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Mock Theta Functions

GEORGE E. ANDREWS

1. Imtroduction. The mock theta functions are the subject of Ramanujan’s
last letter to Hardy dated January, 1920. The mathematical portions of this
letter have been reproduced in [25, pp. 127-131] (see also [24, pp. 354-355]
and [29, pp. 56-61]), and we repeat them here at the beginning to lay the

groundwork for this survey.
“If we consider ain the transformed Eulerian form, e.g.,

@1+ 24 7 + @ o
(=g (=gl —-¢?)?  (1-9)%(1-g2)%(1-¢3? ’
q q* q° '
® rgtior—otioon-oa=o

and determme thc nature of the singularities at the points
a=1,¢=1¢=1¢"=1,¢"=1,...,
we know how beautifully the asymptotic form of the function can be ex-

pressed in a very neat and closed exponential form. For instance, when
g=e‘tandt—0,

(A)= (27:)““(6: 24)“(1)

. 2 A 2
B)= (_—s_ﬁ)eXp(ISt 50 )+0(1)
and similar results at other singularities.

“If we take a number of functions like (A) and (B), it is only in a limited
number of cases the terms close as above; but in the majority of cases they
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*It is not necessary that there should be only one term like this. There may be many terms
but the number of terms must be finite.
tAlso o(1) may turn out to be O(1). That is all. For instance, when ¢ — 1, the function
{(1 — g)(1 — g?)(1 — g3)---}~'20 is equivalent to the sum of five terms like (*) together with
O(1) instead of o(1). Co- C : : o
. (© 1989 American Mathematical Society
' 0082-0717/89 $1.00 + $.25 per page

283



284 G. E. ANDREWS

never:close as above. For instance, when ¢ =e~‘ and ¢t — 0,
q g q°

© 1+

= (—-t—>exp n—z**+aﬁt+a 2+ + O(arth)
27[\/—5— 5¢ 1 2 ‘ k >

where a; = 1/8/5, and so on. The function (C) is a simple example of a
function behaving in an unclosed form at the singularities.

“Now a very interesting question arises. Is the converse of the statements
concerning the forms (A) and (B) true? That is to say: Suppose there is a

function in the Eulerian form and suppose thatall or an infinity of poinis are _

exponential singularities, and also suppose tha{awmgm
‘form of the function closes as neatly as in the cases of (A) and (B). The
questions is: Is the function taken the sum of two functions one of which is
an ordinary 9-function and the other a (trivial) function which is O(1) at all
he ponts e2"7i/n9 The answer is it is not necessarily so. When it is not so, I
call the function a Mock S-function. I have not proved rigorously that it is
not ;nécessarily so. But I have constructed a number. of examples in which it
is,inconceivable to construct a 9-function to cut out the singularities of the
Mn. Also I have shown that if it is necessarily so then it leads

to the following assertion—viz. it is possible to construct two power series’
#&  in x, namely )" a,x" and } bax", both of which have essential singularities

on the unit circle, are convergent when |x| < 1, and tend to finite limits at
every point x = e*™/5_ and that at the same time the limit of }_ a,x" at the
point x = e/ is equal to the limit of ¥ b,x" at the point x = e~27/s,

“This assertion seems to be untrue. [H. Cohen, B. Gordon, and D. Hicker-
son have each pointed out to me that Ramanujan is incorrect; indeed Cohen’s
function ¢(g) (see (6.2) below) provides a counterexample with o(x?*) and
—p(x2%).] Anyhow, we shall go to the examples and see how far our assertions
are true. .

“T have proved that, if

g gt

@)=ty s T

then

f@+1-g1-g*)(1-¢%)-(1-2¢+2¢*-2¢*+---) = 0(1)
at all the points ¢ = —1, ¢* = =1, ¢° = -1, ¢’ = —1,---; and at the same
time

f@) - (1 -1 =) (1~ g%)-(1=2q +2¢% = 2¢° ) = O(1)

**The coefficient 1/¢ (sic) in the index of e happens to be n2/5 in this particular case. It
may be some other transcendental numbers in other cases.

tThe coefficients of ¢, 12, ... happen to be 1/8/5,... in this case. In other cases they may
turn out to be some other algebraic numbers.

e R (s (e e (e (e e A
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at all the points g2 = —1, ¢* = —1, ¢5 = —1,.... Also, obviously, f(g) = O(1)

atallthepointsg=1, g3 =1, ¢° = 1,.... And so f(g) is a Mock d-function.
“When ¢ = —e~ and ¢ — 0,

Sfla) + (—?—) exp (2”—; - %) — 4,
“The coefficient of g” in f(q) is
+
2y/(n~ %) V- %)

It is inconceivable that a single ¥-function could be found to cut out the
singularities of f(gq).

(_

Mock S-functions.
$la)=1+—L + xa 4+
I4+4%2 " (1+4%)(1+4% ’
_q q* q°
w(g) = + :
D=1t T Taa-Pu-o "

q4

q + + [
1-g+q?  (1-g+a*)(1-4q%+4% )
These are related to f(g) as shown below.

x(q)¥ 1+

20(-0) - (0) = f(0) + 4w(-0) = g TS 2

(1-2¢%+2g12—...)?
(1-a)(1-¢*)(1-g%-

4x(q) - flg)=3

These are of the 3rd order.
Mock O-functions (of 5th order).

_ q q*
=gt v
@) =1+9(l+)+¢* 1+ + )+ U+ 1 +a>)1 + %) +---,

v@)=9+1+9)+¢*1+ )1+ )+ a0+ )1+ )1 +g¥) +---,

_ q g2 q°
"(4"”1—q2+<1—q3g(1—q4)*(1—44)(1245)(1—qﬂ)+“'
- q q q
S Pl ) g W) Rl ¢ e ¢ ) R
F@)=1+-L 4 7’ P
I-qg (I-g)(1-43 ’

o(—a) + x(q) = 2F(q),
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f( —q) +2F(g*) — 2 = ¢(—4%) + w(—q)

1-2g+2¢*-2¢° +-
=200~ 0 = =g - O -

1+a%+g5+412+-
®)(1-g¢ ‘2)(1—428)

w(g) - F(qz)+1—q(l

Mock 8-functions (of 5th order).

6 12

f()—1+ a + d - a .
A T B 1§ ) (1+q)(1+42)(1+q3) ;

d)=qg+q* M +q)+P(1+q)(1+¢%) +-
l//(q)—1+4(1+q)+q (1+q)(l+qz)+q (1+q)(1+qz)(l+q Y+

@)= & -
X&) =75+ = 2)(1~ ) R GRrsyTr gpr RRE
1 q4 ) qlz

Fla)=1=7+ A—90-) (-l-i-a

have got similar relations as above.
Mock O-functions (of Tth order).

4 9

q q q
R B B ) ) B g T W R R
(1-¢5)(1-¢%  (1-¢)1-g%(1-g% ’

i q* g8

A= T - =)

These are not related to each other.”

In this survey we shall try to make clear what has happened to mock theta
functions since 1920 including an account of D. R. Hickerson’s truly inspiring
solution of the Mock Theta Conjectures [21]. ﬁﬁﬂ

\/2 The Watson-Selberg era. G. N. Watson wrote the first papers to eluci-
date the mock theta functions [29, 31]. The first of these is Watson’s Pres-

idential Address to the London Mathematical Society in 1935. He entitled
it “The Final Problem: An Account of the Mock Theta Functions.” He ex-
plained the title as follows: “I doubt whether a more suitable title could
be found for it than the title used by John H. Watson, M. D., for what he
imagined to be his final memoir on Sherlock Holmes.”

In these two papers, Watson proves most of the assertions found in the
letter of Ramanujan. The first paper considers only the third-order functions.
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It provides three new mock theta functions not mentioned in the letter:

(2.1): i, w(Q),, Z

2n(n+l)
q)Z(l — q3)2 (1 —_ q2n+l)2’.

n(n+1)
V(q) Z (1+q)(1+q3) (1+q2n+l)’
_ _ q2n(n+l]
p(q) _g (1 +q+q2)(1 +q3+q6)...(1+q2n+l +q4n+2)'

2.2)

(2.3)

The bulk of the paper is devoted to the modular transformations of these
functions. For example if we let ¢ = e~2, aff = nz and q; = e"ﬂ then
(2.4)

_1/24 2n\ 4/3 3a 12 poo 30522 Sinhax

f@)= (a ) “’("1)+4(2n> &/ R P
T_Indeed [29] is{quite a th rough account of| lthe third-order mock theta func-
tions and provides a prototype for ihe general treatment of the subject_.lIn
[31], Watson moves on to the -two families of fifth-order mock theta func-
tions. He manages to prove all of Ramanujan’s assertions about these func-
tions; however he is unable to find any results like (2.4). Consequently he is
unable to establish that, in fact, these functions are indeed new functions not
included under Ramanujan’s 9-function umbrella described in the last few
paragraphs of his letter.

Watson’s methods were generalized in [1, 3, 4, 5] to prove many extensions
of Ramanujan’s identities. In the “Lost” Notebook, we find a number of these
extensions as well as (2.1), (2.2), and (2.3) and clear indications of how to
do (2.4). R

The seventh-order functions were mostly negljc(:ed by Watson perhaps

}\)\Q&Mhb _hm:m%am.}lman makes no positive assertions about them. Watson does
2 . . .

briefly and cryptically mention them [29, p. 80],(and they clearly are the
motivation for his short paper on the dilogarithm [30].)However A. Selberg
[28] provides a full account of the behavior of the seventh-order functions
near the unit circle. This requires a very adroit comparison of the seventh-
order functions with g-series that Selberg [27] had found earlier related to
the modulus 7. .

\5% Asymptotics. Watson chooses not to treat Ramanujan’s assertion that:
“The coefficient of ¢” in f(q) is

e S e
+0
2\/n—ﬁ \/n—ilz

Watson [29, p. 62] states: “I have not troubled to verify this approximation;
it is presumably derivable from the transformation formulae in the manner

(-1~
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in which Hardy and Ramanujan [19] obtained the corresponding formula for
p(n), the number of partitions of #.”

Indeed this is the case, and two of H. Rademacher’s students (Dragonette
[18] and Andrews [2]) carried out the full Hardy-Ramanujan-Rademacher
expansion for these coefficients. The result they obtained was the following:

In the series f(g) = Yo 4(n)a®,

A= Y Mo { (41 - k)"

k<nl/2 '
Sl e
Dragonette [18] showed that (1) = (—1)*~1/2, A(k) is a finite exponential
sum, and E(n) = O(n'/2logn). Andrews [2] showed that
‘ %(_ 1)(k+1)/2A2k(n): k Odda
() , %(—l)k/2A2k<n~ %), k even,
where 4 (n) is the exponential sum appearing in the Hardy-Ramanujan for-
mula for p(n), and E(n) = O(n®). Numerical computations by Dragonette

[18] suggest that E(n) — 0 as n — co. Indeed E(100) = .206 and E(200) =
—.153. i

4. g-series and indefinite quadratic forms. Within the last few years, sig-
nificant discoveries have been made that greatly extend our knowledge of the
mock theta functions. However these discoveries are really just a beginning.

The basis of these discoveries lies in the method of Bailey Chains [7, p.
278; 12, Chapter 3], which relies on the following result {12, pp. 25-26].

BAILEY’S LEMMA. Ifforn >0

n

o ‘
“D b= § (4:@)n-r(ad; Qnsr’

then
n /

‘nt = ;‘f"_
(4.2) ‘ B ; (2 @) n—-r(agq; @nsir’ .
where .

. s _ (13:9):(p239)r(aa/ p1p2) o

(43) %= " (ag/pr;a)(aa/p2;9);
and

i _ N (P139),(p2:0)1(a4/ P12 0)nm (@4 p192) B
(4.4) B = ;6 fq;q),,_j,-(aq/pl;q)n(aq/pz;q)n
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where (A; q)n = (1 —A)(l -—Aq)..;(l _rAqn—l)‘ .

In practice the o, and f, are sequences of rational functions in a,q, and
other parameters. The power of Bailey’s Lemma is that it allows the con-
struction of infinitely xilany pairs of sequences (aﬁ,i), ,(,i)) merely by iteration
because (4.2) is precisely (4.1) with (cns Bn) replaced by (e, B). Such.pairs
are called Bailey Pairs, and the sequence of such pairs is called a Bailey Chain.

For our purposes here we note the much simpler instance of Bailey’s
Lemma when py, p5,n — oo in (4.2), (4.3), and (4.4). Thus if (4.1) holds,
then .

(=] 2 ’ 1 oo rZ

4.5 ag pi=— S .

(4.5) ng " B; (aq;q)wgg q o
Now Watson [29, p. 64] proved that

_ ) q,,l _ 1 L) (_l)nqn(3n+1)/2
49 0=y o (L )

and it is not too difficult to shoyv that his identity (which indeed Ramanujan
recorded and generalized in his Lost Notebook [25, p. 202, first equation])
is an instance of (4.5) for the Bailey Pair

1, n=0,
(4-7) Q,; = 4(__1)nqn(n+l)/2
T, > 0,
(4.8) Bp=—L
' "= Cnar

Watson [31, p. 274] (see also Andrews [10, pp. 113-114]) expressed his
doubts about finding anything comparable to (4.6) for the fifth-order mock
theta functions. Indeed it was only after IBM’s symbolic algebra package
SCRATCHPAD was employed in a significant way that comparable results
were found for most of the other mock theta functions [10, §3]. For example
(using Watson’s notation for the fifth-order functions)

49 p@=3 L
? nzzo.(w,q)n

1 - . 2 5
= ___E Z (_I)an(5n+1)/2 J (1 - q4n+ )
(@3 9)e0 755 2=
Similarly for the seventh-order mock theta functions

(4.10) F(g) = 3 +"1_
e g(q,q)n

1 = y\n—1,n(3n—1)/2 2, = j{n—1—j)
= = D (1)L gy Y gilnmio),
(@3 9)o £ yars
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which is a succinct restatement of [10, p. 132, (7.23)] (note that the minimal
exponent-on g in the nth term is ~ 7n2/4).

Series similar to those on the right-hand sides of (4.9) and (4.10) have
arisen previously in the work of Hecke [20], Rogers [26], and Kac-Peterson
[23]. The important point is the appearance of an indefinite quadratic form
in the exponent of ¢ in the sum. )

As predicted in [10, p. 114] such identities have very important applica-
tions in subsequent work. In the next section we illustrate perhaps the most
striking example by considering a related function also due to Ramanujan
but not in his mock theta function list.

5. Partitions with distinct parts. Here we shall co‘nsider

_ bl qn(n+1)/1 5 00 .
(51)  ol@)=1 +§ O+ +a) (1+a) n};(,)S(n)g

=14+q-?+2¢°+--+4¢% + - +6¢"6% ...,
This function appears in three identities stated in Ramanujan’s Lost Note-
book [25, p. 14]. These identities were proved in [9], and in [11] two conjec-
tures were posed for S(n). (The conjectures were proved in [15].

CONJECTURE 1. limsup |S(n)| = +o0. :

CoNJECTURE 2. S(n) = 0 for infinitely many n. .

Now S(n) has a very simple interpretation in terms of partitions. The rank
of a partition is defined as the largest part minus the number of parts. Let
Ai(n) denote the number of partitions of # into distinct parts with rank =
i (mod 2). Then it is easily shown [11] that

(5.2) ‘ S(n) = Ao(n) — Ay(n).

Thus since 3 has two partitions into distinct parts, 3 and 2 + 1, and since

each has even rank, we see that S(3)=2-0=2. ] 3 _
By application of Bailey’s Lemma [15, pp. 392-397], it was shown that

o0

(5.3) a(g) =Y 3 (~1)rtignineiia=ri (g _ gan+iy,

n=0|j|<n
aresult closely. resembling (4.9) and (4.10). From (5.3) it is possible to deduce
the following identity [15, p. 392]: '

[=~) (=) ’

(5.4) a(g)=)_S(n)g" =) T(24n+1)q",

: n=0 n=0
where T(n) is an arithmetic function defined as follows: For (positive or
negative) integers m = 1 (mod 24), consider Pell’s equation - C
(5.5) u? — 6v = m. ‘
Note that if (#,v) is a solution of this equation, then % = *1 (mod 6) and v
is even. We call two solutions (%, v) and (#/, v’) equivalent if

(5.6) u +v'V6 = ﬂ:(5+2\/3)’(u+v\/5)
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for some integer . By induction on |rl, it is easy to show that if (x,v) and
(«',v') are equivalent, then u + 3v = +(u' + 3v') (mod 12). Let T(m) be
the excess of the number of inequivalent solutions of (5.5) with u 4+ 3v =
+1 (mod 12) over the number of them with u + 3v = +5 (mod 12).

‘Once T'(m) is known, it is then an application of the arithmetic of Q(V6)
to determine T(rm) fully [15, p. 401].

THEOREM 5.1. Let m # 1 be an integer = 1 (mod6). Suppose we write
m=p{'pst .. p&, where each p; is either a prime =1 (mod 6) or the negative
of a prime = 5 (mod 6). Then T(m) =T )T (P5?) - T(pEr), where

0 ifp # 1 (mod 24) and e Is odd,

1 ifp =13 or 19 (mod 24) and e is even,
(5.7) T(p®) =< (-1)/? if p =7 (mod24) and e is even,

e+1 ifp=1 (mod24) and T(p) =2,

(=1)%(e+1) ifp=1 (mod24) and T(p) = —2.
In particular, T (m) = 0 if and only if there is some i for which p; % 1 (mod 24)
and e; is odd. .

From this result and (5.4) one may quickly deduce [15, p. 401}

THEOREM 5.2. S(n) is almost always O; that is, the set of n for which S(n) #
0 has density 0. On the other hand, S(n) takes on every integer value infinitely
often. :

This result overwhelmingly proves the two conjectures mentioned earlier.

H. Cohen, B. Gordon, and D. Hickerson have each pointed out that g(g)
is not a mock theta function according to Ramanujan’s description in §1.
This is because [9, p. 157, (1.6)] :

(5.8) a(@) =1+ (-1)"a"(g; q)ms

n=0 ’
consequently o(¢) has a finite limit as g — e>™™/" radially. Thus o(q) differs
from the trivial theta function 0 by a function (namely itself) which is O(1)
at all points e2mim/n, : :

6. Cohen’s extensions. H. Cohen [17] has extended the results of §6 using
algebraic number theory in a very substantial way. Besides the function a(q),
the function )

. . (__l)nqnz
6. =
(6D e e PR ey

was treated similarly in [15, pp. 404-405]. then considers

(62 p(@=d"o(@+a @)= Y T(mghi,

nez
n=1 (mod 24)
He then restates several results of [15] in the following:



292 G. E. ANDREWS

THEOREM 6.1. For an ideal a = (@) < Z[V6] coprime to 6, where o =
x +yV6, define x; by

! (;_2) ify is even,

px (lx—z) ify is odd.
Then yx, is a well-defined character of order 2 and conductor 4(3 + \/g)' on
ideals of Z[\/6], and furthermore, seiting as usual y1(a) = 0 if a is not coprime
to 6, we have the identity
' p@)= > xilag"*
aczZive]

This result is then embedded elegantly in the algebraic number theory

related to the following diagram of number fields:

K= Q\F\/3+ 3)
I
B =Q(V2,V3)
|
=Q(V6) k=Q(V2) k=09(V3)
I

Q

Tt is noted [17, p. 410] that X/Q is a Galois extension, that Gal(K/k,) =
2/41, that Gal(K /k;) = Gal(K/k3) = (Z/2Z) x (Z/2Z), and consequently that
G = Gal(K/Q) = Dy, the dihedral group with 8 elements.

It is now possible to go well beyond Theorem 6.1. Indeed [17, pp. 410-
411], “the character y; corresponds to a degree 1 representation of Qal(K /.kl).
By induction to G one sees immediately that one obtains the unique irre-
ducible representation p of degree 2 of G. Furthermore, Artin L-functions
being preserved by induction, we have
(6.4) L(p,s)=L(x1,8)= Y, x(a)(Na)™.

acz[v6]

Now p, being unique, is also induced by any one of the two characters
%1, X5 of order 4 of Gal(K/k;) and by two of the three characters of order 2
of Gal(K/k3), say x3, x3- Hence we have

(6.5 L(p,s) = L(x1,5) = L(x2,5) = L(x3,5) = L(x3,5) = L(13,5).”
This powerful observation allows the deduction of 2 new combinatorial
formulas each for g(gq) and o*(q). E.g.,

(6.3) xna) =

. _ ‘ o
(6.6) . a*(q) = Z (1) g3 —nGn1)/2,
i1z |6n+1]/8 ;
Jn€Z
(6.7) )= Y. (= 1) 0/24) g2 =n@n1)/2,
l/1=[6n+1]/6

Jn€Z
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Beyond the combinatorics, the related L-functions possess intriguing prop-
erties.

Forany j=1,2,3, set
(6.8) Als) = (1152)"7T(s/2)2L(x;, 5)-
Then A can be analytically continued to an entire function of order 1 on C
satisfying the functional equation
(6.9) : Al —5) = —A(s).

Cohen points out the importance of the factor I'(s/2)? in (6.8). .He notes
that theta functions attached to positive definite binary quadratic forms are
holomorphic modular forms of weight 1 on some congruence subgroup of
the modular group due primarily to the fact that I'(s) itself is the I-factor of
the associated L-function. However in Theorem 6.1, p(g) is a theta function

- attached to the indefinite form x — 6y2. In the case of indefinite forms, the

T-factor is I'(s/2)T((s + 1)/2), T'(s/2)?, or T'((s + 1)/2)? if the infinity type
of the character y is respectively +— (or —+), ++, or ——. Note that by the
duplication formula

1"(S/Z)l"((s +1)/2) = Va2'~T(s),

so that case 1 is essentially the same situation as the positive definite case.
This fact serves to explain those identities found by Hecke connecting theta-
type series with indefinite quadratic forms to classical modular forms.

While we have briefly summarized Cohen’s contributions to the single ex-
ample of ¢(g), it is clear from his paper that the methods apply to many
similarly related algebraic number fields, and Cohen describes such exam-
ples.

7. Hickerson’s proof of the Mock Theta Conjectures. In Ramanujan’s
“Lost” Notebook [25, pp. 18-20], we find ten important identities for the ten
fifth-order mock theta functions. Each of these 1dcnt1t1es relates a specific
fifth-order mock theta function to either

(7D O 1+Z < (43 45)n+1(q4 %)’
or

Sn
(7.2) ¥(g) = -1 +Z

pr O35 qs)n+1(q3 P’
For example [25, p. 19, fifth equation]

(4:4%)o0(9% @°)co

In [16], F. Garvan and I show that these ten identities split into two sets
of five each and that in each class the five are either true or false together.

=g (8% 4%)00 (8% 4'%)co 2
(7.3) folg) = 7 _ - —20(g?).
O( g.(_q:q)n
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Furthermore one-identity in each class has an especially simple formulation
in terms of partitions. To state these conjectures we require the function
N(b,5,n), the number of partitions of # with rank = & (mod 5).

FirsT Mock THETA CONJECTURE. N(1,5,5n) — N(0,5,5n) equals the
number of partitions of # with unique smallest part and no parts exceeding
the double of the smallest part. .

SEcOoND Mock THETA CONJECTURE. 2N(2,5, 5n + 3) N(l, 5,5n+3) -

N(0;5,5n + 3) — 1 equals the number of partitions of # with unique smallest -

part and all other parts at most one larger than the double of the smallest
part. o

In [13], the constant term method (see [12, Chapter 4] for background
on constant term problems) was first applied to the fifth-order mock théta
functions with the following wish [13, p. 48] . “It was our initial hope that
by exhibiting the fifth-order mock theta functions as constant terms we-could
make some progress on the Mock Theta Conjectures described in [16]. So
far the Mock Theta Conjectures remain unresolved.”

Recently, D. R. Hickerson [21] proved much more explicit and power-
ful constant term identities than those in [13]. From his new method and
discoveries he was able to prove the Mock Theta Conjectures.

Hickerson’s proof rests on two different dissections of the function

z(—2,-q/2,4;9)0(2, 8%/ 2, 0% 3)00

(7.4 B(z) = (7 0%/2:4%)

where
(41,425« 4r; @)oo = (415 0)0o(A2; @)oo+ (Ars @) co-
Greatly extending the sorts of expansions considered in §4, he shows that

(7.5)
B(z) =bqfo(q) I: i (_1)1251+lq1512—9}. + i (_1).12.5/1+4q1512.+9)]

A=—o00 =—00

=—00 A=—00

e oo ,
+ fi(q) [ Z (_1)1.25,1+241512_31+ Z (—1) Z54+3 41582431

ol 2 SP2415r+3 ,,—5r
(_1)rq15r +15r+325r+5 ( 1)’ 1 z
+2 r;m 1 - qﬁr+zz ’_z_:m — q6r+22—1 ’
where
‘ o0
7.6 =
( ) Aila) ; (=4;a)n

is a second fifth-order mock theta function.
From the form of (7.5) it is clear that one wants

4
(7.7) _ B(z)=)_z'Bi(z°).

i=0
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In particular, it is a straightforward deduction from (7.5) to see that So(a).
will be directly involved in the constant term for B;(z5) that Jfi(z) will arise
similarly in By(z5). For example, Hickerson derives

Bi(z%) = afo(a) Z (—1)gis %73
A=—00
15r2421r45 Z5r+5

=1q
(7.8) +2 E — g30r+105

r=-—00

( 1)’ 15r+39r+llz—5r—5
+2 Z — g30r+10z—5

r=—oo

On the other hand Hickerson uses (7 4) to find a pure theta function
expansion for B,(z%):

(7.9) :
Bi(%) = 2(2%,8%,9"%0'%)e0 (42 2%, 4% 0%)oo Yo _ oo (—1)2q 157 =925
(290
2q3(q1°;q‘°)§°Zﬁ_m(—l)‘q”z*“ 51 ch_ (_l)yq15;£2—15,uz$y
- (@2,4%, 410 ¢0) o0 ___(—1)vg w5 :

In order to pick out the constant term in comparing (7.8) and (7.9), sub-
stantial work remains. Indeed Hickerson accomplishes this with a partial
fractions type decomposition of the second term in (7.9). It is only then
that he is able to read off (7.3), a result equivalent to the first Mock Theta
Conjecture. Similar treatment of B;(z3) yields the second conjecture as well.

In a second paper [22], Hickerson applies these methods to the seventh-
order mock theta functions. Again his approach is totally successful, and he
derives analogs of (7.3) for each of the seventh-order mock theta functions.

As was pointed out in [16, §5], the proof of these conjectures and their
seventh-order counterparts establishes formulae that will clearly yield the be-
havior of the fifth- and seventh-order mock theta functions near the unit
circle.” Furthermore the asymptotic behavior of the resulting Mordell inte-
grals (see (2.4) as an example, also [6]) should clearly establish that these
functions just like the third-order functions are truly mock theta functions
[29, p. 78, footnote] in the sense described by Watson. Dean Hickerson has
noted a discrepancy between Watson’s assertion and Ramanujan’s original
definition. He notes that for a function to be a mock theta function it must
be of the form (§-function)+O(1) at each root of unity, but there must not be
a single theta function that works for all roots of unity. Watson only proves
that the third-order functions are not equal to @-functions; that is, the O(1)
terms cannot be identically zero.

8. Combinatorics. The mock theta functions are closely allied with gen-
erating functions for certain polynomials that have arisen in the study of
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partitions [9, 14]. This relationship provides possible combinatorial applica-
tions for whatever we learn subsequently about the mock theta functions. In
order to present this in a self-contained manner, we shall restrict ourselves
to three examples:

(8.1) Mﬂs@’ﬁzgm

t2nqn2

o0

N-1
=1+Zt”2q”‘[Nrgl];
N=1 m=0

' _ ) thqnz

(8.2) Mbs(q, t). = g G

oo N N
T 3 (~1)igisnr [ [L\L—ﬂ]] ’

N=0 m=—N 2

where

8.3) [A] _(L—gH(1—gih). - (1 - g4-BH)

o B (1-gB)(1-¢%-Y)--(1-q)

and

(8.4) [x] = the largest integer not exceeding x;
L] t2nqrx2

(8:5) Mby(a,1) = § (6 Dns1(24:4%),

o) N N
Z ral Z (_l)mqm(7m+l) [ [L-Zﬂ]] .
N=0 m=—N 2

Each of the polynomials appearing in (8.1), (8.2), and (8.5) as coefficients
of ¢V has an interpretation as a generating function for a certain class of
partitions.

In particular, 3°,,504™ [¥~!] is the generating function for all partitions
wherein the largest part plus the number of parts is at most N. The polyno-
mial in (8.2) is the generating function for partitions with largest part < N
and difference at least 2 between parts. The polynomial in (8.5) is subject to
a somewhat more complicated interpretation [8, p. 14, (5.17)]. )

We remark that for i = 3,5,7

-1
(58 atiremon)™, 1o

(8.6)  Lm(1-1)MOi(g,1) = E::_W;_(llqu;_.m’ s
—h IL=| —4"
oo 1A A1)
vzl i=1,

=gy
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while .
f(g) in (4.6), i=3,
] Jo(g) in (4.9), i=35,
8.7 2M0;(g,—1) =
8.7) 1@ =1) =\ ‘e first of the Tth-order i=

mock #-functions given in §1,

Thus we see a close tie among mock theta functions in (8.7), classical
modular functions in (8.6), and certain polynomial generating functions ex-
emplified by (8.1), (8.2), and (8.5). Most of the mock theta functions can be
placed in this sort of three-way relationship [81.

We do not know what more general relationships there are between these
combinatorial observations and the work in §§4-7; however the fact that most
of the mock theta functions arise as specializations of polynomial generating
functions suggests that the study of such relationships may be fruitful,

9. Conclusion. I wish to thank H. Cohen, B. Gordon, and D. Hickerson for
helpful conversations and letters that greatly assisted me in the preparation
of this paper. ) :
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