

i=0

cik
i.

By comparing the coefficients of each power of k on both sides, we obtain a
system of linear equations on a1, . . . , am and c0, c1, . . . , cd. Solving the system
of linear equations, we find coefficients a1, . . . , am and

g(k) =
b(k − 1)x(k)

c(k)Q(k)
f1(k).
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The extended Zeilberger’s algorithm can be described in terms of the
following steps.

Input: m similar hypergeometric terms f1(k), . . . , fm(k).
Output: k-free coefficients a1, a2, . . . , am and a hypergeometric term g(k)
satisfying (2.2).

1. Compute the rational functions

ri(k) =
fi(k)

f1(k)
and r(k) =

f1(k + 1)

f1(k)
.

Set Q(k) to be the common denominator of r1(k), . . . , rm(k),

pi(k) = ri(k)Q(k),

and let P (k) be given by (2.4).

2. Compute a Gosper representation of

r(k)
Q(k)

Q(k + 1)
=

a(k)

b(k)

c(k + 1)

c(k)
.

3. Compute the degree bound d for x(k) and solve the equation (2.5) by
the method of undetermined coefficients to obtain the k-free coefficients
a1, . . . , am and the polynomial x(k).

4. The hypergeometric term g(k) is then given by

g(k) =
b(k − 1)x(k)

c(k)Q(k)
f1(k).

Suppose that F (n, k) is a double hypergeometric term. Let fi(k) =
F (n+ i−1, k). Then the extended Zeilberger’s algorithm reduces to the orig-
inal Zeilberger’s algorithm. More generally, suppose that n = (n1, . . . , nr),
F (n, k) is a multi-variable hypergeometric term and γi ∈ Z

r. The special-
ization fi(k) = F (n + γi, k) reduces to Paule’s variation.

As will be seen, in some applications it is necessary to require that the
coefficients a1, . . . , am be independent of some parameters, say, the parameter
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a. More precisely, let f1(k, a, b, . . . , c), . . ., fm(k, a, b, . . . , c) be m similar
multi-variable hypergeometric terms, that is,

fi(k + 1, a, b, . . . , c)

fi(k, a, b, . . . , c)
and

fi(k, a, b, . . . , c)

f1(k, a, b, . . . , c)
(2.6)

are rational functions of k, a, b, . . . , c. We aim to find a1, a2, . . . , am not only
independent of k but also independent of the parameter a such that (2.2)
holds.

Since the solutions (a1, . . . , am, g(k)) of (2.2) form a linear vector space,
we may use the following form as the output

a1 = v1, . . . , ar = vr,

ar+1 = hr+1(v1, . . . , vr), . . . , am = hm(v1, . . . , vr), (2.7)

g(k) = h(v1, . . . , vr)f1(k),

where v1, . . . , vr are free variables and hr+1, . . . , hm, h are linear combinations
of v1, . . . , vr. For this purpose, we should first ignore the independence of a
and apply the extended Zeilberger’s algorithm to find the solution (2.7). By
(2.6), the functions hr+1, . . . , hm are rational functions of the parameters
a, b, . . . , c and thus can be written as

hi = pi(a, b, . . . , v1, . . . , vr)/qi(a, b, . . . , c),

where pi, qi are relatively prime polynomials. Now consider the additional
requirement that a1, a2, . . . , am are independent of the parameters a. There-
fore, all the coefficients of

pi(a, b, . . . , c, v1, . . . , vr) − aiqi(a, b, . . . , c)

in variable a must be zero. This gives a system of linear equations on
a1, . . . , am and v1, . . . , vr. Upon solving these equations, we eventually find
a1, a2, . . . , am which are independent of k and the parameter a. The above
version of the extended Zeilberger’s algorithm will still be called the extended
Zeilberger’s algorithm.

Let us take the Hermite polynomials as the first example to show how to
use the above algorithm to derive linear relations on sums of similar hyper-
geometric terms with parameters.
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Example 2.1 The Hermite polynomials Hn(x) are given by

Hn(x) = (2x)n
2F0

(

−n
2
,−n−1

2

∣

∣

∣

∣

− 1

x2

)

, (2.8)

see [2, Section 6.1]. We aim to find a three term recurrence

xHn(x) = αnHn+1(x) + βnHn(x) + γnHn−1(x)

with coefficients αn, βn, γn being independent of x. Let

Hn,k(x) = (2x)n

(

− n
2

)

k

(

−n+1
2

)

k

k!

(

− 1

x2

)k

be the summand in (2.8). We first ignore the x-freeness requirement and
apply the extended Zeilberger’s algorithm to the four similar hypergeometric
terms with parameters n and x

f1(k) = xHn,k(x), f2(k) = Hn+1,k(x), f3(k) = Hn,k(x), f4(k) = Hn−1,k(x).

We find that

a1 = v1, a2 = v2, a3 = −x(v1 + 2v2), a4 = 2nv2, (2.9)

and

g(k) =
−4kv2

n + 1 − 2k
xHn,k(x). (2.10)

Now it is time to impose the x-freeness condition to give an additional equa-
tion

v1 + 2v2 = 0.

Hence we obtain

a1 = v1, a2 = −v1

2
, a3 = 0, a4 = −nv1, g(k) =

2kv1

n + 1 − 2k
xHn,k(x).

It follows that

v1xHn,k(x) − v1

2
Hn+1,k(x) − nv1Hn−1,k(x) = g(k + 1) − g(k).

Summing over k, we deduce that

xHn(x) =
1

2
Hn+1(x) + nHn−1(x).
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3. Orthogonal Polynomials

Using the extended Zeilberger’s algorithm, we can determine whether a hy-
pergeometric series satisfies a three term relation and the structure relations
for a sequence of orthogonal polynomials. In other words, one can verify the
orthogonality of a terminating hypergeometric series by using the extended
Zeilberger’s algorithm.

The method to derive the relation in Example 2.1 is in fact valid in the
general case. Given a hypergeometric series Pn(x), we can compute the
coefficients for the following recurrence relation

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x).

Let Pn(x) =
∑

k Pn,k(x), where Pn,k(x) is a hypergeometric term of k with
parameters n and x. Set

f1(k) = xPn,k(x), f2(k) = Pn+1,k(x), f3(k) = Pn,k(x), f4(k) = Pn−1,k(x).

Clearly, f1, f2, f3 and f4 are similar hypergeometric terms. So we can use the
extended Zeilberger’s algorithm to find a1, a2, a3, a4 which are independent
of k and x such that

a1xPn,k(x) + a2Pn+1,k(x) + a3Pn,k(x) + a4Pn−1,k(x) = g(k + 1) − g(k).

Then summing over k leads to

αn = −a2/a1, βn = −a3/a1, γn = −a4/a1.

By this method, we can recover the three term recurrences for the La-
guerre polynomials, the Jacobi polynomials, the Charlier polynomials, the
Meixner polynomials, the Kravchuk polynomials and the Hahn polynomials,
as listed in the following table. Notice that we have adopted the notation
in [9].
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monic OPs coefficients (αn = 1)

Laguerre

L
(a)
n (x)

βn = a + 2n + 1, γn = n(a + n)

Jacobi

P
(a, b)
n (x)







βn = −(a−b)(a+b)
(2n+2+a+b)(2n+a+b)

γn = 4(n+b)(a+n)(n+a+b)n
(2n+a+b+1)(2n+a+b−1)(2n+a+b)2

Charlier
Cn(x; a)

βn = a + n, γn = an

Meixner
Mn(x; b, c)

βn =
cb + nc + n

1 − c
, γn =

nc(b + n − 1)

(c − 1)2

Krawtchouk
Kn(x; p, N)

{

βn = Np − 2np + n,

γn = pn(1 − p)(N − n + 1)

Hahn
Qn(x; a, b, N)







βn = (b+a+2n2+2n+2nb+2na+a2+ab)N−n(a−b)(n+a+b+1)
(2n+a+b)(2n+2+a+b)

γn = n(N−n+1)(n+b)(a+n)(n+a+b)(a+b+N+1+n)
(2n+a+b+1)(2n+a+b−1)(2n+a+b)2

Example 3.1 The Wilson polynomials Wn(x) are given by

Wn(x2)

(a + b)n(a + c)n(a + d)n

= 4F3

(

−n, n + a + b + c + d − 1, a + xi, a − xi

a + b, a + c, a + d

∣

∣

∣

∣

1

)

,

where i =
√
−1, see [15]. Let Wn,k(x

2) be the summand of the right hand side
multiplied by the factor (a + b)n(a + c)n(a + d)n. Applying the the extended
Zeilberger’s algorithm to the similar terms

f1(k) = x2Wn,k(x
2), f2(k) = Wn+1,k(x

2), f3(k) = Wn,k(x
2), f4(k) = Wn−1,k(x

2),

we obtain the following relation, see also [9, p. 24]

xWn(x) = αnWn+1(x) + βnWn(x) + γnWn−1(x),

where

αn = − a + b + c + d + n − 1

(a + b + c + d + 2n)(a + b + c + d + 2n − 1)
,
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βn =
4n2 − 4(1 − a − b − c − d)n + (a + b + c + d)2 − 2(a2 + b2 + c2 + d2)

8

+
(a + b + c + d − 2)(a + b − c − d)(a + c − b − d)(a + d − b − c)

8(a + b + c + d + 2n)(a + b + c + d + 2n − 2)
,

and

γn = −(a + b + n − 1)(a + c + n − 1)(a + d + n − 1)

× (b + c + n − 1)(b + d + n − 1)(c + d + n − 1)n

(a + b + c + d + 2n − 1)(a + b + c + d + 2n − 2)
.

Example 3.2 The Racah polynomials Rn(x) are given by

Rn(x(x + c + d + 1)) = 4F3

(

−n, n + a + b + 1,−x, x + c + d + 1
a + 1, b + d + 1, c + 1

∣

∣

∣

∣

1

)

,

see [4]. The extended Zeilberger’s algorithm gives the recurrence relation of
the Racah polynomials [9, p. 27]

xRn(x) = αnRn+1(x) + βnRn(x) + γnRn−1(x),

where

αn =
(a + n + 1)(c + n + 1)(a + b + n + 1)(d + b + n + 1)

(a + b + 2n + 1)(a + b + 2n + 2)
,

βn =
−4n2 − 4(a + b + 1)n + (a − 2d − b − 2 − 2c)(a − b)

8

− (c + 1)(b + d + 1)

2
− (a − b)(a + b)(a − 2d − b)(a − 2c + b)

8(a + b + 2n)(a + b + 2n + 2)
,

and

γn =
(b + n)(a − d + n)(a + b − c + n)n

(a + b + 2n)(a + b + 2n + 1)
.

Example 3.3 Askey and Ismail [3] provided two hypergeometric represen-
tations for the Pollaczek polynomials:

Pn(x) = ηn
2F1

(

−n, b(x − η)/ξ,
b/a

∣

∣

∣

∣

− ξ

aη

)
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= ζn
2F1

(

−n, b(ζ − x)/ξ,
b/a

∣

∣

∣

∣

ξ

aζ

)

,

where

ξ =
√

(1 + a)2x2 − 4a, η = ((1 + a)x − ξ)/2a, ζ = ((1 + a)x + ξ)/2a.

Using the extended Zeilberger’s algorithm, we derive the following three term
recurrence from either representation [3]:

xPn(x) =
an + b

(1 + a)n + b
Pn+1(x) +

n

(1 + a)n + b
Pn−1(x).

We continue to show that the extended Zeilberger’s algorithm can be
employed to express the derivatives of orthogonal polynomials in terms the
original polynomials, and vice versa. Let Pn,k(x) be the summand of the hy-
pergeometric representation of Pn(x) and P ′

n,k(x) be the derivative of Pn,k(x).
It is easily seen that P ′

n,k(x) is similar to Pn,k(x). This enables us to derive
the three term recurrence for P ′

n(x) and the structure relations for Pn(x) as
given below

σ(x)P ′

n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), (3.1)

and
Pn(x) = ānP ′

n+1(x) + b̄nP ′

n(x) + c̄nP ′

n−1(x), (3.2)

where σ(x) is a polynomials in x of degree less than or equal to 2 and
an, bn, cn, ān, b̄n, c̄n are constants not depending on x. To derive (3.1), we
set

f1(k) = σ(x)P ′

n,k(x), f2(k) = Pn+1,k(x), f3(k) = Pn,k(x), f4(k) = Pn−1,k(x).

To establish (3.2), we set

f1(k) = Pn,k(x), f2(k) = P ′

n+1,k(x), f3(k) = P ′

n,k(x), f4(k) = P ′

n−1,k(x).

Example 3.4 The monic Jacobi polynomials are given by

Pn(x) =
(a + 1)n2

n

(n + a + b + 1)n
2F1

(

−n, n + a + b + 1
a + 1

∣

∣

∣

∣

1 − x

2

)

. (3.3)
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Let Pn,k(x) denote the summand. Its derivative with respect to x equals

P ′

n,k(x) = − (a + 1)n2n

(n + a + b + 1)n

(−n)k(n + a + b + 1)k

2(a + 1)k(k − 1)!

(

1 − x

2

)k−1

.

Consider the four similar terms

f1(k) = xP ′

n,k(x), f2(k) = P ′

n+1,k(x), f3(k) = P ′

n,k(x), f4(k) = P ′

n−1,k(x).

By the extended Zeilberger’s algorithm with parameters n and x, we find
that

xP ′

n(x) =
n

n + 1
P ′

n+1(x) − (a + 2 + b)(a − b)

(2n + 2 + a + b)(2n + a + b)
P ′

n(x)

+
4n(b + n)(a + n)(n + a + b + 1)

(2n + a + b + 1)(2n + a + b − 1)(2n + a + b)2
P ′

n−1(x),

(1 − x2)P ′

n(x) = −nPn+1(x) +
2n(a − b)(n + a + b + 1)

(2n + 2 + a + b)(2n + a + b)
Pn(x)

+
4(n + b)(a + n)(n + a + b + 1)(n + a + b)n

(2n + a + b + 1)(2n + a + b − 1)(2n + a + b)2
Pn−1(x).

and

Pn(x) =
1

n + 1
P ′

n+1(x) +
2(a − b)

(2n + 2 + a + b)(2n + a + b)
P ′

n(x)

− 4(n + b)(a + n)n

(2n + a + b + 1)(2n + a + b − 1)(2n + a + b)2
P ′

n−1(x).

The following example is concerned with expressing the shifts of orthog-
onal polynomials with parameters in terms of the original polynomials and
their derivatives.

Example 3.5 Let

P (a, b)
n (x) =

(a + 1)n2n

(n + a + b + 1)n
2F1

(

−n, n + a + b + 1
a + 1

∣

∣

∣

∣

1 − x

2

)
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be the Jacobi polynomials, see [2, 9]. By applying the extended Zeilberger’s

algorithm to f1(k) = P
(a+1, b)
n,k (x) (f1(k) = P

(a, b+1)
n,k (x), respectively) and

f2(k) = P
(a, b)
n+1,k

′(x), f3(k) = P
(a, b)
n,k

′(x), f4(k) = P
(a, b)
n−1,k

′(x),

we are led to the known relations due to Koepf and Schmersau [10]

P (a+1, b)
n (x) =

1

n + 1
P

(a, b)
n+1

′(x) +
2(a + 1 + n)

(2n + 2 + a + b)(2n + a + b + 1)
P (a, b)

n
′(x)

and

P (a, b+1)
n (x) =

1

n + 1
P

(a, b)
n+1

′(x) − 2(b + 1 + n)

(2n + 2 + a + b)(2n + a + b + 1)
P (a, b)

n
′(x).

Moreover, we can deduce the following relations which seem to be new:

P (a+1, b−1)
n (x) =

1

n + 1
P

(a, b)
n+1

′(x) +
4(a + 1 + n)

(2n + 2 + a + b)(2n + a + b)
P (a, b)

n
′(x)

+
4(a + 1 + n)(a + n)n

(2n + a + b − 1)(2n + a + b + 1)(2n + a + b)2
P

(a, b)
n−1

′(x),

and

P (a−1, b+1)
n (x) =

1

n + 1
P

(a, b)
n+1

′(x) − 4(b + 1 + n)

(2n + 2 + a + b)(2n + a + b)
P (a, b)

n
′(x)

+
4(b + 1 + n)(b + n)n

(2n + a + b − 1)(2n + a + b + 1)(2n + a + b)2
P

(a, b)
n−1

′(x).

The extended Zeilberger’s algorithm can also be employed to compute
the connection coefficients of two sequences of orthogonal polynomials. Ron-
veaux [13] developed an approach to computing recurrence relations for the
connection coefficients. The extended Zeilberger’s algorithm serves this pur-
pose without resorting to the properties of the orthogonal polynomials. As an
example, let us consider the connection coefficients of two classes of Meixner
polynomials with different parameters.

Example 3.6 Let M
(γ, µ)
n (x) be the monic Meixner polynomials defined by

M (γ, µ)
n (x) = (γ)n

(

µ

µ − 1

)n

2F1

(

−n,−x
γ

∣

∣

∣

∣

1 − 1

µ

)

,
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see [9, p. 45]. We wish to find a recurrence relation for the connection coeffi-
cients Cm(n) defined by

M (γ, µ)
n (x) =

n
∑

m=0

Cm(n)M (δ, ν)
m (x). (3.4)

To this end, we first find a difference operator which eliminates M
(γ, µ)
n (x).

This goal can be achieved by applying the extended Zeilberger’s algorithm
to the similar terms

f1(k) = M
(γ, µ)
n,k (x), f2(k) = M

(γ, µ)
n,k (x + 1), and f3(k) = M

(γ, µ)
n,k (x − 1),

where

M
(γ, µ)
n,k (x) = (γ)n

(

µ

µ − 1

)n
(−n)k(−x)k

(γ)kk!

(

1 − 1

µ

)k

.

From the telescoping relation generated by the extended Zeilberger’s algo-
rithm, we deduce that

(xµ+µγ+x−n+nµ)M (γ, µ)
n (x)−µ(γ+x)M (γ, µ)

n (x+1)−xM (γ, µ)
n (x−1) = 0.

Let

Sm(x) = (xµ+µγ+x−n+nµ)M (δ, ν)
m (x)−µ(γ+x)M (δ, ν)

m (x+1)−xM (δ, ν)
m (x−1),

which can be used to establish a linear relation on the connection coefficients
Cm(n). Indeed, it follows from (3.4) that

n
∑

m=0

Cm(n)Sm(x) = 0. (3.5)

Suppose that we can express Sm(x) in terms of a suitable basis {Pm(x)}:

Sm(x) = amPm+1(x) + bmPm(x) + cmPm−1(x), (3.6)

where am, bm and cm are independent of x. Substituting (3.6) into (3.5), by
the linear independence of Pm(x) for m = 0, 1, 2, . . ., that is, the coefficients
of Pi(x) are all zeros, we find

am−1Cm−1(n) + bmCm(n) + cm+1Cm+1(n) = 0. (3.7)
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Thus the question has become how to find the polynomials Pm(x) in order
to determine the coefficients am, bm and cm. In view of the relation (3.6), we
consider a hypergeometric term Pm(x) that is similar to Sm(x) so that we
can solve the equation

Sm(x) − amPm+1(x) − bmPm(x) − cmPm−1(x) = 0

by using the extended Zeilberger’s algorithm. In fact, we may choose

Pm(x) = ∆(M (δ, ν)
m (x)) = M (δ, ν)

m (x + 1) − M (δ, ν)
m (x).

It is easily checked that Pm(x) satisfies (3.6) and the corresponding coeffi-
cients are given by

am =
(µ − 1)(n − m)

m + 1
, cm =

(ν − µ)(δ + m − 1)mν

(1 − ν)2
,

bm =
−νµm − mµ + 2mν + νµγ − νn + νδ − ν + µ − νµδ − µγ + νnµ

1 − ν
.

Hence we have derived a recurrence relation (3.7) for the connection coeffi-
cients Cm(n).

4. q-Orthogonal Polynomials

The extended Zeilberger’s algorithm can be readily adapted to basic hyperge-
ometric terms tk with parameters a, b, . . . , c, that is, the ratio of two consecu-
tive terms is a rational function of qk and the parameters. The q-analogue of
the extended Zeilberger’s algorithm will be called the extended q-Zeilberger’s
algorithm. Let f1(k), f2(k), . . . , fm(k) be similar q-hypergeometric terms,
namely,

fi(k)/fj(k) and fi(k + 1)/fi(k) (1 ≤ i, j ≤ m)

are rational functions of qk and the parameters. The objective of the ex-
tended q-Zeilberger’s algorithm is to find a q-hypergeometric term g(k) and
coefficients a1, a2, . . . , am which are independent of k such that

a1f1(k) + a2f2(k) + · · ·+ amfm(k) = g(k + 1) − g(k). (4.1)
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The detailed description of the extended q-Zeilberger’s algorithm is similar
to that of the ordinary case, hence is omitted. We will only give examples to
demonstrate how to use this method to compute the three term recurrences
and structure relations for q-orthogonal polynomials.

Example 5.1 The discrete q-Hermite I polynomials are given by [1]

Hn(x) = q(
n

2
)

2φ1

[

q−n, x−1

0

∣

∣

∣

∣

∣

q;−qx

]

.

Let dHn(x) = H(xq)−H(x)
(q−1)x

be the q-difference of Hn(x). We derive that

xdHn(x) =
1 − qn

1 − qn+1
dHn+1(x) + qn−2(1 − qn)dHn−1(x)

and

dHn(x) =
1 − qn

1 − q
Hn−1(x).

Example 5.2 The Askey-Wilson polynomials pn(x; a, b, c, d|q) are defined by

anpn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4φ3

[

q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣

∣

∣

∣

∣

q; q

]

, x = cos θ,

see [7, (7.5.2)]. Let tn,k(x) be the summand of the right hand side multiplied
by (ab, ac, ad; q)n/an. Applying the extended q-Zeilberger’s algorithm to

f1(k) = xtn,k(x), f2(k) = tn+1,k(x), f3(k) = tn,k(x), f4(k) = tn−1,k(x),

we find that

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x),

where

αn =
1 − abcdqn−1

2(1 − abcdq2n)(1 − abcdq2n−1)
,

βn =
qn−1(abcdq2n−1 + 1)((a + b + c + d)q + bcd + acd + abd + abc)

2(1 − abcdq2n)(1 − abcdq2n−2)
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− q2n−2(1 + q)((bcd + acd + abd + abc)q + abcd(a + b + c + d))

2(1 − abcdq2n)(1 − abcdq2n−2)
,

and

γn = (1 − qn)(1 − abqn−1)(1 − acqn−1)(1 − adqn−1)

× (1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

2(1 − abcdq2n−1)(1 − abcdq2n−2)
.

Example 5.3 The q-Racah polynomials Rn(x; a, b, c, d|q) are given by

Rn(q−x + cdqx+1; a, b, c, d|q) = 4φ3

[

q−n, abqn+1, q−x, cdqx+1

aq, bdq, cq

∣

∣

∣

∣

∣

q; q

]

,

see [9, p. 122]. The extended q-Zeilberger’s algorithm gives the following re-
currence relation first derived by Askey and Wilson [4] using a transformation
formula on a 8φ7 series:

xRn(x) = αnRn+1(x) + βnRn(x) + γnRn−1(x),

where

αn =
(1 − aqn+1)(1 − abqn+1)(1 − bdqn+1)(1 − cqn+1)

(1 − abq2n+1)(1 − abq2n+2)
,

βn =
qn+1(abq2n+1 + 1)(c + bcd + dc + a + bd + ab + ca + abd)

(1 − abq2n)(1 − abq2n+2)

− q2n+1(1 + q)(ab2d + abcd + ca + bcd + abd + ab + abc + a2b)

(1 − abq2n)(1 − abq2n+2)
,

and

γn =
(1 − qn)(1 − bqn)(c − abqn)(d − aqn)q

(1 − abq2n)(1 − abq2n+1)
.
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