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Abstract. We present a simple iteration for the Lebesgue identity on partitions.
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In this note, we present a simple iterated map for the Lebesgue identity on partitions.
Recall that the q-shifted factorials are defined by

(a; q)∞ =

∞
∏

k=0

(1 − aqk) and (a; q)n =
(a; q)∞

(aqn; q)∞
, n ∈ Z,

where |q| < 1. The Lebesgue identity reads

∞
∑

k=0

(−aq; q)k

(q; q)k
q(

k+1

2 ) = (−aq2; q2)∞(−q; q)∞, (1)

see, for example, Andrews [2]. There are several combinatorial proofs of the Lebesgue identity.
Ramamani and Venkatachaliengar [7] found a bijection for the following generalization of (1),

∞
∑

m=0

qm(m+1)/2 (z; q)m

(q; q)m
αm = (z; q)∞(−αq; q)∞

∞
∑

n=0

zn

(q; q)n(−αq; q)n
.

Bessenrodt [3] gave a combinatorial interpretation in terms of 2-modular diagrams. Alladi
and Gordon [1] provided a construction based on the standard MacMahon diagrams, see the
survey of Pak [6]. Fu [4] discovered a bijective proof of the following extension of (1) by
applying the insertion algorithm of Zeilberger:

∞
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n=0
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(q; q)n
bnq(
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∞
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k=0

(ab)kqk(k+1)
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.

Rowell [8] presented a combinatorial proof which leads to the following finite form of (1):
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Recently, Little and Sellers [5] have established the relation (1) by using weighted Pell tilings.

We follow the terminology in [2]. A partition is meant to be a non-increasing finite
sequence of positive integers λ = (λ1, . . . , λ`). The entries λi are called the parts of λ. The
number of parts of λ is denoted by `(λ), and sum of parts is denoted by |λ| = λ1 + · · · + λ`.
The conjugate partition of λ is denoted by λ′. The partition with no parts is denoted by ∅.

Denote the left hand side of the Lebesgue identity (1) by f(a, q). It is easily seen that

f(a, q) =
∑

(α,β)∈P

a`(β)q|α|+|β|,

where P denotes the set of pairs (α, β) of partitions with distinct parts such that `(α) is not
less than the largest part of β. The corresponding diagram is illustrated by Figure 1.

α β′

a

Figure 1: A pair (α, β) ∈ P

Clearly, the right hand side of (1) has the following combinatorial interpretation

∑

(µ,ν)∈Q

a`(ν)q|µ|+|ν|,

where Q is the set of pairs (µ, ν) of partitions with distinct parts such that ν has only even
parts.

For a triple of partitions (α, β, γ) where (α, β) ∈ P and γ = ∅ or the smallest part of γ

is not less than `(β), we define a map φ : (α, β, γ) → (µ, λ, ν) as follows:

Case 1: The smallest part of β equals 1. Decrease each part of α by 1 to form a partition
µ. Change the 1-part of β to a (`(α)+1)-part and decrease each part of the resulting partition
by 2 to generate a partition λ. Then add two `(β)-parts to γ to produce a partition ν. This
operation can be clearly visualized as moving up the diagram on the right by two rows. See
Figure 2 for an illustration, where α = (6, 5, 3, 1), β = (4, 3, 1), γ = (4, 4), µ = (5, 4, 2),
λ = (3, 2, 1), and ν = (4, 4, 3, 3).

Case 2: The smallest part of β is larger than 1. Set µ = α and decrease each part of β

by 2 to generate a partition λ. Then add two `(β)-parts to γ to form a partition ν.

It is clear that the map φ is reversible. Starting from (α, β, ∅), we can iterate the above
map until λ becomes empty. This gives a pair (µ, ν ′) of partitions that belongs to Q, and so
the combinatorial proof of the Lebesgue identity is complete.
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Figure 2: An example
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