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Abstract

In two previous papers, the study of partitions with short sequences has been developed both for its
intrinsic interest and for a variety of applications. The object of this paper is to extend that study in various
ways. First, the relationship of partitions with no consecutive integers to a theorem of MacMahon and mock
theta functions is explored independently. Secondly, we derive in a succinct manner a relevant definite
integral related to the asymptotic enumeration of partitions with short sequences. Finally, we provide the
generating function for partitions with no sequences of length K and part exceeding N .
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1. Introduction

In his classic two volume work, Combinatory Analysis [5], P.A. MacMahon devotes Chap-
ter IV of volume 2 to “Partitions Without Sequences.” His object in this chapter is to make a
thorough study of partitions in which no consecutive integers (i.e. integers that differ by 1) occur.
He concludes this chapter with what we will call MacMahon’s Theorem.
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Theorem 1.1. The number of partitions of an integer N into parts �≡ ±1 (mod 6) equals the
number of partitions of N with no consecutive integers as summands and no ones.

For example, for n = 10, the first set of partitions is 10, 8 + 2, 6 + 4, 6 + 2 + 2, 4 + 4 + 2,
4 + 3 + 3, 4 + 2 + 2 + 2, 3 + 3 + 2 + 2, 2 + 2 + 2 + 2 + 2; the second set is 10, 8 + 2, 7 + 3,
6 + 3, 6 + 4, 6 + 2 + 2, 5 + 5, 4 + 4 + 2, 4 + 2 + 2 + 2, 2 + 2 + 2 + 2 + 2. The fact that each set
of partitions has the same number of elements (in this case 9), is MacMahon’s assertion.

In two previous papers [2,4], MacMahon’s ideas have been generalized to the consideration of
partitions in which sequences of consecutive integers have been restricted to contain fewer than
k terms (MacMahon only dealt with k = 2).

In Section 2 of this paper we shall explore in detail various aspects of MacMahon’s work
in [5, vol. II, Chapter IV]. In Section 3 we discuss the generalization to partitions without k

consecutive parts: First, we obtain a new and simplified proof of the Holroyd–Liggett–Romik
definite integral that was used in [4] to obtain results on the asymptotic enumeration of these
classes of partitions. Secondly, we strengthen the results of [2] by obtaining a double series
representation of the generating function for partitions in which each part is � N and sequences
of consecutive integers have length less than k. Finally, Section 4 contains some remarks on a
probabilistic interpretation of the mock theta function χ(q) studied by Ramanujan.

2. Investigation of MacMahon’s Theorem

We begin with some definitions.

Definition 2.1. Let

gn = the number of partitions of n with no two consecutive parts,

hn = the number of partitions of n with no two consecutive parts and no 1’s,

G2(q) =
∞∑

n=0

gnq
n, (2.1)

H2(q) =
∞∑

n=0

hnq
n, (2.2)

χ(q) =
∞∑

n=0

qn2∏n
j=1(1 − qj + q2j )

, (2.3)

where χ(q) is one of the third-order mock theta functions studied by Ramanujan [6, p. 354].

2.1. A bijective proof of Theorem 1.1

Proof. By passing to the conjugate partition, the number of partitions of n with no 1’s and no
two consecutive parts is clearly seen to be equal to the number of partitions of n not containing
any part exactly once. Here is a bijection between the set Cn of partitions of n not containing any
part exactly once, and the set Bn of partitions of n into parts congruent to 0,2,3,4 mod 6: If
n = ∑∞

k=1 krk is a partition in Cn (rk is the multiplicity of k, or the number of parts equal to k

in the partition), rk ∈ {0,2,3,4, . . .}, then each rk can be written uniquely as rk = sk + tk , where
sk ∈ {0,3} and tk ∈ {0,2,4,6,8, . . .}. Define a partition n = ∑∞

j=1 jbj by
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b6k+1 = 0 (k = 0,1,2,3, . . .),

b6k+5 = 0,

b6k+2 = 1

2
t3k+1,

b6k+4 = 1

2
t3k+2,

b6k+3 = 1

3
s2k+1 + t6k+3,

b6k+6 = 1

3
s2k+2 + t6k+6.

This partition is in Bn, and it is not difficult to check that any partition in Bn is obtained in this
way from a unique partition in Cn. �
2.2. A q-series for G2(q)

We give a simplified proof of the following q-series representation for G2(q), which was
stated in [2, Eq. (4.2)]:

Theorem 2.2.

G2(q) = 1 +
∞∑

n=1

qn
∏n−1

j=1(1 − qj + q2j )∏n
j=1(1 − qj )

. (2.4)

Proof. Again by passing to the conjugate partition, we see that gn is the number of partitions of
n where all the parts except possibly the largest part do not appear exactly once.

Write (2.4) as

G2(q) = 1 +
∞∑

n=1

[
qn

1 − qn
·
n−1∏
j=1

(
1 − qj + q2j

1 − qj

)]

= 1 +
∞∑

n=1

[
qn

1 − qn
·
n−1∏
j=1

(
1 + q2j + q3j + q4j + · · ·)

]
.

The coefficient of qN in the nth summand on the right-hand side is equal to the number of
partitions of N with maximal part n, where no part except possibly the largest part appears
exactly once. So the coefficient of qN in the entire sum on the right-hand side is exactly gN . �
2.3. The MacMahon–Fine identity

In [2], it was shown that a combination of identities due to MacMahon [5, vol. II, p. 52], and
Fine [3, p. 57] shows that

G2(q) = H2(q)χ(q). (2.5)

This identity can be given the following combinatorial interpretation:
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Theorem 2.3. For each integer n � 1 and 0 � k � √
n, let fn,k be the number of partitions of

n − k2 in which no part which is greater than k appears exactly once. Then for each n � 1,

gn =
�√n�∑
k=0

fn,k. (2.6)

Proof. From the remark at the beginning of the proof of Theorem 2.2, we can write

H2(q) =
∏(

1 + q2j + q3j + q4j + · · ·) =
∞∏

n=1

1 − qj + q2j

1 − qj
(2.7)

(this is an alternative way to prove Theorem 1.1). Now combining (2.5) and (2.7) and the defini-
tion of χ(q) gives

G2(q) =
∞∑

k=0

qk2

(
k∏

j=1

1

1 − qj

)
·
( ∞∏

j=k+1

1 − qj + q2j

1 − qj

)
.

The coefficients of qn in the left- and right-hand side of this equation are clearly the left- and
right-hand sides of (2.6), respectively. �

A natural question is whether Theorem 2.3 has a simple combinatorial explanation.

3. Partitions without k consecutive parts

3.1. The Holroyd–Liggett–Romik integral

In [4], the following result concerning the asymptotic enumeration of partitions without k

consecutive parts was proved:

Theorem 3.1. (Holroyd, Liggett and Romik [4]) Let pk(n) denote the number of partitions of n

not containing k consecutive parts. Then for each fixed k > 1, we have as n → ∞
pk(n) = e(1+o(1))ck

√
n,

where

ck = π

√
2

3

(
1 − 2

k(k + 1)

)
.

The proof of this result relies on a special case of the following family of definite integrals,
also proved in [4]: For every 0 < a < b, a decreasing function fa,b : [0,1] → [0,1] can be defined
by fa,b(0) = 1, fa,b(1) = 0 and fa,b(x)a − fa,b(x)b = xa − xb in between. In the simplest case
f1,2 − f 2

1,2 = x − x2, we have f1,2(x) = 1 − x. Then we have:

Theorem 3.2. (Holroyd, Liggett and Romik [4])

1∫
0

− logfa,b(x)

x
dx = π2

3ab
.
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We give here a new and shorter proof of this result. We remark that the proof given in [4],
while considerably more complicated, seems to contain more interesting information, see [7].

Proof. The integral in the theorem can be interpreted as a double integral:

Ia,b :=
1∫

0

− logfa,b(x)

x
dx =

1∫
0

dx

x

1∫
fa,b(x)

dy

y
=

∫ ∫
D

dx dy

xy
,

where D is a symmetric domain bounded below by ya − yb = xa − xb , above by y = 1, and to
the right by x = 1. Bisect it along its symmetry axis y = x and substitute y = xt , dy = x dt to
get

Ia,b = 2
∫ ∫
D′

dx dt

xt
,

where D′ is bounded below by xb−a = (1 − ta)/(1 − tb), above by t = 1, and to the right by
x = 1. Integrating x we get

Ia,b = 2

b − a

1∫
0

log

(
1 − tb

1 − ta

)
dt

t
.

Finally, if we split the logarithm in two and substitute x = tb in the first integral and x = ta in
the second, the desired result is obtained:

Ia,b = 2

b − a

(
−1

b
+ 1

a

) 1∫
0

log(1 − x)

x
dx = π2

3ab
. �

3.2. The restricted generating function

We must now substantially extend the definitions that appear at the beginning of Section 2.
Let

gm,n(k,N) = the number of partitions of n into m parts in which each part is � N and
there is no string of parts forming a sequence of consecutive integers of
length k,

Gk(N;x, q) =
∞∑

m,n=0

gm,n(k,N)xmqn.

We note in passing that with regard to the definitions in Section 2,

gn =
∑
m�0

gm,n(2,∞),

and

G2(q) = G2(∞;1, q).

In [2, Eq. (2.5)], it was proven that



550 G. Andrews et al. / Journal of Combinatorial Theory, Series A 114 (2007) 545–554
Gk(∞;x, q) = 1

(xq;q)∞

∑
r,s�0

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )

(qk;qk)s(qk+1;qk+1)r
, (3.1)

where

(A;q)t = (1 − A)(1 − Aq) · · · (1 − Aqt−1), (A;q)0 = 1.

Our object here is to prove the following result for Gk(N;x, q) which reduces to (3.1) when
N → ∞.

Theorem 3.3.

Gk(N;x, q) = 1

(xq;q)N

∑
r,s�0

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1

s

]
k

[
N − kr − ks

r

]
k+1

, (3.2)

where[
A

B

]
t

=
{

0 if B < 0 or B > A,

(qt ;qt )A
(qt ;qt )B(qt ;qt )A−B

for 0 � B � A.

Proof. We begin by noting that there is a defining recurrence for Gk(N;x, q). Namely,

Gk(N;x, q) =
⎧⎨
⎩

1
(xq;q)N

, if 0 � N < k,

Gk(N − 1;x, q) + ∑k−1
i=1

xiqN+(N−1)+···+(N−i+1)Gk(N−i−1;x,q)

(1−xqN )(1−xqN−1)···(1−xqN−i+1)
.

(3.3)

This last assertion is easily verified as follows. If N < k, then there can be no sequences of k

consecutive integers among the parts. Hence for N < k, all partitions with parts � N must be
included and the generating function in this case is

1

(xq;q)N

as asserted.
To establish the bottom line of (3.3), we note that among the partitions generated by

Gk(N;x, q) there are some in which N does not appear as a part. These are generated by
Gk(N − 1;x, q). If N does appear as a part, it then lies in a sequence of consecutive integers
of maximal length i where 1 � i < k. The portion of such partitions containing only parts in
[N − i + 1,N ] is generated by

xiqN+(N−1)+···+(N−i+1)

(1 − xqN)(1 − xqN−1) · · · (1 − xqN−i+1)
,

and all other parts must be < N − i, and consequently are generated by Gk(N − i − 1;x, q).
Hence the right-hand side of (3.3) generates precisely those partitions generated by Gk(N;x, q)

thus establishing the second line of (3.3).
We now define

S(k,N) = (xq;q)NGk(N;x, q). (3.4)

Consequently S(k,N) is uniquely determined by the recurrence
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S(k,N) =
{

1, if 0 � N < k,∑k−1
i=1 xiqN+(N−1)+···+(N−i+1)(1 − xqN−i )S(k,N − i − 1).

(3.5)

We now define

σ(k,N) =
∑

r,s�0

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1

s

]
k

[
N − kr − ks

r

]
k+1

. (3.6)

Note that one may equivalently take −∞ < r, s < ∞ as the range of summation in (3.6), since the
terms with negative r, s will be 0. We wish to show that S(k,N) = σ(k,N) in order to complete
the proof of this theorem. To do this we need only show that σ(k,N) also satisfies the defining
recurrence (3.5).

Immediately we see that if N < k, then the only non-vanishing term of the double sum in
(3.6) occurs for s = r = 0. Hence

σ(k,N) = 1 if 0 � N < k.

We shall prove the following equivariant recurrence for σ(k,N) when N � k:

k−1∑
i=0

xiqNi−(i
2)

(
σ(k,N − i) − σ(k,N − i − 1)

)

+ xkqkN−(k
2)σ (k,N − k) = 0. (3.7)

We now simplify the left-hand side of (3.7):

k−1∑
i=0

xiqNi−(i
2)

(
σ(k,N − i) − σ(k,N − i − 1)

)

=
k−1∑
i=0

xiqNi−(i
2)

∑
−∞<r,s<∞

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
{

qk(N−i−kr−ks−r+1−s)

[
N − kr − ks − r − i

s − 1

]
k

[
N − kr − ks − i

r

]
k+1

+ q(k+1)(N−i−kr−ks−r)

[
N − kr − ks − r − i

s

]
k

[
N − kr − ks − 1 − i

r − 1

]
k+1

}

=
k−1∑
i=0

qNi−(i
2)

∑
−∞<r,s<∞

(−1)s+ixks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r−i+1

2 )

×
{

qk(N−i−k(r+s)−r+i+1−s−i)

[
N − kr − ks − r

s + i − 1

]
k

[
N − kr − ks − i

r − i

]
k+1

+ q(k+1)(N−i−k(r+s)−r+i)

[
N − kr − ks − r

s + i

]
k

[
N − kr − ks − i − 1

r − i − 1

]
k+1

}

(having replaced s by s + i and r by r − i)
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=
k−1∑
i=0

qNi−(i
2)

∑
−∞<r,s<∞

(−1)s+ixks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r−i+1

2 )

× qk(N−i−k(r+s)−r−s+1)

[
N − kr − ks − r

s + i − 1

]
k

[
N − i − kr − ks

r − i

]
k+1

+
k∑

i=1

qN(i−1)−(i−1
2 )

∑
−∞<r,s<∞

(−1)s+i−1xks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r−i+2

2 )

× q(k+1)(N−kr−ks−r)

[
N − kr − ks − r

s + i − 1

]
k

[
N − i − kr − ks

r − i

]
k+1

(having replaced i by i − 1 in the second sum).

Now examination of the exponents on x and q reveals that each term in the second sum for
1 � i � k−1 is the negative of each term in the first sum. Hence all that remains after cancellation
is the term i = 0 in the first sum and the term i = k in the second.

Hence

k−1∑
i=0

xiqNi−(i
2)

(
σ(k,N − i) − σ(k,N − i − 1)

)
=

∑
−∞<r,s<∞

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )+k(N−(k+1)(r+s)+1)

×
[

N − kr − ks − r

s − 1

]
k

[
N − kr − ks

r

]
k+1

+ qN(k−1)−(k−1
2 )

∑
−∞<r,s<∞

(−1)s+k−1xks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r−k+2

2 )

× q(k+1)(N−kr−ks−r)

[
N − kr − ks − r

s + k − 1

]
k

[
N − k − kr − ks

r − k

]
k+1

:= S1 + S2. (3.8)

Let us now define

S3 := xkqN+(N−1)+···+(N−k+1)σ (k,N − k) (3.9)

= xkqkN−(k
2)

∑
−∞<r,s<∞

(−1)sxks+(k+1)rq(k+1
2 )(r+s)2+(k+1)(r+1

2 )

×
[

N − k − kr − ks − r + 1

s

]
k

[
N − k − kr − ks

r

]
k+1

= qkN−(k
2)

∑
−∞<r,s<∞

(−1)s−1xks+(k+1)rq(k+1
2 )(r+s−1)2+(k+1)(r+1

2 )

×
[

N − kr − ks − r + 1

s − 1

]
k

[
N − kr − ks

r

]
k+1

(where we have replaced s by s − 1). (3.10)

In order to complete the proof of the recurrence (3.7) for σ(k,n) we need only show that

S1 + S2 = −S3.
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Now

S1 + S3

=
∑

−∞<r,s<∞
(−1)sxks+(k+1)r

[
N − kr − ks

r

]
k+1

×
{

q(k+1
2 )(r+s)2+(k+1)(r+1

2 )+k(N−(k+1)(r+s)+1)

[
N − kr − ks − r

s − 1

]
k

− qkN−(k
2)+(k+1

2 )(r+s−1)2+(k+1)(r+1
2 )

[
N − kr − ks − r + 1

s − 1

]
k

}

= −
∑

−∞<r,s<∞
(−1)sxks+(k+1)r

[
N − kr − ks

r

]
k+1

qkN−(k
2)+(k+1

2 )(r+s−1)2+(k+1)(r+1
2 )

× qk(N−kr−ks−r−s+2)

[
N − kr − ks − r

s − 2

]
k

(by [1, Eq. (3.3.3), p. 35])

= −
∑

−∞<r,s<∞
(−1)s+k+1xks+(k+1)r

[
N − k − kr − ks

r − k

]
k+1

× qkN−(k
2)+(k+1

2 )(r+s)2+(k+1)(r−k+1
2 )

× qk(N−k(r+s+1)−(r+s+1)+2)

[
N − kr − ks − r

s + k − 1

]
k

= −S2.

Thus S1 +S2 = −S3; so the desired recurrence is established for σ(k,n). Consequently S(k,n) =
σ(k,n) for all k � 1, n � 0 which is the result to be proved. �
4. Further remarks

4.1. A probabilistic interpretation of χ(q)

The mock theta function χ(q) has an interpretation in terms of conditional probabilities in
some probability space. Let 0 < q < 1, and let C1,C2, . . . be a sequence of independent events
with probabilities

P(Cn) = 1 − qn, n = 1,2,3, . . . .

Define events A and B by

A =
∞⋂

n=1

(Cn ∪ Cn+1),

B =
∞⋂

n=2

(Cn ∪ Cn+1).
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Theorem 4.1. The following relations hold:

P(A|B) = (1 − q)χ(q),

P(C1|A) = 1/χ(q).

Proof. Let

F(q) =
∞∏

n=1

1

1 − qn
.

Holroyd, Liggett and Romik [4] proved that

P(A) = G2(q)

F (q)
,

and by a similar argument it follows that

P(B) = H2(q)

(1 − q)F (q)
.

Then, using (2.5):

P(A|B) = P(A ∩ B)

P(B)
= P(A)

P(B)
= (1 − q)G2(q)

H2(q)
= (1 − q)χ(q),

P(C1|A) = P(C1 ∩ A)

P(A)
= P(C1 ∩ B)

P(A)
= P(C1)P(B)

P(A)

= (1 − q)H2(q)/(1 − q)F (q)

G2(q)/F (q)
= 1/χ(q).

Incidentally, since probabilities are between 0 and 1, we get that for 0 < q < 1,

χ(q) <
1

1 − q
. �
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