
RAMANUJAN’S LOST NOTEBOOK: COMBINATORIAL PROOFS OF
IDENTITIES ASSOCIATED WITH HEINE’S TRANSFORMATION OR
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Abstract. Combinatorial proofs are given for certain entries in Ramanujan’s lost notebook. Bijections
of Sylvester, Franklin, and Wright, and applications of Algorithm Z of Zeilberger are employed. A
new bijection, involving the new concept of the parity sequence of a partition, is used to prove one of
Ramanujan’s fascinating identities for a partial theta function.

1. Introduction

In [13], the first and third authors provided bijective proofs for several entries found
in Ramanujan’s lost notebook [28]. The entries for which combinatorial proofs were
given arise from the Rogers–Fine identity and false theta functions, and are found in
Chapter 9 of [9]. Although G. E. Andrews [5] had previously devised a combinatorial
proof of the Rogers–Fine identity, the combinatorics of each of the identities proved in
[13] is substantially different from that in Andrews’s proof, so that even what might
be considered small or subtle changes in an identity markedly alter the combinatorics.
This paper can be considered as a sequel to [13] in that we combinatorially prove
further entries from Ramanujan’s lost notebook. The entries to be examined in the
present paper are connected with either Heine’s transformation or partial theta func-
tions. Readers may have difficulty discerning the connections of some of the entries
with either Heine’s transformation or partial theta functions. To see these relation-
ships, consult the book [10] by Andrews and the first author, where all of the identities
established in this paper are proved analytically. The second author, in another paper
[22], has combinatorially proved some further identities involving partial theta func-
tions found in the lost notebook.

Algorithm Z of D. Zeilberger and its variant that was established by the third author
play an important role. Euler’s partition identity and Sylvester’s bijective proof of it
also play leading roles. We will recall these and other bijections in Section 2. In Sec-
tion 3, we present combinatorial proofs of some identities arising from Euler’s identity.
In Section 4, we give bijective proofs of entries that are special cases of the q-Gauss
summation formula. The next goal of our paper is to provide combinatorial proofs
of entries that are related to Heine’s 2φ1 transformation formula. Some of the proofs
follow along the lines of Andrews’s proof of Heine’s 2φ1 transformation formula [4], but
others do not. In the final section, we introduce a new class of partitions, namely par-
titions with the parity sequence. We obtain the generating function of these partitions
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analytically and bijectively. Using this generating function, we give a combinatorial
proof of an identity that is related with partial theta functions.

2. Preliminary Results

A partition of a positive integer n is a weakly decreasing sequence of positive integers
(λ1, . . . , λr) such that λ1 + · · ·+λr = n, and we shall write λ ` n (see [6].) We relax our
definition of a partition by including 0 as a part, if necessary. We denote the number
of parts of a partition λ by `(λ). As a convention, we denote the partition of 0 by ∅.

We employ the standard notation

(a; q)0 = 1, (a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

and

(a; q)∞ = lim
n→∞

(a; q)n, |q| < 1.

We recall some familiar bijections that are used in the sequel.

Sylvester’s bijection. Sylvester’s map for Euler’s identity

1

(q; q2)∞
= (−q; q)∞ (2.1)

and many further contributions of Sylvester have been discussed by Andrews in [8].
We note here that Sylvester’s bijection preserves the following statistic [19, 20, 30]:

`(λ) + (λ1 − 1)/2 = µ1, (2.2)

where λ is a partition into odd parts and µ is the partition into distinct parts associated
with λ under Sylvester’s bijection.

Franklin’s involution. Recall that Franklin’s involution provides a bijective proof of
Euler’s pentagonal number theorem [6, pp. 10–11]

(q; q)∞ =
∞∑

n=−∞

(−1)nqn(3n+1)/2. (2.3)

Wright’s bijection. Recall that Wright’s bijection [31] gives a bijective proof for the
Jacobi triple product identity

(−zq; q)∞(−z−1; q)∞ =
1

(q; q)∞

∞∑
n=−∞

znqn(n+1)/2. (2.4)

Algorithm Z and its application. The following bijection is an application of
Algorithm Z discovered by D. Zeilberger [11, 16]. It was first observed by J. T. Joichi
and D. Stanton [21] that Algorithm Z can apply in this way to the q-binomial theorem
and used by the third author in [32] to establish a combinatorial proof for Ramanujan’s

1ψ1 summation formula. Recall the q-binomial theorem [6, p. 17]
∞∑
n=0

(−a; q)n
(q; q)n

(zq)n =
(−azq; q)∞

(zq; q)∞
. (2.5)
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For a positive integer n, let π be a partition into nonnegative distinct parts less than
n and σ a partition into exactly n parts. We define µ by

µi = σn−πi
+ πi, for all 1 ≤ i ≤ `(π),

and let ν be the partition consisting of the remaining n − `(π) parts of σ. It follows
from the construction that µ and ν are uniquely determined by π and σ. Furthermore,
µ has distinct parts. The left-hand side of (2.5) generates the pairs of partitions (π, σ),
and the right-hand side generates the pairs of partitions (µ, ν). Thus this map is a
bijection between the two sets of such pairs of partitions.

A variation of Algorithm Z. For a positive integer n, let π be a partition into
nonnegative distinct parts less than n and σ a partition into exactly n distinct parts.
We define µ by

µ`(π)−i+1 = σπi+1 + πi, for all 1 ≤ i ≤ `(π),

and let ν be the partition consisting of the remaining n − `(π) parts of σ. It follows
from the construction that µ and ν are uniquely determined by π and σ. Furthermore,
the parts of µ are greater than or equal to n, since σπi+1 ≥ n− πi.
Modular Ferrers diagram. We introduce a p-modular Ferrers diagram. For a
partition λ into parts λi congruent to r modulo p, its p-modular Ferrers diagram is the
diagram in which the i-th row has dλi/pe boxes, the boxes in the first column have r,
and the other boxes have p. It can easily be seen that the sum of the numbers in the
boxes equals the number that λ partitions. If a partition has distinct parts, we can
draw its modular Ferrers diagram in the form of a staircase. Moreover, if necessary,
we may use triangles for the boxes on the main diagonal. For instance, the following
is a p-modular Ferrers diagram in the form of a staircase.

@
@

@
@

@
@

@
@

r p p p p p

r p p p

r p

r

3. Bijective proofs of identities arising from the Euler identity

A combinatorial proof of the following theorem was given by the first and third
authors in the process of combinatorially proving another entry from Ramanujan’s lost
notebook [13, p. 413]. We now provide a shorter proof.

Theorem 3.1. [28, p. 38], [10, Entry 1.6.4] For each complex number a,

∞∑
n=0

(−aq)n

(−aq2; q2)n
=
∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
. (3.1)
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Proof. Replace a by −a in (3.1). Then the left-hand side generates partitions λ into
odd parts, and the exponent of a equals `(λ) + (λ1−1)/2. The right-hand side of (3.1)
generates partitions into distinct parts, and the exponent of a is the largest part. The
identity now follows by Sylvester’s bijection and its preserved statistic (2.2). �

Theorem 3.2. [28, p. 31], [10, Entry 6.5.1] We have

∞∑
n=0

qn

(−q; q)2n

=
∞∑
n=0

q12n2+n(1− q22n+11) + q
∞∑
n=0

q12n2+7n(1− q10n+5) (3.2)

and
∞∑
n=0

qn

(−q; q)2n+1

=
∞∑
n=0

q12n2+5n(1− q14n+7) + q2

∞∑
n=0

q12n2+11n(1− q2n+1). (3.3)

Proof. We prove the first identity. The second one can be proved in a similar way and
we omit its proof. Replacing q by q2 in (3.2), we obtain the identity

∞∑
n=0

q2n

(−q2; q2)2n

=
∞∑
n=0

q24n2+2n(1− q44n+22) + q2

∞∑
n=0

q24n2+14n(1− q20n+10). (3.4)

The left-hand side generates partitions λ into an even number of odd parts with weight
(−1)(λ1−1)/2. Clearly, λ is a partition of an even number 2N . Thus, we obtain

∞∑
n=0

q2n

(−q2; q2)2n

=
∞∑
N=0

∑
λ∈O(2N)

(−1)(λ1−1)/2q2N , (3.5)

where O(2N) is the set of partitions of 2N into odd parts. Let D(2N) be the set of
partitions of 2N into distinct parts. It follows from Euler’s identity (2.1) that O(2N)
and D(2N) are equinumerous. Let µ be the image of λ under Sylvester’s bijection,
which is a partition in D(2N). Since λ is a partition of 2N into odd parts, `(λ) is even.
Thus we see from (2.2) that

(−1)(λ1−1)/2 = (−1)µ1 .

It then follows that
∞∑
N=0

∑
λ∈O(2N)

(−1)(λ1−1)/2q2N =
∞∑
N=0

∑
µ∈D(2N)

(−1)µ1q2N . (3.6)

We now apply Franklin’s involution for Euler’s pentagonal number theorem (2.3), in
which we compare the smallest part and the number of consecutive parts including the
largest part. Note that in the pentagonal number theorem, partitions π have weight
(−1)`(π). However, the involutive proof still works in our setting, since we move the
smallest part to the right of the consecutive parts or subtract 1 from each of the
consecutive parts in order to add the number of consecutive parts as a new part. Thus
only the partitions of the even pentagonal numbers survive under the involution in our
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setting, too. Under the involution, only partitions λ of the form (2n, 2n− 1, . . . , n+ 1)
or (2n− 1, 2n− 2, . . . , n) survive. That is, λ ` n(3n± 1)/2. It is easy to see that

n(3n+ 1)/2 ≡ 0 (mod 2), if n ≡ 0, 1 (mod 4),

n(3n− 1)/2 ≡ 0 (mod 2), if n ≡ 0, 3 (mod 4).

When n ≡ 0, 1 (mod 4), the surviving partition of n(3n + 1)/2 has parts 2n, 2n −
1, . . . , n + 1. The largest part of the partition is even. When n ≡ 0, 3 (mod 4), the
largest part of the partition of n(3n− 1)/2 is odd. Then

∞∑
N=0

∑
µ∈D(2N)

(−1)µ1q2N =
∞∑
n=0

n(3n+1)/2≡0 (mod 2)

qn(3n+1)/2 −
∞∑
n=1

n(3n−1)/2≡0 (mod 2)

qn(3n−1)/2

=
∞∑
n=0

q24n2+2n(1− q44n+22) + q2

∞∑
n=0

q24n2+14n(1− q20n+10).

(3.7)

Hence, by (3.5), (3.6) and (3.7), we complete the proof of (3.4) and therefore also of
Theorem 3.2. �

M. Monks [23], at about the same time that the present authors gave their proof of
Theorem 3.2 above, established an equivalent, combined version of (3.2) and (3.3) by
essentially the same methods. We provide her formulation, which is also found in the
lost notebook [28, p. 36], [9, p. 235, Entry 9.4.7]. The function on the left-hand side
below is one of Ramanujan’s mock theta functions.

Theorem 3.3. Define

χ6(n) =


1, if n ≡ 1, 5, 7, 11 (mod 24),

−1, if n ≡ 13, 17, 19, 23 (mod 24),

0, otherwise.

Then
∞∑
n=0

qn

(−q2; q2)n
=
∞∑
n=1

χ6(n)q(n2−1)/24.

In Theorem 3.2, Ramanujan anticipated a later theorem of N. J. Fine [19], [20, p. 45].
Let Qa(n) denote the number of partitions of n into distinct parts such that the largest
part is a (mod 2), a = 0, 1. Also, let Q∗b(n) denote the number of partitions of n into
odd parts such that the largest part is b (mod 4), b = 1, 3. Then

Q0(n)−Q1(n) = (−1)n(Q∗1(n)−Q∗3(n))

and

Q0(n)−Q1(n) =


1, if n = (3k2 + k)/2, k ≥ 0,

−1, if n = (3k2 − k)/2, k > 0,

0, otherwise.
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If we replace q by q2 in Theorem 3.2, then the two series generate the odd and even
parts for Q∗1(n) − Q∗3(n). In other words, the left-hand sides of (3.2) and (3.3) are,
respectively,

∞∑
n=0

{Q∗1(2n)−Q∗3(2n)}q2n

and
∞∑
n=0

{Q∗1(2n+ 1)−Q∗3(2n+ 1)}q2n+1,

and the right-hand sides provide the non-vanishing of the partitions counted on the
left-hand sides at the pentagonal numbers, as observed by Fine.

In the formulation of Ramanujan’s next two identities, it will be convenient to use
the notation for Ramanujan’s theta functions, namely,

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Theorem 3.4. [28, p. 31], [10, Entry 6.5.2] We have
∞∑
n=0

qn

(q; q)2n

=
f(q5, q3)

(q; q)∞
(3.8)

and
∞∑
n=0

qn

(q; q)2n+1

=
f(q7, q)

(q; q)∞
. (3.9)

Proof. We prove the first identity. The second one can be proved in a similar way. In
(3.8), replace q by q2. Then we obtain

∞∑
n=0

q2n

(q2; q2)2n

=
f(q10, q6)

(q2; q2)∞
. (3.10)

The left-hand side generates partitions into an even number of odd parts. Equivalently,
it generates partitions of an even number into odd parts. Thus, we obtain

∞∑
n=0

q2n

(q2; q2)2n

=
∞∑
N=0

∑
λ∈O(2N)

q2N =
∞∑
N=0

∑
µ∈D(2N)

q2N ,

where the second equality follows from Sylvester’s bijection. By decomposing the parts
of µ into even parts and odd parts, we obtain

∞∑
N=0

∑
µ∈D(2N)

q2N = (−q2; q2)∞

∞∑
n=0

∑
ν∈DO(2n)

q2n,

where DO(2n) is the set of partitions on 2n into distinct odd parts. Let ν1 and ν3 be the
partitions consisting of parts of ν congruent to 1 and 3 modulo 4, respectively. Note that
since ν is a partition of 2n, the number of parts of ν is even. Thus `(ν1) ≡ `(ν3) (mod 2).
We now use staircase 4-modular Ferrers diagrams for the partitions ν1 and ν3, in which
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the triangles on the main diagonal have the residue 1 or 3 and the remaining boxes have
4. We then apply Wright’s bijection to the pair (ν1, ν3). Since `(ν1) ≡ `(ν3) (mod 2), we
collect only even powers of z from the summation on the right-hand side of the Jacobi
triple product identity (2.4). By substituting q−1 and q4 for z and q, respectively, we
obtain

∞∑
n=0

∑
ν∈DO(2n)

q2n =
1

(q4; q4)∞

∞∑
k=−∞

q8k2+2k.

Thus it follows that

(−q2; q2)∞

∞∑
n=0

∑
ν∈DO(2n)

q2n =
(−q2; q2)∞
(q4; q4)∞

∞∑
k=−∞

q8k2+2k =
1

(q2; q2)∞
f(q10, q6).

This completes our bijective proof of (3.10). �

Corollary 3.5. [28, p. 35], [10, Entry 1.7.7] We have

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1− q2n+1)
= qf(q, q7).

Proof. By Theorem 3.4, it suffices to show that

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1− q2n+1)
= q(q)∞

∞∑
m=0

qm

(q)2m+1

=
∞∑
m=0

qm+1(q2m+2)∞.

Let λ be a partition arising from (q2m+2)∞. Then the parts of λ are distinct and larger
than 2m + 1. Let n = `(λ). Detach 2m from each of the n parts. By combining
this with m from qm+1, we have (2n+ 1)m, which is generated by 1/(1− q2n+1). The
resulting parts of λ form a partition into distinct parts that are larger than 1 with
weight (−1)n. Such partitions are generated by

(−1)nq2+3+···+(n+1)

(q)n
.

Combining them with q that was left from qm+1, we arrive at

(−1)nq(n+1)(n+2)/2

(q)n
.

This completes the proof. �

The following corollary can be proved by a similar argument, and so we omit the
proof.

Corollary 3.6. [28, p. 35], [10, Entry 1.7.9] We have

∞∑
n=0

(−1)nqn(n+1)/2

(q)n(1− q2n+1)
= f(q3, q5).
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4. Bijective proofs of identities arising from the q-Gauss summation
formula

Recall that the q-Gauss summation theorem is given by [6, p. 20, Corollary 2.4]
∞∑
n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

( c
ab

)n
=

(c/a; q)∞(c/b; q)∞
(c; q)∞(c/(ab); q)∞

, (4.1)

where |c/(ab)| < 1. Bijective proofs of (4.1) have been given by the first and third
authors [13], S. Corteel [17], Corteel and J. Lovejoy [18], and the third author [?].
Here, we prove a special case of (4.1).

Theorem 4.1. [28, p. 370], [10, Entry 1.3.2] For arbitrary complex numbers a, b,
∞∑
n=0

(−b/a)na
nqn(n+1)/2

(q)n(bq)n
=

(−aq)∞
(bq)∞

. (4.2)

Proof. In (4.1), we replace b and c by bq and −b/d, respectively. We then let a go to
infinity to obtain

∞∑
n=0

(−b/d)nd
nqn(n+1)/2

(q)n(bq)n
=

(−dq)∞
(bq)∞

,

whose combinatorial proof just follows from the proof of the q-Gauss summation. �

Proof. We observe that (−b/a)n generates partitions into nonnegative distinct parts
< n, and anqn(n+1)/2/(q)n generates partitions into n distinct parts. Let π and σ be
such partitions, respectively. We apply the variation of Algorithm Z to π and σ. Let µ
and ν denote the resulting partitions, namely µ is a partition into parts ≥ n and ν is
a partition into distinct parts. Let ω be a partition generated by 1/(bq)n, and denote
by µ ∪ ω the partition consisting of the parts of µ and ω. We have thus obtained the
pair (ν, µ ∪ ω) of a partition into distinct parts and an ordinary partition. Note that
the exponent of a counts n− `(π), which is equal to `(ν), and the exponent of b counts
`(µ ∪ ω). Thus ν is generated by (−aq)∞, and µ ∪ ω is generated by 1/(bq)∞.

Since the variation of Algorithm Z is reversible, it suffices to show that µ can be
uniquely determined when ν and µ ∪ ω are given. Since the parts of µ are larger than
or equal to n and those of ω are less than or equal to n, namely,

µ`(µ) ≥ n = `(ν) + `(µ) ≥ ω1, (4.3)

we need to determine how many largest parts of µ ∪ ω came from µ. Consider the
following inequality

(µ ∪ ω)k ≥ `(ν) + k

for a positive integer k, where (µ ∪ ω)k denotes the k-th part of µ ∪ ω. If there is no
such k, then we define µ to be the empty partition. Otherwise, we take the largest k
and define µ by the partition consisting of the largest k parts of µ∪ω. This µ is indeed
the original µ. It follows from the choice of k that

(µ ∪ ω)k+1 < `(ν) + k + 1.



HEINE’S TRANSFORMATION, PARTIAL THETA FUNCTIONS 9

That is, k is uniquely determined and (µ∪ω)k ≥ `(ν)+k ≥ (µ∪ω)k+1. Thus it follows
from (4.3) that `(ν) + k and the first k parts of µ ∪ ω came from the original µ. �

Theorem 4.2. [28, p. 41], [10, Entry 4.2.6] We have

∞∑
n=0

(−1)n(q; q2)nq
n2

(q2; q2)2
n

=
(q; q2)∞
(q2; q2)∞

. (4.4)

Proof. We replace q with −q in (4.4) to obtain the equivalent identity

∞∑
n=0

(−q; q2)nq
n2

(q2; q2)2
n

=
(−q; q2)∞
(q2; q2)∞

,

which is the case of (4.2) with a, b, and q replaced by q−1, 1, and q2, respectively.
Therefore, the theorem follows. �

5. Bijective Proofs of Identities Arising from Heine’s Transformation

The identities in this section are proved in [10, Chapter 1] by appealing to Heine’s
transformation or some variant or generalization thereof.

Theorem 5.1. [28, p. 16], [10, Entry 1.4.8] For arbitrary complex numbers a, b,

1

(aq)∞

∞∑
n=0

(aq; q)nb
nqn

2

(q2; q2)n
= (−bq; q2)∞

∞∑
n=0

(aq)2n

(q; q)2n(−bq; q2)n

+ (−bq2; q2)∞

∞∑
n=0

(aq)2n+1

(q; q)2n+1(−bq2; q2)n
. (5.1)

Proof. Rewrite the left-hand side of (5.1) as

1

(aq)∞

∞∑
n=0

(aq; q)nb
nqn

2

(q2; q2)n
=
∞∑
n=0

bnqn
2

(aqn+1; q)∞(q2; q2)n
. (5.2)

The right-hand side is a generating function for vector partitions (π,ν) such that π is a
partition into parts that are strictly larger than n, and ν is a partition into n distinct
odd parts. We examine these partitions in two cases.

Case 1: π has an even number of parts. Let 2k be the number of parts in π. Detach n
from each part of π and attach 2k to each part of ν. Denote the resulting partitions by
σ and λ, respectively. It is clear that σ is a partition into 2k parts, and λ is a partition
into distinct odd parts that are greater than or equal to 2k + 1. These are generated
by

∞∑
k=0

(aq)2k

(q; q)2k

(−bq2k+1; q2)∞. (5.3)

Case 2: π has an odd number of parts. Let 2k+1 be the number of parts in π. Detach
2k + 1 from each part of π and attach 2k + 1 to each part of ν. By reasoning similar
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to that above, we can see that the resulting partition pairs are generated by

∞∑
k=0

(aq)2k+1

(q; q)2k+1

(−bq2k+2; q2)∞. (5.4)

Combining the two generating functions (5.3) and (5.4) together with (5.2), we
complete the proof. �

Theorem 5.2. [28, p. 10], [10, Entry 1.4.9] We have

∞∑
n=0

qn(n+1)/2

(q)2
n

=
(−q)∞
(q)∞

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n
. (5.5)

Proof. Multiplying both sides of (5.5) by (q)∞, we obtain the equivalent identity

∞∑
n=0

qn(n+1)/2

(q)n
(qn+1; q)∞ =

∞∑
n=0

(−1)nqn(n+1)/2

(q)n
(−qn+1; q)∞, (5.6)

since (q2; q2)∞ = (−q; q)∞(q; q)∞. The left side of (5.6) is a generating function for
the pair of partitions (π,ν), such that π is a partition into n distinct parts and ν is a
partition into distinct parts that are strictly larger than n, and where the exponent of
(−1) is the number of parts in ν. For a given partition pair (π, ν) generated by the
left side of (5.6), let k be the number of parts in ν. Detach n from each part of ν and
attach k to each part of π. Then we obtain partition pairs (σ, λ), such that σ is a
partition into k distinct parts and λ is a partition into distinct parts that are strictly
larger than k, and the exponent of (−1) is the number of parts in σ. These partitions
are generated by the right side of (5.6). Since this process is easily reversible, our proof
is complete. �

The identity in Theorem 5.2 is connected with the theory of gradual stacks with
summits [7].

Theorem 5.3. [28, p. 10], [10, Entry 1.4.12] For each n > 0,

∞∑
m=0

amqm(m+1)/2

(q)m
(−bqnm+n; qn)∞ =

∞∑
m=0

bmqnm(m+1)/2

(qn; qn)m
(−aqnm+1; q)∞.

Proof. First observe that amqm(m+1)/2

(q)m
generates partitions into m distinct parts, where

the exponent of a is the number of parts. Second, (−bqnm+n; qn)∞ generates partitions
into distinct parts, where each part is at least nm + n, each part is a multiple of n,
and the exponent of b equals the number of parts. Let (π, ν) be the partition pair

generated by amqm(m+1)/2

(q)m
and (−bqnm+n; qn)∞, respectively. Detach nm from each part

of ν. The remaining partition is generated by bkqnk(k+1)/2

(qn;qn)k
. Attach mk to each part of

π. Then the resulting partition is a partition into distinct parts that are greater than
or equal to nk + 1. Since this process is reversible, we are finished with the proof. �
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Theorem 5.4. [28, p. 30], [10, Entry 1.4.17] For each n > 0,

(−aq)∞
∞∑
m=0

bmqm(m+1)/2

(q)m(−aq)nm
= (−bq)∞

∞∑
m=0

amqm(m+1)/2

(q)m(−bq)nm
. (5.7)

Proof. Rewrite the left-hand side of (5.7) in the form

(−aq)∞
∞∑
m=0

bmqm(m+1)/2

(q)m(−aq)nm
=

∞∑
m=0

bmqm(m+1)/2

(q)m
(−aqmn+1)∞. (5.8)

First, bmqm(m+1)/2

(q)m
generates partitions into m distinct parts with the exponent of b

keeping track of the number of parts. Second, (−aqmn+1)∞ generates partitions into
distinct parts, each strictly larger than mn. Let (σ, ν) denote a pair of partitions

generated by bmqm(m+1)/2

(q)m
and (−aqmn+1)∞, respectively. Let k denote the number of

parts in ν. Detach mn from each part of ν and denote the resulting partition by ν ′.
Attach kn to each part of σ and denote the resulting partition by σ′. Then ν ′ is a
partition into k distinct parts, and σ′ is a partition into distinct parts, each strictly
larger than kn. Such partitions are generated by the right side of (5.8). Since the
process is reversible, the proof is complete. �

Theorem 5.4 provides a generalization of a certain Duality that was utilized by
D. M. Bressoud [15] in connecting the well-known identities

∞∑
n=0

qn
2

(q4; q4)n
=

1

(−q2; q2)∞(q; q5)∞(q4; q5)∞

and
∞∑
n=0

qn
2+2n

(q4; q4)n
=

1

(−q2; q2)∞(q2; q5)∞(q3; q5)∞

of L. J. Rogers [29] with the Rogers–Ramanujan identities. In particular, if we consider
the case n = 1 in Theorem 5.4,

∞∑
m=0

bmqm(m+1)/2(−aqm+1)∞
(q)m

=
∞∑
m=0

amqm(m+1)/2(−bqm+1)∞
(q)m

, (5.9)

and replace q by q2 and a by a/q in (5.9) we obtain the identity

F (a, b) :=
∞∑
m=0

amqm
2
(−bq2m+2; q2)∞
(q2; q2)m

=
∞∑
m=0

bmqm
2+m(−aq2m+1; q2)∞

(q2; q2)m
= F (bq, a/q).

(5.10)
Note that the transformation T defined by

T (F (a, b)) = F (bq, aq−1)

is an involution. Thus (5.10) is a fixed point under this involution.

Bressoud [15] does not state this Duality explicitly but uses the underlying combi-
natorics in his paper [15]. K. Alladi [2] observed the involution (5.10) as Bressoud’s
Duality and used it to connect six identities of Rogers [29] with the Rogers–Ramanujan
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identities via the modified convergence of a certain continued fraction of Ramanujan,
A. Selberg, and B. Gordon.

Similarly Theorem 5.3 is also a generalization of Bressoud’s Duality.

Theorem 5.5. [28, p. 42], [10, Entry 1.5.1] We have
∞∑
n=0

anqn
2

(q)n
= (−aq2; q2)∞

∞∑
n=0

anqn
2

(q2; q2)n(−aq2; q2)n
(5.11)

= (−aq; q2)∞

∞∑
n=0

anqn
2+n

(q2; q2)n(−aq; q2)n
. (5.12)

Proof. We prove (5.11). Moving (−aq2; q2)∞ inside the summation sign and using a
corollary of the q-binomial theorem [6, p. 19, Eq. (2.2.6)], namely,

(−aq2n+2; q2)∞ =
∞∑
m=0

amqm
2+m+2mn

(q2; q2)m
,

we find that it suffices to show that
∞∑
k=0

akqk
2

(q)k
=

∞∑
m,n=0

am+nqn
2+m2+m+2mn

(q2; q2)m(q2; q2)n
. (5.13)

Let us interpret the right side of (5.13). Consider a Durfee square of side m + n.
Attach 1 to each of the first m rows. Append the 2-modular diagram of a partition
generated by 1

(q2;q2)m
to the first m rows. Finally append the 2-modular diagram of a

partition generated by 1
(q2;q2)n

to the next n rows. Then, it is clear that the resulting

partition is generated by the sum on the left side of (5.13). For the reverse process,
let π be a partition generated by the left side of (5.13). Then π has a Durfee square
of side k, and below the Durfee square there are no parts. Let πr be a partition to the
right of the Durfee square in π. Let m be the number of odd parts in πr. Rearrange
the order of πr so that the first m parts are odd. Detach 1 from each part of the first m
parts of πr. Then the first m parts are generated by 1

(q2;q2)m
, and the remaining parts

are generated by 1
(q2;q2)k−m

. Setting n = k −m, we are done.

Since the proof of (5.12) is similar, we omit it. �

The next identity is technically not in Ramanujan’s lost notebook [28] but is the lone
entry on a page published with the lost notebook. In fact, this identity is from the years
prior to Ramanujan’s departure for England, since it can be found as Entry 9 of Chapter
16 in Ramanujan’s second notebook [27]. Prior to the proof given in [1] and [12, p. 52],
proofs were given by V. Ramamani [25] and Ramamani and K. Venkatachaliengar [26].
S. Bhargava and C. Adiga [14] have established a generalization.

Theorem 5.6. [28, p. 362], [10, Entry 1.6.1] For a 6= 0,

(aq)∞

∞∑
n=0

bnqn
2

(q)n(aq)n
=
∞∑
n=0

(−1)n(b/a)na
nqn(n+1)/2

(q)n
. (5.14)
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Proof. Replace a by −a in (5.14) and move (−aq)∞ inside the summation on the left
side to obtain the equivalent identity

∞∑
n=0

bnqn
2

(q)n
(−aqn+1)∞ =

∞∑
n=0

(−b/a)na
nqn(n+1)/2

(q)n
. (5.15)

Then, the right-hand side of (5.15) is a generating function for the partition pair (π,
ν), where π is a partition into k distinct nonnegative parts that are less than n, and
where ν is a partition into n distinct parts. Let us define σ to be the partition such
that

σi = πk+1−i + νπk+1−i+1, 1 ≤ i ≤ k.

Note that each part of σ is greater than or equal to n. Let λ be a partition consisting
of the remaining n − k parts of ν. Detach n − k from each part of σ and attach k to
each part of λ. Then the resulting partition pairs (σ′,λ′) have the property that σ′ is
a partition into k parts that are greater than or equal to k, and λ′ is a partition into
distinct parts that are strictly larger than k as desired. Since this process is reversible
by Algorithm Z, the proof is complete, except for checking the exponents of a and b.

On the right-hand side of (5.15), the power of b equals the number of parts k in π.
The power of a is n − k, the number of parts of ν minus the number of parts of π.
In the partition pair (σ, λ), note that k is the number of parts in σ and n − k is the
number of parts in λ. Observe that in the last portion of the process, the number of
parts is not changed. This then completes the proof. �

Theorem 5.7. [28, p. 38], [10, Entry 1.6.5] If a is any complex number, then

∞∑
m=0

amqm(m+1)

(q2; q2)m(1 + aq2m+1)
= (−aq2; q2)∞

∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
. (5.16)

Proof. By Theorem 3.1, the identity (5.16) can be written in the equivalent form

∞∑
m=0

amqm(m+1)

(q2; q2)m(1 + aq2m+1)
=
∞∑
n=0

(−aq)n(−aq2n+2; q2)∞.

Note that (−aq2n+2; q2)∞ generates partitions into distinct even parts, each greater
than or equal to 2n + 2, with the exponent of a denoting the number of parts. Let m
be the number of parts generated by a partition arising from (−aq2n+2; q2)∞. Detach
2n from each of the m parts. Combining this with (−aq)n, we obtain (−aq2m+1)n.
However, note that, for n ≥ 0, all of these odd parts are generated by 1/(1 + aq2m+1),
and each part is weighted by −a. The remaining parts, which are even, are generated
by

∞∑
m=0

amqm(m+1)

(q2; q2)m
.

For these partitions into m distinct even parts, the exponent of a again denotes the
number of parts. �
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6. Partitions with a parity sequence

Let Dn be the set of partitions into n distinct parts less than 2n such that the
smallest part of each partition is 1, and if 2k − 1 is the largest odd part, then all odd
positive integers less than 2k− 1 occur as parts. For a partition λ ∈ Dn, we define the
parity sequence as the longest sequence of decreasing consecutive numbers containing
the largest odd part and denote its length by c(λ). Thus, the largest part of the parity
sequence might be even. For instance, when n = 5,

c((5, 4, 3, 2, 1)) = 5,

c((8, 6, 5, 4, 3, 1)) = 4,

c((9, 7, 6, 5, 3, 1)) = 1.

Let

λ = (λ1, . . . , λs, λs+1, . . . , λs+c, λs+c+1, . . . , λn) ∈ Dn,

where its parity sequence is underlined. By the definition of a parity sequence, we see
that

(P1) λ1, . . . , λs are even;
(P2) all the positive odd integers less than or equal to λs+1 occur in λ;
(P3) λs+c is odd and λs+c = λs+c+1 + 2.

We now compute the generating function of Dn. For a partition λ ∈ Dn, let k be
the number of odd parts of λ. Then it follows from the definition of Dn that the odd
integers 1, 3, . . . , 2k−1 occur in λ and the other n−k parts are distinct even numbers.
Note that the generating function of partitions into m distinct even parts less than 2n
is [6, pp. 33–35]

qm(m+1)

[
n− 1
m

]
q2
,

as the q-binomial coefficient

[
a
b

]
q

generates partitions into at most b parts ≤ (a − b)

for 0 ≤ b ≤ a, where [
a
b

]
q

=


(q; q)a

(q; q)b(q; q)a−b
, if 0 ≤ b ≤ a,

0, otherwise.

Therefore, ∑
λ∈Dn

qλ1+···+λn =
n−1∑
k=0

q(n−k)2+k2+k

[
n− 1
k

]
q2
. (6.1)

Lemma 6.1. For any positive integer n,

n−1∑
k=0

q(n−k)2+k2+k

[
n− 1
k

]
q2

= (−q; q)n−1q
n(n+1)/2. (6.2)
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Proof. Let fn(q) = (−q; q)n−1q
n(n+1)/2. Then, for n ≥ 1,

fn+1(q) = (qn+1 + q2n+1)fn(q).

We prove the lemma by showing that the left-hand side of (6.2) satisfies the same
recurrence as fn(q). First of all, when n = 1, (6.2) holds true. For n ≥ 1, using a

familiar recurrence for

[
n
k

]
q2

[6, Eq. (3.3.4)], we find that

n∑
k=0

q(n+1−k)2+k2+k

[
n
k

]
q2

= q(n+1)2 +
n−1∑
k=1

q(n+1−k)2+k2+k

[
n
k

]
q2

+ qn
2+n+1

= q(n+1)2 +
n−1∑
k=1

q(n+1−k)2+k2+k

(
q2k

[
n− 1
k

]
q2

+

[
n− 1
k − 1

]
q2

)
+ qn

2+n+1

= q(n+1)2 +
n−1∑
k=1

q(n−k)2+k2+k+2n+1

[
n− 1
k

]
q2

+
n−2∑
k=0

q(n−k)2+(k+1)2+k+1

[
n− 1
k

]
q2

+ qn
2+n+1

=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

[
n− 1
k

]
q2

+
n−1∑
k=0

q(n−k)2+k2+3k+2

[
n− 1
k

]
q2

=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

[
n− 1
k

]
q2

+
n−1∑
k=0

q(k+1)2+(n−k−1)2+3(n−k−1)+2

[
n− 1
k

]
q2

=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

[
n− 1
k

]
q2

+
n−1∑
k=0

q(n−k)2+k2+k+n+1

[
n− 1
k

]
q2

= (q2n+1 + qn+1)
n−1∑
k=0

q(n−k)2+k2+k

[
n− 1
k

]
q2
,

which completes the proof. �

We can prove the following theorem using (6.1) and (6.2). However, we provide a
combinatorial proof.

Theorem 6.2. For any positive integer n, the generating function of Dn is

(−q; q)n−1q
n(n+1)/2.

Proof. For a positive integer n, let τ = (n, n − 1, . . . , 2, 1) and µ = (µ1, µ2, . . . , µ`) be
a partition into distinct parts less than n. We insert the parts µi in decreasing order
into τ as follows.

Insertion: Let π be τ and begin with i = 1.
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(1) If πi + µ1 is even, then add µ1 to πi, i.e., add µ1 horizontally to π, and add 1
to i; if πi + µ1 is odd, then add 1 to each of the πi, . . . , πi+µ1−1, i.e., add µ1

vertically down starting from πi, and the i remains the same.
(2) By an abuse of notation, let us denote the resulting partition by π.
(3) Repeat the process with µ2, . . . , µ`, i.e., until the parts of µ are depleted.

Figure 1 illustrates our insertion with an example.

f f f f ff f f ff f ff ff
f f f f f vf f f f vf f f vf f vf

f f f f f f v vf f f f ff f f ff f ff
f f f f f f f ff f f f f vf f f ff f ff→ → →

Figure 1. Insertion of µ = (4, 2, 1) into τ = (5, 4, 3, 2, 1).

Throughout the proof, we assume that π0 = ∞. We first show that the final π is
a partition in Dn with parity sequence (πs+1, . . . , πs+c) such that if µ` was inserted
horizontally, then

c ≥ µ` and πs − πs+1 − 1 = µ`; (6.3)

and if µ` was inserted vertically, then

c = µ` and πs − πs+1 − 1 > µ`. (6.4)

We use induction on `. If ` = 1, then

π =

{
(n+ µ1, n− 1, n− 2, . . . , 2, 1), if n+ µ1 is even,

(n+ 1, n, . . . , n− µ1 + 2, n− µ1, . . . , 2, 1), if n+ µ1 is odd,

where in each case the parity sequence is underlined. Since µ1 < n, we see that
π ∈ Dn and the conditions in (6.3) and (6.4) are satisfied. Given τ = (n, n− 1, . . . , 1)
and µ = (µ1, . . . , µ`), suppose that the partition π resulting from the insertion of
µ1, . . . , µ`−1 satisfies either (6.3) or (6.4). We denote

π = (π1, . . . , πs, πs+1, . . . , πs+c, πs+c+1, . . . , πn) ∈ Dn,

where its parity sequence is underlined. By (P1), we see that πs is even. Since µj > 1
for any j < `, it follows from the definition of insertion that the last horizontal insertion
happened at the s-th part. Thus, in order to insert µ`, we need to examine the parity
of πs+1 +µ` by (P1). If πs+1 +µ` is even, then we make a horizontal insertion; namely,
the resulting partition is

π′ = (π1, . . . , πs, πs+1 + µ`, πs+2, . . . , πs+c, πs+c+1, . . . , πn).

Since π ∈ Dn, all odd positive integers ≤ πs+1 occur in π, from which it follows that
all odd positive integers ≤ πs+2 occur in π′. Also, since πs − πs+1 > µ`−1 by (6.3) and
(6.4), we see that

π′s − π′s+1 = πs − (πs+1 + µ`) > µ`−1 − µ` ≥ 1.
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Thus π′ ∈ Dn. We now show that π′ satisfies (6.3). Since c ≥ µ`−1 by (6.3) and (6.4),
and µ`−1 > µ`, we see that the parity sequence of π′ is (πs+2, . . . , πs+c), which has
length c− 1 ≥ µ`. Also, since πs+1 = πs+2 + 1,

π′s+1 − π′s+2 = πs+1 + µ` − πs+2 = µ` + 1.

Therefore, π′ is a partition in Dn satisfying (6.3). If πs+1 + µ` is odd, then we make a
vertical insertion; namely, the resulting partition is

π′ = (π1, . . . , πs, πs+1 + 1, . . . , πs+µ`
+ 1, πs+µ`+1, . . . , πn).

Since c ≥ µ`−1 by (6.3) and (6.4), and µ`−1 > µ`, we see that the parity sequence of π′

is

(πs+1 + 1, . . . , πs+µ`+1
+ 1),

whose length is µ`. Also, since πs − πs+1 > µ`−1 > µ`,

π′s − π′s+1 = πs − (πs+1 + 1) > µ`−1 − 1 ≥ µ`.

Thus π′ satisfies (6.4). We now show that π′ ∈ Dn. Since πs+1 + µ` is odd, we see that
πs+µ`

is even, so πs+µ`
+ 1 and πs+µ`+1 are consecutive odd integers. Since π ∈ Dn,

all odd positive integers ≤ πs+1 occur in π, from which it follows that all odd positive
integers ≤ πs+1 + 1 occur in π′. Therefore, π′ is a partition in Dn satisfying (6.4).

We now show that the map is bijective by defining its inverse. Let

λ = (λ1, . . . , λs, λs+1, . . . , λs+c, λs+c+1, . . . , λn) ∈ Dn,

where its parity sequence is underlined.

Deletion: We now compare c and (λs − λs+1 − 1).

(1) If there is no λs or c < (λs − λs+1 − 1), then we let σ1 = c and subtract 1 from
each of λs+1, . . . , λs+c, i.e., subtract σ1 vertically from λ; if c ≥ (λs− λs+1− 1),
then we let σ1 = λs − λs+1 − 1 and subtract (λs − λs+1 − 1) from λs−1, i.e.,
subtract σ1 horizontally from λ.

(2) By an abuse of notation, let us denote the resulting partition by λ.
(3) Repeat the process until we arrive at λ = (n, n−1, . . . , 1); we record the amount

we subtract in the i-th step as σi.

We now show that this process is well-defined, i.e., the resulting partition in each step
is still in Dn and the sequence σ1, σ2, . . . is strictly increasing with each part less than
n. If σ1 was subtracted vertically, then the resulting partition is

(λ1, . . . , λs, λs+1 − 1, . . . , λs+c − 1, λs+c+1, . . . , λn). (6.5)

It follows from (P1), (P2), and (P3) that all the positive odd integers less than the
largest odd part occur. If σ1 was subtracted horizontally, then the resulting partition
is

(λ1, . . . , λs−1, λs+1 + 1, λs+1, . . . , λs+c, λs+c+1 . . . , λn). (6.6)

The largest odd part of the resulting partition is either λs+1 + 1 or λs+1. Again, by
(P1), (P2), and (P3), the resulting partition is in Dn.
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We now show that the sequence σ1, σ2, . . . is strictly increasing with each part less
than n. First of all, note that if λ 6= (n, n− 1, . . . , 1), then c < n. Thus we can easily
see that σ1 < n since σ1 ≤ c. It now suffices to show that σi > σi+1 for i = 1, 2, . . ..
Suppose that σ1 was subtracted vertically from λ. Then, in (6.5), the length c∗ of the
parity sequence of the resulting partition is larger than c. Also,

λs − (λs+1 − 1)− 1 = λs − λs+1 > c.

Since σ2 is the minimum of c∗ and λs − (λs+1 − 1)− 1, we see that σ2 > σ1. Suppose
that σ1 was subtracted horizontally from λ. Then, in (6.6), the length c∗ of the parity
sequence of the resulting partition is larger than c, which is larger than or equal to
(λs − λs+1 − 1). Also,

λs−1 − (λs+1 + 1)− 1 = λs−1 − λs+1 − 2 ≥ λs + 2− λs+1 − 2 > λs − λs+1 − 1 = σ1,

where the first inequality follows from (P1). Since σ2 is the minimum of c∗ and λs−1−
(λs+1 + 1)− 1, we see that σ2 > σ1.

We now show that the deletion map defined above is the inverse process of our
insertion map. Let π be the partition resulting from the insertion of µ = (µ1, µ2, . . . , µ`)
into τ , namely

π = (π1, . . . , πs, πs+1, . . . , πs+c, πs+c+1, . . . , πn) ∈ Dn.

If µ` was inserted horizontally, then we see that

c ≥ µ` = πs − πs+1 − 1,

by (6.3). Thus, by the map, we have to subtract µ` horizontally. If µ` was inserted
vertically, then we see that

c = µ` ≤ πs − πs+1 − 1,

by (6.4). Thus, by the map, we have to subtract µ` vertically. �

Theorem 6.3. [28, p. 28], [10, Entry 1.6.2] For any complex number a,
∞∑
n=0

anqn
2

=
∞∑
n=0

(−q; q)n−1a
nqn(n+1)/2

(−aq2; q2)n
. (6.7)

Proof. Let En be the set of partitions into even parts less than or equal to 2n. By
Theorem 6.2, the right-hand side of (6.7) generates pairs of partitions (π, σ) with
π ∈ Dn and σ ∈ En, where the exponent of a denotes the number of parts of π plus
the number of parts of σ, with the sign (−1)`(σ). Let πe (resp. σe) be the largest even
part in π (resp. σ). For convenience, we define πe = 0 (resp. σe = 0) if there is no even
part in π (resp. σ). Note that by the definition of Dn, the following are equivalent:

(i) π = (2n− 1, 2n− 3, . . . , 3, 1);
(ii) πe = 0;

(iii) π1 = 2n− 1.

We now compare πe and σe.

Case 1: If πe > 0 and πe ≥ σe, then move πe to σ. We denote by (π′, σ′) the resulting
partition pair. Since π ∈ Dn and πe > 0, π has n parts ≤ 2n− 2. Thus, π′ has n− 1
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parts < 2n − 2 and σ′e is still less than or equal to 2n − 2, from which it follows that
π′ ∈ Dn−1 and σ′ ∈ En−1. The pair (π′, σ′) is generated by the right-hand side of (6.7),
and it has the opposite sign.

Case 2: If σe > 0 and σe > πe, then move σe to π. We denote by (π′, σ′) the resulting
partition pair. Since π ∈ Dn, π has n parts < 2n. Also, since σ ∈ En, σe ≤ 2n. Thus,
π′ has n+ 1 parts ≤ 2n, from which it follows that π′ ∈ Dn+1 and σ′ ∈ En+1. The pair
(π′, σ′) is generated by the right-hand side of (6.7), and it has the opposite sign.

Therefore, the partition pairs (π, σ) with πe > 0 or σe > 0 are cancelled, and there
remain only π = (2n−1, 2n−3, . . . , 1) and σ = ∅, which are generated by the left-hand
side of (6.7). �

Alladi [3] has devised a completely different proof of Theorem 6.3 and has also
provided a number-theoretic interpretation of Theorem 6.3 as a weighted partition
theorem. Although we have given a bijective proof of Theorem 6.3, we do not interpret
Theorem 6.3 number-theoretically. On the other hand, even though Alladi interpreted
Theorem 6.3 number-theoretically, his proof of Theorem 6.3 is q-theoretic. It would be
worthwhile to see how our bijective proof of Theorem 6.3 translates into a combinatorial
proof of Alladi’s weighted partition theorem.

Recently, the third author [33] found another combinatorial proof of Theorem 6.3.

The authors are pleased to thank Krishnaswami Alladi for several comments that we
have incorporated into our paper. The authors also thank the two referees for carefully
reading our paper and offering corrections and helpful suggestions.
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