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Abstract. In this paper we explore five topics from the theory of partitions: (1) the Rademacher conjecture, (2)
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1. Introduction

The twentieth century found two major currents in the theory of partitions. The first is
characterized by the role played by modular forms. Seminal papers in this vein include the
Hardy-Ramanujan paper on p(n) [20], the proofs of the Ramanujan congruences by Watson
[41] and Atkin [7], and the many recent contributions by Ono [28, 29] to name only a few.
It should be noted that Ramanujan himself proved the congruence for general powers of 5
and likely had the corresponding proof for powers of 7 (see [12] for details).

The second has been extensive study of the application of basic hypergeometric series or
q-series to partitions. This has its genesis in the work of MacMahon [25] and Schur [37].
In the 1960’s a variety of results were discovered; these are described in a survey by Alder
[1] (cf. [3]).

Surprisingly perhaps, there has not been a large amount of interplay between these two
themes. In this paper, I hope to survey topics that lie at the interface of modular forms and
q-series. Some concern important and unjustly neglected conjectures. Each should suggest
a number of research possibilities.

Section 2 will be devoted to Rademacher’s conjecture [32, p. 302] which concerns his
partial fraction decomposition for the generating function of p(n). Section 3 considers
alternative representations of the restricted partition function p(n, m). Section 4 looks at
a sequence of papers by Wright [42–44]. The third of these is quite unlike any other in
the history of partition asymptotics and foreshadows many possibilities. In Section 5, we
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look again at problems posed by Dragonette [15] for the asymptotics of the coefficients of
Ramanujan’s mock theta functions. The sixth section considers the efforts by Ehrenpreis
[16] and others to develop a modular type transformation theory for q-series. We conclude
with brief synthesizing observations.

2. The Rademacher conjecture

Near the end of his book, Topics in Analytic Number Theory [32, p. 300], Rademacher
derives the following partial fraction decomposition for the generating function of the
partition function p(n).

2.1. Rademacher’s partial fraction decomposition

We use the following notation for forward differences

�α f (α) = f (α + 1) − f (α),

and for nonnegative integers j

� j
α f (α) =

j∑
h=0

(−1)h

(
j

h

)
f (α + j − h).

Also

L j (y) =
∞∑

n=0

yn

n! �( j + n + 1)
.

Then

F(x) = −2π

(
π

12

)3/2 ∞∑
k=1

k−5/2
∑

h mod k
(h,k)=1

wh,k

×
∞∑
j=0

� j
α

[
L3/2

(
− π2

6k2
(α + 1)

)](
xe− 2π ih

k − 1
)− j−1

, (2.1)

where α = 1/24, whk is a root of unity [32, p. 269] and

F(x) =




∞∑
n=0

p(n)xn, |x | < 1

0, |x | > 1.

Hardy and Ramanujan had several other results of this sort, with the generating function
being equal to 0 outside the unit circle. See their last published paper. In particular, see
Theorem 3 on page 319 of Ramanujan’s Collected Papers. In letters to Hardy written by
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Ramanujan from nursing homes, he gives several more examples. Some of these results are
recounted and proved by Berndt et al. in [11].

Immediately after proving the above expansion for F(x), Rademacher [29, p. 301] ob-
serves that if |x | < 1

lim
N→∞

1

(1 − x)(1 − x2) . . . (1 − x N )
= 1∏∞

m=1(1 − xm)

=
∞∑

n=0

p(n)xn = F(x), (2.3)

and if |x | > 1

lim
N→∞

1

(1 − x)(1 − x2) . . . (1 − x N )
= 0 = F(x). (2.4)

Of course, one can perform the classical partial fraction decomposition of this finite
product. Indeed, we may write

1∏N
m=1(1 − xm)

=
∑

0≤h<k≤n
(h,k)=1

�N/k�∑
j=1

Chkj(N )(
x − e

2π ih
k

) j . (2.5)

As Rademacher notes, there is a natural identification suggested by these two expansions.

Rademacher’s Conjecture [32, p. 302].

lim
N→∞

Chkj(N )

exists and is given by

Chkj(∞) = −2π

(
π

12

)3/2
whke

2π ih j
k

k5/2
� j−1

α L3/2

(
− π2

6k2
(α + 1)

)
,

where α = 1/24, and

L3/2(−y2) = − 1

2
√

π y

d

dy

(
sin 2y

y

)
= − 1

2
√

π y2

(
2 cos 2y − sin 2y

y

)
.
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Rademacher goes on to provide a small table of values (reprinted here with one correction):

N C011 C012 C121

1 −1 0 0

2 − 1
4 = −0.25 1

2 = 0.5 1
4 = 0.25

3 − 17
72 = −0.23611 . . . 1

4 = 0.25 1
8 = 0.125

4 − 17
72 = −0.23611 . . . 59

288 = 0.204861 . . . 1
8 = 0.125

5 − 20831
86400 = −0.24101 . . . 3

16 = 0.1875 13
128 = 0.1015625

and he lists explicitly three of the conjectured limits:

C011(∞) = − 6

25

(
1 + 2

√
3

5π

)
= −0.273339 . . . ,

C012(∞) = 24

25 · 49

(
6 + 109

√
3

35π

)
= 0.15119 . . . ,

C121(∞) = −
√

6

25

(
cos

5π

12
− 12

5π
sin

5π

12

)
= 0.046941.

Of these coefficients he says [32, p. 301]: “No explicit formula for Chkl(N ) is known, not
even for the simplest case h = 0, k = 1, l = 1, and variable N .”

In the hope of stimulating serious consideration of this problem, I will present an explicit
formula for C011(N + 1) below. The same procedure can obviously be applied to provide
a formula for Chkj(N + 1) in general. However, owing to the fact that we cannot prove
Rademacher’s conjecture from our result, we shall not complicate matters by presenting
the full formula for Chkj(N + 1). It should be pointed out that Rademacher’s conjecture lies
at the interface of the theory of modular forms and the theory of q-series. Thus progress
on this problem may require contributions from two areas that have had less contact in the
past than might have been expected or hoped for.

Theorem 1. With ρ j = e2π i/j , and HN (x1, . . . , xn) the N-th homogeneous symmetric
function of x1, x2, . . . , xn, then

C011(N + 1) = −1

(N + 1)!

1∑
h1=1

2∑
h2=1

. . .

N∑
hN =1

(
N∏

i=1

ρ
−hi
i+1

)
HN

(
ρ

h1
2

1 − ρ
h1
2

, . . . ,
ρ

hN
N+1

1 − ρ
hN
N+1

)
.

Proof: Noting that (2.5) may be presented as

1

(x ; x)N+1
= C01N+1(N + 1)

(x − 1)N+1
+ C01N (N + 1)

(x − 1)N
+ · · · + C011(N + 1)

(x − 1)

+
∑

0≤h<k≤N+1
(h,k)=1

k>1

�n/k�∑
j=1

Chkj (N + 1)

(x − e2π ih/k) j
,
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we find by multiplying by (x − 1)N+1, differentiating N times and then setting x = 1 that

N ! C011(N + 1) = d N

dx N

(x − 1)N+1

(x ; x)N+1

∣∣∣∣
x=1

,

where

(A; q)N = (1 − A)(1 − Aq) . . . (1 − Aq N−1).

So we clearly need the r -dimensional Leibnitz rule

d N

dx N
f1 f2 . . . fr =

∑
n1,...,nr ≥0

n1+···+nr =N

(
N

n1, n2, . . . , nr

)
f (n1)
1 f (n2)

2 . . . f (nr )
r .

Now recalling that

1

1 − q M
= 1

M

M−1∑
j=0

1(
1 − ρ

j
Mq

) ,

where ρM = e2π i/M , we easily deduce

1 − q

1 − q M
= 1

M

M−1∑
j=1

(
1 − ρ

− j
M

)
(
1 − ρ

j
Mq

) .

Consequently

dk

dqk

(1 − q)

(1 − q M )
= k!

M

M−1∑
j=1

(
1 − ρ

− j
M

)
ρ

jk
M(

1 − ρ
j
Mq

)k+1 .

Next we recall the standard representation of the homogeneous symmetric function in terms
of monomials:

HN (X1, X2, . . . , X N ) =
∑

n1,n2,...,nN ≥0
n1+n2+···+nN =N

Xn1
1 Xn2

2 . . . XnN
N .

As a result,

N ! C011(N + 1)

= (−1)N+1
∑

n1,...,nN ≥0
n1+···+nN =N

(
N

n1, n2, . . . , nN

)(
dn1

dxn1

(1 − x)

(1 − x2)

)
· · ·

(
dnN

dxnN

(1 − x)

(1 − x N+1)

)∣∣∣∣
x=1

= (−1)N+1
∑

n1,...,nN ≥0
n1+···+nN =N

(
N

n1, n2, . . . , nN

) (
n1!

2

2−1∑
j1=1

(
1 − ρ

− j1
1

)
ρ

j1n1
2(

1 − ρ
j1
2 q

)n1+1

)
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· · ·
(

nN !

(N + 1)

(N+1)−1∑
jN =1

(
1 − ρ

− jN

N+1

)
ρ

jN nN

N+1(
1 − ρ

jN

N+1

)nN +1

)∣∣∣∣∣
x=1

= (−1)N+1

(N + 1)!

1∑
j1=1

2∑
j2=1

· · ·
N∑

jN =1

(
1 − ρ

− j1
2

)
(
1 − ρ

j1
2

)
(
1 − ρ

− j2
3

)
(
1 − ρ

j2
3

) · · ·
(
1 − ρ

− jN

N+1

)
(
1 − ρ

jN

N+1

)
×

∑
n1,...,nN ≥0

n1+···+nN =N

(
ρ

jN

N+1

1 − ρ
jN

N+1

)nN

· · ·
(

ρ
j1
2

1 − ρ
j1
2

)n1

= −1

(N + 1)!

1∑
j1=1

2∑
j2=1

· · ·
N∑

jN =1

(
N∏

i=1

ρ
− ji
i+1

)
HN

(
ρ

j1
2

1 − ρ2 j1
, . . . ,

ρ
jN

N+1

1 − ρ
jN

N+1

)
,

as desired.

It may be reasonably objected that Theorem 1 provides little hope of proving
Rademacher’s Conjecture. At the most it may suggest the value of finding better formulas
for Chkj (N ).

Ehrenpreis in [16, p. 317] mentions that his student, Jane Friedman, studied computer
algorithms for this problem but he states that: “Unfortunately, the computer study proved in-
conclusive.” While this is still true, we can add a few more values to those already computed
for C011(N ):

N C011

6 − 85823

345600
= −0.24833

7 −19554517

76204800
= −0.25660

8 − 80858443

304819200
= −0.26527

3. Formulae for p(n,m)

We denote the number of partitions of n into at most m parts by p(n, m). There is an exten-
sive literature concerning formulae for p(n, m), there is a full account of the history up to
1958 given in the Royal Society Table of Partitions [19] which is mostly devoted to exten-
sive tables of p(n, m). Many authors, among them, Paoli [30], DeMorgan [14], Herschel
[21], Cayley [13], Sylvester [38], Glaisher [17] and more recently Arkin [6], have all made
major contributions to the study of exact formulae for p(n, m).

When one proceeds to examine the actual formulae, one is struck by a substantial differ-
ence that arises between m ≤ 4 and m > 4. Namely, we see immediately that

p(n, 1) = 1, (3.1)

p(n, 2) =
⌊

n + 2

2

⌋
. (3.2)
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DeMorgan [14] first proved that

p(n, 3) =
{

(n + 3)2

12

}
, (3.3)

and Glösel proved [18, p. 138]:

p(n, 4) =
{⌊

n + 4

2

⌋2(
3

⌊
n + 9

2

⌋
−

⌊
n + 10

2

⌋)
1

36

}
, (3.4)

where �x� is the greatest integer ≤ x , and {x} is the nearest integer to x .
Now there are several immediate observations to make about these formulae. First of all,

they are all obviously real numbers, indeed positive integers. Furthermore, they are given in
one line and are computed with familiar functions. We remark that (3.4) could be improved
if one could eliminate some of the instances of the greatest integer function.

For m > 5 (Glösel has a lengthy formula for p(n, 5) that is of the same type as (3.1)–
(3.4)), one runs into the stark fact that one needs representations of periodic sequences. As
is well-known [31, p. 76], such sequences are representable by Finite Fourier series. So, for
example, an alternative to (3.4) is [26, p. 153]

p(n, 4) = 1

144
(n + 5)3 − 5

96
(n + 5) + 1

32
(−1)n(n + 5)

+ 1

27

(
rn

3 + r−n
3 − rn+1

3 − r−n−1
3

)
+ 1

16
i n(1 + (−1)n),

where r3 = e2π i/3.
Now this formula is rather disturbing. A little thought reveals that it is real because it is

equal to its complex conjugate. However, its integrality is far from obvious.
One way to avoid this difficulty is to introduce the circulator notation for a periodic

sequence of period m [19, p. xvii]

(A0, A1, . . . , Am−1)crmn = Ai if n ≡ i (mod m). (3.6)

Computationally this approach avoids complex numbers, but it merely introduces notation
for periodic sequences.

In this new notation we find [19, p. xxvii, Eq. (6.7)]

p(n, 4) = 1

24

(
n + 6

3

)
+

(
1

9
− 1

16
(2, 3)cr2n

)
(n + 5)

+ 1

9
(1, 0, −1)cr3n + 1

8
(1, 0, −1, 0)cr4n. (3.7)

In this section, we shall make the simple observation that periodic sequences may also
be represented by the greatest integer function. From that knowledge it is easy to derive
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formulas such as

p(n, 4) =
{

(n + 5)

(
n2 + n + 22 + 18

⌊
n

2

⌋)/
144

}
, (3.8)

and

p(n, 5) =
{

(n + 8)

(
n3 + n + 22n2 + 44n + 248 + 180

⌊
n

2

⌋)/
2880

}
, (3.9)

Note that these formulas are much more in the spirit of (3.1)–(3.3) than is (3.5). The
formula (3.9) is strikingly simpler than any of the several given in [19]. Furthermore such
formulas for p(n, m) continue for larger m. For example,

p(n, 6) =
{

(n + 11)

(
(6n4 + 249n3 + 2071n2 − 4931n + 40621)/518400

+
⌊

n

2

⌋
(n + 10)/192 +

(⌊
n + 1

3

⌋
+ 2

⌊
n

3

⌋)/
54

)}
, (3.10)

p(n, 7) =
{

(n + 14)

(
(n5 + 70n4 + 1785n3 − 15365n2 + 9702n + 277032

/
3628800

+
⌊

n

2

⌋
(n + 14)/384 +

⌊
n

3

⌋/
54

)}
, (3.11)

p(n, 8) =
{

(n + 18)

(
(n6 + 108n5 + 4503n4 + 79911n3 + 522148n2 − 202687n

+ 9441216)/203212800 +
⌊

n

2

⌋
(n2 + 36 + 231)

/
9216

+
(⌊

n + 1

3

⌋
+ 2

⌊
n

3

⌋)/
162 +

⌊
n

4

⌋/
64

)}
, (3.12)

p(n, 9) =
{

(n + 22)

(
(n7 + 158n6 + 10034n5 + 327352n4

+ 5419144n3 − 32063602n2 + 5172096n + 564401888)/14631321600

+
⌊

n

2

⌋
(2n2 + 91n + 728)

/
36864

+
(

(n + 20)

⌊
n + 1

3

⌋
+ 2(n + 23)

⌊
n

3

⌋)/
2916

+
(⌊

n

4

⌋
+

⌊
n + 2

4

⌋)/
256

)}
. (3.13)

In order to establish such results, we require the following:
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Theorem 2. For a fixed positive integer m, the periodic sequence in n is given by

(A0, A1, . . . , Am−1)crmn

= A0

⌊
n + m

m

⌋
+

m−1∑
j=1

(A j − A j−1)

⌊
n + m − j

m

⌋
− Am−1

⌊
n

m

⌋

= A0 +
m∑

j=1

(A j − A j−1)

⌊
n + m − j

m

⌋
, (3.14)

where we define Am = A0.

Proof: Let us define f (n) to be the right-hand side of (3.14).

f (n + m) − f (n) =
m∑

j=1

(A j − A j−1)

(⌊
n + 2m − j

m

⌋
−

⌊
n + m − j

m

⌋)

=
m∑

j=1

(A j − A j−1) = Am − A0 = 0.

Hence f (n) has period m. Furthermore for 0 ≤ i < m,

f (i) = A0 +
m∑

j=1

(A j − A j−1)

⌊
i + m − j

m

⌋

= A0 +
i∑

j=1

(A j − A j−1)

= Ai .

Therefore f (n) = (A0, A1, . . . , Am−1)crmn as desired.

Corollary.

(A0, A1, . . . , Am−1)crmn

= A0 + (A1 − A0)n +
m∑

j=2

(A j − A j−1 − A1 + A0)

⌊
n + m − j

m

⌋
.

Proof: This follows immediately from Theorem 1 once we recall that

⌊
n + m − 1

m

⌋
= n −

⌊
n

m

⌋
−

⌊
n + 1

m

⌋
− · · · −

⌊
n + m − 2

m

⌋
.
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Formulas (3.8)–(3.13) are now easily derived from the literature, in particular, from the
formulas [19, pp. xxvii–xxviii, Eq. (6.7)]. Since the process is routine, we illustrate with
the cases m = 4 and 5.

Note that in (3.7) we may drop the 1
9 (1, 0, −1)cr3n + 1

8 (1, 0, −1, 0)cr4n because this
expression is in absolute value < 1

9 + 1
8 < 1

2 . Hence immediately

p(n, 4) =
{(

n + 6

3

)
1

24
+

(
1

9
− 1

16

(
2 + n − 2

⌊
n

2

⌋))
(n + 5)

}

=
{

(n + 5)

(
n2 + n + 22 + 18

⌊
n

2

⌋)/
144

}
, (3.16)

as desired.
Similarly [6, p. xxvii, Eq. (6.7)]

p(n, 5) = 1

120

(
n + 9

4

)
− 5

288

(
n + 8

2

)
+ 1

64
(n + 8)(1, −1)cr2

+ 1

9
(1, 0, 0)cr3n + 1

64
(0, 1, −8, −7)cr4n + 1

5
(1, 0, 0, 0, 0)cr5n

=
{

1

120

(
n + 9

4

)
− 5

288

(
n + 8

2

)
+ 1

64
(n + 8)

(
1 − 2n + 4

⌊
n

2

⌋)}

=
{

(n + 8)

(
n3 + 22n2 + 44n + 248 + 180

⌊
n

2

⌋)/
2880

}
(3.17)

as desired.
Formulas (3.10)–(3.13) are handled in exactly this way.

4. Asymptotics of non-modular generating functions

The topic of this section has had extensive development since 1941 when Ingham’s semi-
nal paper appeared [22]. Among the authors obtaining general theorems on this topic are
Bateman and Erdös [8], Nicolas and Sárközy [27], Richmond [35], Roth and Szekeres
[36, 39], and McIntosh [24]. This list is undoubtedly incomplete and is actually only tan-
gential to the real object of this section. Of special interest are Ramanujan’s observations
as explicated by Berndt [10, p. 269, Entry 7].

Prior to Ingham’s work, E.M. Wright wrote three papers on the asymptotics of particular
generating functions. The first of these [42] was devoted to the asymptotics of the plane
partition function. Its method was essentially the saddlepoint method that forms the foun-
dation of many of the succeeding works mentioned above. Wright’s second paper [43] in
this series was based on a more elementary than analytic account but was not a surprising
development.

The point I wish to make in the section is that Wright’s third paper [44] on partitions
into powers IS UNIQUE in the history of this subject. Its starting point and fundamental
philosophy are different from anything that has come before or since.
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Wright’s focus in [44] is

f (x) =
∞∏


=1

(
1 − x
k )−1 = 1 +

∞∑
n=1

pk(n)xn, (4.1)

where pk(n) is the number of partitions of n into k-th powers.
His results are intricate to say the least. However, after stating his central results we shall

examine the import of his work.
Write

a = 1

k
, b = 1

k + 1
, j = j(k) = 0 (k even); (4.2)

j = j(k) = (−1)(k+1)/2

(2π )k+1
�(k + 1)ζ (k + 1) (k odd). (4.3)

Define a generalized Bessel function as follows:

ϕ(z) =
∞∑


=0

z


�(
 + 1)�
(

a − 1

2

) . (4.4)

Wright then produces the following asymptotic formula for pk(n) which is obtained by
examining in detail the singularity of f (x) at x = 1:

pk(n) = (n + j)−
3
2 (2π )−

k
2 ϕ(�(1 + a)ζ (1 + a)(n + j)a) + O

(
e(�−α)nb)

, (4.5)

where

� = (k + 1)(a�(1 + a)ζ (1 + a))1−b, α = α(k) > 0, (4.6)

and ζ (s) is the Riemann zeta function.
Now the important point here is that the error term in (4.5) is of exponentially lower order

of magnitude than the main term.
Wright accomplishes this by proving a complete generalization of the modular transfor-

mation formulae for Dedekind’s eta function.
Let p, q, h, s and l be integers with 1 ≤ p < q, (p, q) = 1, except that, when q = 1,

p = 0,

1 ≤ h ≤ q, 1 ≤ s ≤ k, l ≥ 0.

Define dh by

phk ≡ dh (mod q), 0 ≤ dh < q.

If dh �= 0, we write

µh,s = dh

q
(s odd), µh,s = q − dh

q
(s even). (4.7)

If dh = 0, we take µh,s = 1. Hence always qµh,s ≥ 1.
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In connection with any particular values of p and q we write

X = xeq (−p) = e−y, Y = qk y, (4.8)

and we take y real and positive when X is real and 0 < X < 1. We write also

ts =
(

2π

Y

)a

exp

{
a π i

(
s − 1

2

)}
, (4.9)

where Y a is that k-th root of Y which is real and positive when Y is real and positive,

g(h, l, s) = exp
{
2 π i(l + µh,s)ats

}
eq (−h)

= exp

{
(2π )1+a(l + µh,s)ae

1
2 πai(2s+k−1)

qya
− 2h π i

q

}
, (4.10)

and

Pp,q =
q∏

h=1

k∏
s=1

∞∏
l=0

{1 − g(h, l, s)}−1. (4.11)

Then we have:

Wright’s Transformation Theorem [44, p. 149, Theorem 4]. If � (y) > 0, then Pp,q is
convergent and

f (x) = f (e−yeq (p)) = C p,q y
1
2 e jy exp

(
�p,q

ya

)
Pp,q , (4.12)

where C p,q and �p,q are explicitly given constants depending on p and q.

In the case k = 1, (4.12) reduces to the modular function transformation used by Hardy
and Ramanujan [20].

In addition, various instances of k = 2 appear in [20] and have been extended by Baxter
[9] in his proof of the Doochel Kim conjectures [23].

There are a couple of things to say about Wright’s theorems. First, how large is the class
of partition generating functions for which there are analogs of Wright’s Transformation
Theorem? Second, how good is the full analog of the Hardy-Ramanujan-Rademacher for-
mula for p(n) that Wright gives for pk(n) (Theorem 3 of [44] but not restated here). Wright
suggests that each of his main terms has order

nc1 ec2n
1

k+1
.

He goes on to compare his error term to the famous O(n− 1
4 ) that appears in the Hardy-

Ramanujan formula for p(n) [20]. “If we attempt to make a similar improvement for pk(n),
we find that we can choose q0 = qk(k, n) so that the error term is O(end

), where d < b.
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This is not so good as the result for k = 1, and, in view of the heavy analysis required for
this further step, I am content to prove [O(eεnb

)].”
One would hope that the advances on closely related work on modular forms would allow

a complete analysis of this error term. Does it tend to 0 as n → ∞? If not, is it bounded by
polynomial growth? If not, what then?

5. The power series coefficients of Mock theta functions

In his last letter to Hardy [34, pp. 127–131], Ramanujan first presents his mock theta func-
tions. Hardy [33, p. 354] summarizes the idea of a mock theta function: It is a function,
“defined by a q-series convergent for |q| < 1, for which we can calculate asymptotic for-
mulae, when q tends to a “rational point e2π ir/s , of the same degree of precision as those
furnished, for the ordinary ϑ-functions, by the theory of linear transformation.” Subse-
quently, starting with G.N. Watson’s famous L.M.S. Presidential address [40], there have
been a number of studies of mock theta functions. Much of this work was summarized in a
survey article [5]. Ramanujan focuses upon one mock theta function in particular:

f (q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 . . . (1 + qn)2
. (5.1)

He asserts that: “The coefficient of qn in f (q) is

(−1)n−1eπ ( n
6 − 1

144 )
1
2

2
(
n − 1

24

) 1
2

+ O


e

π
2 ( n

6 − 1
144 )

1
2(

n − 1
24

) 1
2


 . (5.2)

In 1964, building on the work of Watson [40] and Dragonette [15], I proved [2] a theorem
equivalent to the assertion that if

f (q) =
∞∑

n=0

α(n)qn, (5.3)

then

α(n) =
�n

1
2 �∑

k=1

(−1)�
k+1

2 � A2k(n − k(1 + (−1)k)/4) sinh
(

π
k

(
n
6 − 1

144

) 1
2
)

k
1
2
(
n − 1

24

) 1
2

+ O(nε) (5.4)

[2, p. 455, Theorem 5.1]. The Ak(n) is the exponential sum that appears in the formula for
p(n) [4, p. 70].

However, earlier Dragonette [15, p. 494], [2, p. 456] had suggested that in fact the actual
error might indeed be smaller than 1

2 in absolute value. If so, then the main sum rounded
to the nearest integer would give α(n) exactly. Dragonette supported this possibility with
calculations at n = 100 and 200.
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Indeed it is possible that the main sum converges when extended to infinity and, if so,
may actually equal α(n) [2, p. 456]. The following table provides further evidence:

The main sum in (5.4)
n α(n) The main sum in (5.4) extended to n terms

100 −18520 −18520.18 −18520.01

200 −2660008 −2660008.01 −2660008.05

300 −128045286 −128045285.83 −128045285.99

400 −3447212602 −3447212601.86 −34472122602.05

500 −63676485905 −63676485905.01 −63676485905.06

600 −897840541970 −897840541969.91 −897840541969.98

700 −10302538222405 −10302538222405.14 −10302538222405.02

800 −100343014357869 −100343014357869.11 −100343014357869.01

900 −854282301584078 −854282301584078.03 −854282301584078.02

1000 −649583638177105 −649583638177105.004 −649583638177105.105

While three of the errors of
√

n terms are smaller than the corresponding errors for n
terms, it is nonetheless the case that the average error in column 2 is 0.0884 and in column
4 it is 0.0355 which offers some support to our conjecture that the series in (5.4) actually
converges to α(n).

Indeed, in order to prove convergence of the series, it would suffice to prove that

∞∑
k=1

(−1)�
k+1

2 � A2k(n − k(1 + (−1)k)/4)

k
3
2

converges. This in turn asks for an analysis of Dirichlet series such as

A(n, s) =
∞∑

k=1

(−1)�
k+1

2 � A2k(n − k(1 + (−1)k)/4)

ks
(5.6)

which can easily be shown to converge absolutely for Re s > 3
2 .

6. Modular transformations and q-hypergeometric series

Let us state an example of the type of problem that concerns us here.

Problem. Prove directly that if

P(q) = 1 +
∞∑

n=1

qn2

(1 − q)2(1 − q2)2 . . . (1 − qn)2
, (6.1)
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then for �(τ ) > 0

P(e2π iτ ) = e
−π i

4 τ
1
2 q

π i
12 (τ+ 1

τ
) P

(
e− 2π i

τ

)
. (6.2)

The catch in this problem is the single word “directly.” Otherwise the problem is merely
a reformulation of the transformation of Dedekind’s η-function because [4, p. 70]

P(q) = q
1

24

η(τ )
=

∞∏
n=1

1

1 − qn
(6.3)

where q = e2π iτ .

None of the methods which have been used to prove (6.3) seems to adapt to a direct
treatment of the series in (6.1).

The only work I know of on this topic is by L. Ehrenpreis. His observations are presented
in [16]; see especially Section 3 thereof. Of his work, he says: “This method sheds light
on the question of why the generating function for Rogers-Ramanujan is an automorphic
function and why automorphicity is difficult to prove.”

7. Conclusion

The five topics chosen for this paper are tightly related. The problems presented do not fall
naturally into the home turf of either modular forms or q-series. Consequently they have
received little attention. However, they are calling out for an attack by a joint effort of these
two areas.
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27. J.L. Nicolas and A. Sárközy, “On the asymptotic behavior of general partition functions,” Ramanujan Journal

4 (2000), 29–39.
28. K. Ono, “On the parity of the partition function in arithmetic progressions,” J. für die r. und a. Math. 472

(1996), 1–16.
29. K. Ono, “Distribution of the partition function modulo m,” Annals of Math. 151 (2000), 293–307.
30. P. Paoli, Opuscula Analytica, Liburni, 1780, Opusc. II (Meditations Arith.), Section 1.
31. H. Rademacher, Lectures on Elementary Number Theory, Blaisdell, New York, 1964.
32. H. Rademacher, Topics in Analytic Number Theory, Springer, New York, 1973.
33. S. Ramanujan, Collected Papers, Cambridge University Press, London, 1927; reprinted: A.M.S. Chelsea,

2000 with new preface and extensive commentary by B. Berndt.
34. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
35. L.B. Richmond, “A general asymptotic result for partitions,” Canadian J. Math. 27 (1975) 1083–1091.
36. K.F. Roth and G. Szekeres, “Some asymptotic formulae in the theory of partitions,” Quant. J. Math. Oxford

Series 5(2) (1954), 241–259.
37. I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, S.-B. Preuss. Akad.
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