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Abstract. In a recent paper, the first author showed a connection between bilateral basic

hypergeometric series and mock theta functions, which leads to many new identities in-

volving mock theta functions. This paper is a sequel, and our goal is to provide partition

theoretic properties of new identities involving third or sixth order mock theta functions. In

his monograph, N.J. Fine gave partition theoretic interpretation for mock theta functions

and derived many interesting arithmetic properties from various identities involving mock

theta functions. Our theorems are inspired by Fine’s work even though we have to rely on

the theory of modular forms to prove some theorems.

1. Introduction

In his famous last letter to G.H. Hardy [10], S. Ramanujan introduced mock theta functions

without giving an explicit definition. Ramanujan introduced 17 examples of mock theta

functions in his letter. Among them, the third order mock theta functions are

f(q) =
∞∑
n=0

qn
2

(−q; q)2
n

, φ(q) =
∞∑
n=0

qn
2

(−q2; q2)n
,

ψ(q) =
∞∑
n=1

qn
2

(q; q2)n
, χ(q) =

∞∑
n=0

qn
2∏n

m=1(1− qm + q2m)
,

(1.1)

where

(a; q)0 := 1, and (a; q)n :=
n−1∏
k=0

(1− aqk) for any positive integer n.

Later, G. N. Watson [38] added three functions to the list of Ramanujan’s third order

mock theta functions. These are

ω(q) =
∞∑
n=0

q2n(n+1)

(q; q2)2
n+1

, υ(q) =
∞∑
n=0

qn(n+1)

(−q; q2)n+1

, ρ(q) =
∞∑
n=0

q2n(n+1)∏n+1
m=1(1 + q2m−1 + q4m−2)

.

(1.2)
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These three third order mock theta functions are actually in Ramanujan’s Lost Notebook [32].

In Ramanujan’s Lost Notebook [32], we are also able to find Ramanujan’s sixth and tenth

order mock theta functions. Among them, Ramanujan’s sixth order mock theta functions

are

Φ(q) =
∞∑
n=0

(−1)nqn
2
(q; q2)n

(−q; q)2n

, Ψ(q) =
∞∑
n=0

(−1)nq(n+1)2(q; q2)n
(−q; q)2n+1

,

ρ(q) =
∞∑
n=0

qn(n+1)/2(−q; q)n
(q; q2)n+1

, σ(q) =
∞∑
n=0

q(n+1)(n+2)/2(−q; q)n
(q; q2)n+1

,

λ(q) =
∞∑
n=0

(−1)nqn(q; q2)n
(−q; q)n

, µ(q) =
∞∑
n=0

(−1)n(q; q2)n
(−q; q)n

, ν(q) =
∞∑
n=0

qn
2
(q; q)n

(q3; q3)n
.

(1.3)

G. E. Andrews and D. Hickerson [7] established the results for sixth order mock theta

functions that are similar to the mock theta conjectures. Recently, B. C. Berndt and S. H.

Chan [9], and R. J. McIntosh [28] independently discovered two new sixth order mock theta

functions φ−(q) and ψ−(q) which are

Φ−(q) =
∞∑
n=1

qn(−q; q)2n−1

(q; q2)n
and Ψ−(q) =

∞∑
n=1

qn(−q; q)2n−2

(q; q2)n
. (1.4)

To see the history of mock theta functions and their modern and classical developments,

we recommend the survey papers [22] and [31]. In addition to their mysterious analytic

properties, mock theta functions have numerous nontrivial connections to combinatorics,

especially the theory of partitions [3], [6] and [19]. For example, a third order mock theta

function f(q) is a generating function for the number of partitions of n with even rank minus

the number of partitions of n with odd rank, where the rank of a partition is defined to be

its largest part minus the number of its parts.

The n-color partition and its overpartition analogue have been employed to understand

q-series identities combinatorially. The n-color partition was introduced by A. K. Agarwal

and G. E. Andrews [4], and its overpartition analogue was introduced by J. Lovejoy and O.

Mallet [27]. The n-color partition and its overpartition analogue arise naturally, and have a

connection to many other combinatorial objects [1], [2], [4] and [5]. An n-color partition of

a positive integer v is a partition in which each part of size n may appear up to n different

colors denoted by subscripts from 1 to n, and parts are ordered first by the size of part and

then according to the color. Since we have n different copies of part n, we also call it as a

partition with “n copies of n”. For example, there are 6 n-color partitions of 3;

33, 32, , 31, 2211, 2111, 111111.
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We define the weighted difference of two parts mi, nj denoted by ((mi−nj)), as m−n− i−j
provided m ≥ n. An n-color overpartition of a positive integer v is an n-color partition of

v in which we may overline the final occurrence of each part nj. For example, the n-color

overpartitions of 2 are

22, 22, 21, 21, 1111, 1111.

We also define the weighted difference of two parts mi, kj in an n-color overpartition denoted

also by ((mi− kj)) as m− k− i− j−χ(mi)−χ(kj) provided m ≥ k, where χ(kj) = 1 if kj is

an overlined part, and 0 otherwise. We note that this definition coincides with the definition

of a weighted difference of n-color partition if there is no overlined part.

In [3], Agarwal interpreted a third order mock theta function ψ(q) and three fifth order

mock theta functions F0(q), Φ0(q), Φ1(q) as generating functions of certain kinds of n-color

partitions by using q-difference equations. His interpretation for ψ(q), is as follows.

Theorem 1.1. ψ(q) generates n-color partitions satisfying

(1) the weighted difference between two consecutive parts is always 0,

(2) the smallest part is of the form kk,

(3) even parts have even colors and odd parts have odd colors.

In [18], the first author showed a connection between bilateral basic hypergeometric series

and mock theta functions, which leads to many new identities involving mock theta functions.

This paper is a sequel of [18], and the purpose of this paper is to provide partition theoretic

properties of third order mock theta functions φ(q), ψ(q), υ(q) and sixth order mock theta

functions Ψ(q), Ψ−(q), ρ(q), λ(q). Our first goal of this paper is to derive partition-theoretic

interpretations for the mock theta functions above as generating functions of n-color parti-

tions or n-color overpartitions. In particular, we will give a bijective proof of Theorem 1.1

in a constructive way, and describe similar partition-theoretic interpretation for the others.

For example, the sixth order mock theta function Ψ(q) can be interpreted as follows.

Theorem 1.2. Let us define λ1 as the largest part in the partition λ and c(λi) is the color

of λi. Then, Ψ(q) generates n-color overpartitions satisfying

(1) the smallest part is of the form kk and not overlined,

(2) the weighted differences between two consecutive parts are even and ≥ 0, where the

exponent of (−1) is given by λ1+c(λ1)+χ(λ1)−2
2

.

From Theorem 1.1, we easily conclude the following corollary.

Corollary 1.3. There is a bijection between n-color partitions described in Theorem 1.1 and

partitions into odd parts without gaps. Moreover, if λ is an n-color partition corresponding to
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σ, a partition into odd parts without gaps, then
∑`(λ)

i=1 c(λ
i) = `(σ), where `(λ) is the number

of parts in the partition λ. In other words, the sum of the subscripts (the colors) of each part

of λ is the same as the number of parts in σ.

Even though the first part of Corollary 1.3 was first observed by Agarwal [3], a bijective

proof had been unknown.

The second goal of this paper is to derive arithmetic properties from mock theta function

identities. Every identity we examine is of the form: a linear combination of two mock theta

functions is equal to a theta function. These identities yield interesting combinatorial facts

about the coefficients of mock theta functions. In [19, Chapters 2 and 3], N.J. Fine gave

a partition theoretic interpretation for mock theta functions, and derived many interesting

properties from various identities involving mock theta functions. In particular, Fine showed

that

f(q) =
∞∑
n=0

(p(n, 0, 2)− p(n, 1, 2)) qn,

φ(q) =
∞∑
n=0

(p(n, 0, 4)− p(n, 2, 4)) qn,

and

χ(q) =
∞∑
n=0

(p(n, 0, 6) + p(n, 1, 6)− p(n, 2, 6)− p(n, 3, 6)) qn,

where f(q), φ(q), and χ(q) are third order mock theta functions defined by (1.1), and

p(n, d,N) denotes the number of partitions of n with rank ≡ d (mod N). By using a linear

relation between third order mock theta functions, he proved that

σ(2n) = p(2n, 1, 4)− p(2n, 2, 4) (1.5)

where σ(n) denotes the number of partitions of n into distinct odd parts without gaps. Our

theorems in this paper are inspired by Fine’s work in [19, Chapters 2 and 3] even though we

have to rely on the theory of modular forms to prove Theorems 3.5 and 6.1.

Theorem 1.4. We define β(n) :=
∑

λ`n(−1)`(λ), where the sum runs over partitions into

distinct odd parts ≤ 2`(λ)− 1 except that 1 can be repeated and `(λ) denotes the number of

parts in a partition λ. Then, for all positive integers n, we have

2β(2n) = p(2n, 1, 2)− 2p(2n, 2, 4),

2β(2n− 1) = p(2n− 1, 1, 2)− 2p(2n− 1, 0, 4).
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We also discuss Ramanujan type congruences and cranks by analyzing theta functions,

which are linear sums of mock theta functions. If we say that Af (n) is the number of

partitions of n with the generating function f , then we have the following congruences.

Theorem 1.5. For all n ≥ 0, we have

AΨ(3n+ 3) + 2AΨ−(3n+ 3) ≡ 0 (mod 9)

and

2Aρ(3n+ 2) + Aλ(3n+ 2) ≡ 0 (mod 9).

This paper is organized as follows. In Section 2, we introduce necessary definitions and

theorems for the reminder of this paper. In Section 3, we provide combinatorial interpreta-

tions for the third order mock theta functions φ(q), ψ(q), ν(q), and study their arithmetic

properties. In Section 4, we study the combinatorial properties of two sixth order mock theta

function identities which are proved in Section 6, and give a combinatorial interpretation for

sixth order mock theta functions Ψ(q), Ψ−(q), ρ(q) and λ(q) by using n-color overpartitions.

In Section 5, we introduce Garvan-Kim-Stanton type crank functions for the congruences

given in Section 4. In Section 6, we prove two identities involving sixth order mock functions.

Finally, we conclude with a few remarks.

Acknowledgments

The authors would like to thank Bruce Berndt for his encouragement and helpful com-

ments.

2. Preliminaries

In this section, we summarize the basic definitions and theorems for partitions, q-series

and modular forms.

Partitions A partition of a positive integer n is a weakly decreasing sequence of positive

integers (λ1, . . . , λr) such that λ1 + · · · + λr = n. We denote the number being partitioned

by |λ|. If λ is a partition of n, then we denote that λ ` n. Throughout this paper, we denote

Af (n) be the coefficient of qn in the q-expansion of f . If f is a generating function for certain

partitions, then we regard Af (n) as the number of such partitions of n counted by f .

p-modular Ferrers diagram. We introduce a p-modular Ferrers diagram. For a partition

λ into parts λi congruent to r modulo p where 0 < r ≤ p, its p-modular Ferrers diagram is

the diagram in which the i-th row has dλi/pe boxes, the boxes in the last column have r,

and the other boxes have p. It can easily be seen that the sum of the numbers in the boxes
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equals |λ|. We define the Mp-rank of partition λ as dλ1

p
e - `(λ). In other words, the Mp-rank

of partition λ is the number of boxes in the largest part in the p-modular diagram minus the

number of parts of λ.

2 2 2 2 1

2 2 2 1

2 2

1

Figure 1. two modular diagram of a partition λ = (9, 7, 4, 1) with M2-rank = 1.

t-residue diagram In the Ferrers diagram of a partition λ, we color the box at row r and

column c by c− r (mod t). Thus, we have t different colors, denoted by 0, 1, . . . , t− 1. We

denote rj(λ) as the number of boxes with color j in the Ferrers diagram of a partition λ.

For example, examine Figure 2.

0 1 2 0 1

2 0 1 2

1 2

0

Figure 2. 3-residue diagram of a partition λ = (9, 7, 4, 1) with [r0(λ), r1(λ), r2(λ)] = [4, 4, 4].

t-core partition. A partition λ is said to be a t-core if there are no hook numbers that are

multiples of t. For example, in Figure 3, λ is a 5-core partition. Let at(n) be the number of

8 6 4 3 1

6 4 2 1

3 1

1

Figure 3. a 5-core partition λ = (5, 4, 2, 1) with hook numbers.

t-core partitions of n. Then, it is well-known [20] that
∞∑
n=0

at(n)qn =
(qt; qt)t∞
(q; q)∞

. (2.1)

q-series. We define Ramanujan’s general theta function f(a, b) as

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.
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Then, Jacobi’s triple product identity [8, p. 10] asserts that

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞ (2.2)

where

(a; q)∞ := lim
n→∞

(a; q)n.

We also need Jacobi’s identity [8, p. 14]

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2. (2.3)

We also introduce the following space saving notations;

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞,

(a)n := (a; q)n, and (a)∞ := (a; q)∞.

Modular forms Now we give the basic properties of modular forms. For more details on

this subject, consult [30], [34] and [36].

Definition. For z ∈ H and any positive integers n, m, define

η(nz) := ηn = q
n
24 (qn; qn)∞ (2.4)

and

ηn,m(z) :=ηn,m = qP2(m
n

)n
2
f(−qm,−qn−m)

(qn; qn)∞
, (2.5)

where P2(t) = {t}2 − {t} + 1
6

is the second Bernoulli function, and {t} := t − [t] is the

fractional part of t.

In this paper, we only consider the cases when m 6≡ 0 (mod n) for ηn,m.

We define the modular group Γ = SL2(Z) and its congruence subgroups Γ0(N) :={(
a b

c d

)
∈ Γ : c ≡ 0 (mod N)

}
and Γ1(N) :=

{(
a b

c d

)
∈ Γ0(N) : a ≡ b ≡ 1 (mod N)

}
.

For a fixed real number r, a function F (z), defined and meromorphic in H, is said to be a

modular form of weight r with respect to Γ, with multiplier system v, if (a) F (z) satisfies

F (Mz) = v(M)(cz + d)rF (z) for any z ∈ H and M ∈ Γ, (b) there exists a standard funda-

mental region R such that F (z) has at most finitely many poles in R̄ ∩ H, and (c) F (z) is

meromorphic at qj, for each cusp qj in R̄.

Let {Γ, r, v} denote the space of modular forms of weight r and multiplier system v on

Γ, where Γ is a subgroup of Γ(1) of finite index. When a multiplier system v is trivial, we
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denote {Γ, r, v} as Mr(Γ). Let ord(f ; z) denote the invariant order of a modular form f at

z. If z ∈ H, then OrdΓ(f ; z) :=
1

`
ord(f ; z), where ` (` = 1, 2, or 3) is the order of z as a fixed

point of Γ. If z is a cusp with respect to Γ, OrdΓ(f ; z) := N(Γ; z) ord(f ; z), where N(Γ; z)

is the width of Γ at z.

Theorem 2.1. The Dedekind eta-function η(z) is a modular form of weight 1
2

with multiplier

system υη on Γ(1), where the multiplier system υη is given by the following formula: for each

M =

(
a b

c d

)
∈ Γ(1),

υη(M) =



(
d

| c |

)
ζ
bd(1−c2)+c(a+d)−3c
24 , if c is odd,(

c

| d |

)
ζ
ac(1−d2)+d(b−c)+3(d−1)
24 , if d is odd and either c ≥ 0 or d ≥ 0,

−
(

c

| d |

)
ζ
ac(1−d2)+d(b−c)+3(d−1)
24 , if d is odd, c < 0, d < 0,

where ζ24 is a primitive 24th root of unity.

Proof. See Theorem 2 in the page 51 of [25]. �

Theorem 2.2 (the valence formula). If f ∈ {Γ, r, ν} and f 6= 0, then∑
z∈R

OrdΓ(f ; z) = µr,

where R is any fundamental region for Γ, and µ :=
1

12
[Γ(1) : Γ].

Proof. See Theorem 4.1.4 in [34]. �

Lemma 2.3. If m1,m2, . . . ,m2n are positive integers, n is a positive integer, N is a positive

even integer, and the least common multiple of m1,m2, . . . ,m2n divides N , then, for z ∈ H,

η(m1z)η(m2z) · · · η(m2nz) ∈ {Γ1(N), n, υ},

where A =

(
a b

c d

)
∈ Γ1(N), ζ24 is a primitive 24th root of unity, and

υ(A) =
2n∏
i=1

(
c/mi

| d |

)
ζ
ac(1−d2)/mi+d(mib−c/mi)+3(d−1)
24 .

Proof. See Lemma 2.7. in [17]. �

Theorem 2.4. For z ∈ H, let f(z) :=
∏

n|N, 0≤m<n
η
rn,m
n,m (z), where rn,m are integers. If

∑
n|N, 0≤m<n

nP2

(m
n

)
rn,m ≡ 0 (mod 2)
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and ∑
n|N, 0≤m<n

N

n
P2(0)rn,m ≡ 0 (mod 2),

then f(z) ∈ {Γ1(N), 0, I}, where for M =

(
a b

c d

)
∈ Γ1(N), I(M) = 1.

Proof. See Theorem 3 in [36, p. 126]. �

Lemma 2.5. Let `, m and n be positive integers. Then, for a cusp k = λ
µε

for Γ1(N), where

ε | N and (λ,N) = (λ, µ) = (µ,N) = 1,

ord(ηn,m; k) + ord(ηn; k) ≥ 0, ord(η`n,m; k) + ` ord(ηn; k) ≥ 0,

and

ord(ηn,m; k) + ` ord(η`n; k) ≥ 0.

Proof. See Lemma 2.10 in [17]. �

For a prime p, we define the Up-operator as follows. If f(q) has a Fourier expansion

f(q) =
∑
a(n)qn, then we define the Up-operator by

Upf(z) :=
∑

a(pn)qn.

It is well known that Upf(z) ∈ M0(Γ0(Np)) provided f(z) ∈ M0(Γ0(Np
2)). For a fixed N

and integers ri’s, a function of the form

f(z) :=
∏
n|N
n>0

η(nz)rn . (2.6)

is called an η-quotient. The following theorem in [29] shows when an η-quotient becomes a

modular function.

Theorem 2.6. The η-quotient (2.6) is in M0(Γ0(N)) if and only if

(1)
∑

n|N rn = 0,

(2)
∑

n|N nrn ≡ 0 (mod 24),

(3)
∑

n|N
N
n
rn ≡ 0 (mod 24),

(4)
∏

n|N n
rn ∈ Q2.

The following theorem in [26] gives the order of the η-quotient f at the cusps c/d of Γ0(N)

provided f ∈M0(Γ0(N)).

Theorem 2.7. If the η-quotient f ∈M0(Γ0(N)), then its order at the cusp c/d of Γ0(N) is

1

24

∑
n|N

N(d, n)2rn
(d,N/d)dn

.
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Recall that if p|N and f ∈ M0(Γ0(pN)), then Upf ∈ M0(Γ0(N)). Also, the following

theorem in [21] gives bounds on the order of Upf at cusps of Γ0(N) in terms of the order of

f at cusps of Γ0(pN).

Theorem 2.8. Let p be a prime and π(n) be the highest power of p dividing n. Suppose that

f ∈M0(Γ0(pN), where p|N and α = c/d is a cusp of Γ0(N). Then,

ordαUpf ≥


1
p
ordα/pf, if π(d) ≥ 1

2
π(N),

ordα/pf, if 0 < π(d) < π(N)
2

,

min0≤β≤p−1 ord(α+β)/pf, if π(d) = 0.

3. Third order mock theta function identities

The first identity we examine is

φ(q) + 2ψ(q) =
(q2; q2)7

∞
(q)3

∞(q4; q4)3
∞

= (−q; q2)∞

∞∑
n=−∞

qn
2

(3.1)

where φ(q) and ψ(q) are third order mock theta functions. We are able to find the equations

above in [19, p. 60].

In [3], Agarwal showed that ψ(q) is a generating function for certain n-color partitions by

using q-difference equations. Here, we obtain the same results in a constructive way. This

will give a bijective proof for Theorem 1.1.

Proof of Theorem 1.1. In this proof, we always use 2-modular Ferrers diagrams. Recall that

qn
2

generates partition τ = (1, 3, . . . , 2n− 1). We assign to each part color 1. Note that the

weight difference between two consecutive parts is 0. Recall that 1
(q;q2)n

generates partitions

λ into odd parts ≤ 2n− 1. From the largest part of λ, we attach each part λi as follows. We

first attach 2 from the first row to the λi−1
2

-th row and attach 1 to the λi+1
2

-th part. Then, we

increase the color by 1 for the λi+1
2

-th part of the resulting partition. For example, examine

Figure 4. Note that during this process the weight difference between two consecutive parts

remains the same. The second condition is clear from this construction. Since the color is

increased by 1 when the parity of part is changed, the third condition holds. �

2 2 2 1
1

2 2 1
1

2 1
1

1
1

2 2 2 2 1
1

2 2 2 1
1

2 2
2

1
1

2 2 2 2 2 1
1

2 2 2 2 1
1

2 2 1
3

1
1

2 2 2 2 2 2
2

2 2 2 2 1
1

2 2 1
3

1
1

Figure 4. τ = (7, 5, 3, 1) with λ = (5, 5, 1).
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Remark. Actually, the last condition in Theorem 1.1 is not necessary. Since the weighted

differences between two parts are always 0 and the smallest part is kk, we can conclude that

the parity of parts and their color should be the same.

By using the bijection above, we are now ready to prove Corollary 1.3.

Proof of Corollary 1.3. For a given n-color partition σ enumerated by ψ(q), we can easily

recover the partition τ and λ by reading the color of each part. By inserting parts in λ to

τ in weakly decreasing order, we arrive at µ, a partition into odd parts without gaps. Since∑`(σ)
i=1 c(σ

i) = `(τ) + `(λ) = `(µ), this completes the proof. �

Example. An n-color partition (122, 91, 53, 11) corresponds to the partition (7, 5, 5, 5, 3, 1, 1).

Analogously, we also can obtain an n-color partition theoretic interpretation for φ(q).

Theorem 3.1. φ(q) generates n-color partitions λ satisfying

(1) the smallest part is of the form (2k − 1)k,

(2) the color of λi is given by λi−λi+1

2
except the smallest part, and the exponent of (−1)

is given by M2-rank of λ.

Remark. Since the color of each part is an integer, the conditions above imply that all parts

are odd.

Proof. The constructive proof is very similar to the proof of Theorem 1.1, so we omit it.

Alternatively, by splitting the partition counted by Aφ(m, v) into two classes: partitions

having 11 as a part and the partitions without 11, we can see that

Aφ(m, v) = Aφ(m− 1, v − 2m+ 1)− Aφ(m, v − 2m), (3.2)

where Aφ(m, v) is the number of n-color partitions of v with m parts. If we define

f(z, q) :=
∞∑

v,m=0

Aφ(m, v)z
mqv,

then, by using (3.2), we can deduce that

f(z, q) =
∞∑
n=0

znqn
2

(−q2; q2)
.

By setting z = 1, we complete the proof. �

By (3.1), it is clear that Aφ(ν) + 2Aψ(ν) ≥ 0 for all ν ≥ 1. Now we show that

Aφ(ν) + Aψ(ν) ≥ 0,
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for all ν ≥ 1. To this end, we introduce a new function φ∗(q), which is defined by

φ∗(q) :=
∞∑
n=0

qn
2

(q2; q2)n
.

Note that φ∗(q) generates n-color partitions described in Theorem 3.1 except that the weight

is always 1. Let λ be a partition enumerated by φ∗(q). We subtract c(λi) − 1 from λi if

c(λi) > 1, and denote the resulting partition as µ. Let r be the sum

∑
c(λi)>1

(
c(λi)− 1

)
=

 ∑
1≤i≤`(λ)

c(λi)

− `(λ).

We attach r to the largest part of µ, and also increase the color by r. Then, we observe that

the resulting partition σ is an n-color partition counted by ψ(q). Since each λ corresponds

to a different σ, we have proven that

Aφ(ν) + Aψ(ν) ≥ 0.

Example. An n-color partition λ = (132, 91, 73, 11) corresponds to µ = (122, 91, 53, 11) with

r = 3. Then, the resulting partition σ = (155, 91, 53, 11) satisfies the conditions in Theorem

1.1 as desired.

The second identity we investigate is

υ(q) + υ3(q, q, ; q) = 2
(q4; q4)3

∞
(q2; q2)2

∞
(3.3)

where υ(q) is defined by (1.2) and

υ3(q, q; q) =
1

1 + q

∞∑
n=1

qn(−q−1; q2)n

is the function defined by Choi [18]. We easily obtain (3.3) by replacing α and z by q and q

respectively in Theorem 1 of [18].

Recall that the generating function of t-core partition is (2.1). Note also that

(q4; q4)3
∞

(q2; q2)2
∞

=
(q4; q4)2

∞
(q2; q2)∞

(−q2; q2)∞.

Thus, the product on the right side of (3.3) generates partition pairs (λ, σ) where λ is a

2-core partition of even parts and σ is a partition into distinct even parts.

Remark. By Gauss identity [19, p. 6],

(q4; q4)2
∞

(q2; q2)∞
=

∞∑
n=0

qn(n+1).

Therefore, every 2-core partition consisting of even parts is of the form (2k, 2k − 2, . . . , 2).
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Let b(n) be the number of such partition pairs. Then, we can prove the following congru-

ence.

Theorem 3.2. For all nonnegative integers n,

b(5n+ 3) ≡ 0 (mod 5). (3.4)

Proof. By using Jacobi identity, we arrive at

(q4; q4)3
∞

(q2; q2)2
∞

=
(q4; q4)3

∞(q2; q2)3
∞

(q2; q2)5
∞

≡
(∑∞

m=0(−1)m(2m+ 1)q2m(m+1)
) (∑∞

k=0(−1)k(2k + 1)qk(k+1)
)

(q10; q10)∞
(mod 5).

Since 2m(m+ 1) + k(k + 1) ≡ 3 (mod 5) holds only if m ≡ 2 (mod 5) and k ≡ 2 (mod 5),

the coefficient of q5n+3 is divisible by 5 as desired. �

We can also find an exact formula for the generating function of b(5n+3) by using modular

functions.

Theorem 3.3.
∞∑
n=0

b(5n+ 3)qn = 5q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

. (3.5)

We will follow the argument in [21] to prove (3.5).

Proof. Define F (z) as

F (z) :=
η3(4z)η2(10z)η(100z)

η2(2z)η4(20z)
.

By Theorem 2.6, we have F (z) ∈ M0(Γ0(100)). Note that U5f(z) ∈ M0(Γ0(20)). Let us

define G(z) as

G(z) :=
η2(10z)η2(20z)

η2(2z)η2(4z)
.

Then, by Theorem 2.6, we have G(z) ∈ M0(Γ0(20)). From the order at each cusp by

employing Theorems 2.7 and 2.8, we see that U5F
G

is a holomorphic modular function, namely,

a constant. From this, we can easily deduce that U5F (z) = 5G(z). Recall that Upf(pz)g(z) =

f(z)Upg(z). Thus, we arrive at

U5

(
∞∑
n=0

b(n)qn+2

)
(q20; q20)∞(q2; q2)2

∞
(q4; q4)4

∞
= 5q2 (q20; q20)2

∞(q20; q20)2
∞

(q2; q2)2
∞(q4; q4)2

∞

or

∞∑
n=0

b(5n+ 3)qn = 5q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

,

as desired. �
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Remark. Theorem 3.3 and (3.3) imply that
∞∑
n=1

(Aυ(5n+ 3) + Aυ3(5n+ 3)) qn = 10q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

.

Now, we will show that the left side of (3.3) generates a certain type of n-color partitions.

First, we note that

υ(q) = υ+(q) + υ−(q),

where

υ+(q) :=
∞∑
n=0

qn(n+1)

(−q; q2)n
and υ−(q) :=

∞∑
n=1

(−1)qn(n−1)q2n−1

(−q; q2)n
.

We see that υ+(q) generates n-color partitions satisfying the following properties:

(1) the smallest part is of the form (k + 1)k,

(2) the weighted difference between any two consecutive parts is 0, where the exponent

of (−1) is k − 1, namely the color of the smallest part minus 1.

Remark. From the condition above, we observe that odd parts have even colors, and even

parts have odd colors.

Similarly, we observe that υ−(q) generates n-color partitions satisfying the following prop-

erties:

(1) the smallest part is of the form kk,

(2) the weighted difference between any two consecutive parts not containing the smallest

part is 0, and 1 otherwise, where the exponent of (−1) is k, namely the color of the

smallest part.

Remark. We can see that odd parts have even colors and even parts have odd colors, except

for the smallest part.

In summary, υ(q) generates n-color partitions satisfying the following conditions.

(1) the smallest part is of the form (k + 1)k or kk.

(2) the weighted difference between any two consecutive parts is 0 except that the

weighted difference involving the smallest part of the form kk is 1,

where the exponent of (−1) is c(λ`(λ) − 1 if the smallest part is (k + 1)k or c(λ`(λ) if the

smallest part is kk. Now we turn to υ3(q, q; q). Let us define υ∗(q) = (1 + q)υ3(q, q; q). If we

allow 00 as a part, then υ∗(q) generates n-color partitions satisfying the following properties;

(1) the smallest part is of the form 11 or 00,

(2) the weighted difference for two consecutive parts is −2 except that the weight differ-

ence involving the part 00 is 0.
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Let denote Aυ∗(ν) as the number of such n-color partitions of ν. Then, we have

υ3(q, q; q) =
1

1 + q

∞∑
ν=0

Aυ∗(ν)q
ν

=
∞∑
n=0

(
n∑
k=0

(−1)n−kAυ∗(k)

)
qn.

Since it is clear that b(2n+ 1) = 0, we have

Aυ(2ν + 1) = −
2ν+1∑
k=0

(−1)2ν+1−kAυ∗(k) =
2ν+1∑
k=0

(−1)kAυ∗(k),

where Aυ(ν) is the number of n-color partitions of ν generated by υ(q). We easily see that

Aυ3(ν) > 0, for all ν ≥ 1. Thus, by (3.3), Aυ(2ν + 1) < 0 for all nonnegative integers ν.

We turn to prove Theorem 1.4.

Proof of Theorem 1.4. Replacing q by −q and setting α = −q and z = q in the first identity

of Theorem 1 in [18], we arrive at

2
∞∑
n=1

(−q)n(−q2; q2)n−1 +
∞∑
n=0

(−1)nqn
2

(−q2; q2)n
=
f(−q,−q)
(−q; q)∞

. (3.6)

Note that the first sum generates partitions into n odd parts ≤ 2n− 1 such that

(1) the only repeatable part is 1,

(2) the exponent of (−1) is the number of parts.

Let O1 be the set of partitions λ into distinct odd parts ≤ 2`(λ) − 1 except that 1 can be

repeated. Recall that

β(n) =
∑
λ`n
λ∈O1

(−1)`(λ).

Note that the second sum is φ(−q). Thus, from the equation (26.66) in [19], we have

2φ(−q)− f(q) = f(q) + 4ψ(−q) = φ(−q) + 2
∞∑
n=1

β(n)qn. (3.7)

Recall that φ(q) =
∑∞

n=0(p(n, 0, 4)− p(n, 2, 4))qn. Therefore, we arrive at

2β(n) = (−1)np(n, 0, 4)− (−1)np(n, 2, 4)− p(n, 0, 2) + p(n, 1, 2).

Using the fact that p(n, 0, 2) = p(n, 0, 4) + p(n, 2, 4), we deduce that

2β(2n) = p(2n, 1, 2)− 2p(2n, 2, 4)
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and

2β(2n− 1) = p(2n− 1, 1, 2)− 2p(2n− 1, 0, 4),

which completes the proof of Theorem 1.4. �

Let O be the set of partitions into odd parts without gaps. Then, ψ(−q) =
∑∞

n=0 γ(n)qn

where

γ(n) :=
∑
λ`n
λ∈O

(−1)`(λ).

Therefore, by (3.7), we are able to derive the following theorem.

Theorem 3.4. For all positive integers n, γ(n) = β(n).

We provide a bijective proof.

Proof. Let λ be a partition in O. Let σ be a partition consisting of parts λi − 1 for all

1 ≤ i ≤ `(λ). Let σ′ be a partition obtained by conjugating 2-modular diagram of σ. We

attach 1 from the first part to `(λ)-th part of σ′. Then, the resulting partition µ is in O1.

Since the number of parts of λ and that of µ is the same, this completes the proof. �

4. Sixth order mock theta function identities

In this section, we discuss the following two identities involving sixth order mock theta

functions

Ψ(q) + 2Ψ−(q) = 3
q(q6; q6)3

∞
(q)∞(q2; q2)∞

(4.1)

and

2ρ(q) + λ(q) = 3
(q3; q3)3

∞
(q)∞(q2; q2)∞

. (4.2)

We will prove these identities in Section 6.

First, note that the right sides of (4.1) and (4.2) generate partitions analogous to the

partitions defined by
1

(q)∞(q2; q2)∞
,

which have been studied by H.C. Chan [11], [12], [13]. This partition function satisfies many

congruences [14], [15], and [37], and a crank function for this partition and its overpartition

analogue are studied by the second author [23] and [24].
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Here, we study two analogous partition functions defined by
∞∑
n=1

c(n)qn =
q(q6; q6)3

∞
(q; q)∞(q2; q2)∞

(4.3)

and

∞∑
n=0

d(n)qn =
(q3; q3)3

∞
(q; q)∞(q2; q2)∞

. (4.4)

Remark. From the generating function for t-core partition 2.1, we can regard these partitions

as 3-core partition analogues of H.-C. Chan’s partitions.

We can easily prove that these two partition functions satisfy the following congruences.

Theorem 4.1.

c(3n) ≡ 0 (mod 3), (4.5)

d(3n+ 2) ≡ 0 (mod 3). (4.6)

Now we obtain exact generating functions for these arithmetic progressions. Since η3(3z)η3(6z)
η(z)η(2z)

is a newform in M2(Γ0(6)), we see that

U3
η3(3z)η3(6z)

η(z)η(2z)
= 3

η3(3z)η3(6z)

η(z)η(2z)
. (4.7)

Remark. A classical proof of (4.7) can be found in Fine’s book [19, (33.124)].

Proof of Theorem 4.1. By (4.3), (4.4) and (4.7), we see that(
∞∑
n=1

c(3n)qn

)
(q)3

∞ = 3q
(q3; q3)3

∞(q6; q6)3
∞

(q)∞(q2; q2)∞

and (
∞∑
n=1

d(3n− 1)qn

)
(q2; q2)3

∞ = 3q
(q3; q3)3

∞(q6; q6)3
∞

(q)∞(q2; q2)∞
,

which implies that
∞∑
n=1

c(3n)qn = 3q
(q3; q3)3

∞(q6; q6)3
∞

(q)4
∞(q2; q2)∞

and

∞∑
n=0

d(3n+ 2)qn = 3
(q3; q3)3

∞(q6; q6)3
∞

(q)∞(q2; q2)4
∞

.

�
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Now, we will give a combinatorial interpretation for the sixth order mock theta functions

Ψ(q), Ψ−(q), ρ(q) and λ(q) by using n-color overpartitions.

Proof of Theorem 1.2. We rewrite Ψ(q) as

∞∑
n=0

(−1)nq(n+1)2(q; q2)n
(−q; q2)n+1(−q2; q2)n

.

Recall that (n+ 1)2 generates partition into odd parts from 1 to 2n+ 1. We assign the color

1 to each part. Then, the weight difference of two consecutive parts is 0. We attach each

part λi in λ generated by 1
(q2;q2)n

as follows. We attach 2 from the first row to the λi

2
-th

row. Then, we can see that the weighted difference between the λi

2
-th part and the λi

2
+ 1-th

part of the resulting partition increases by 2. We also attach each part σj in σ generated by
1

(q;q2)n+1
as follows. We attach 2 from the first row to the σj−1

2
-th row and attach 1 to the

σj+1
2

-th row. Then, we increase the color of the σj+1
2

-th part of the resulting partition by

1. We can observe that this does not affect the weight difference. Finally, we attach each

part of µk in µ generated by (q; q2)n as we did for σj, and overline the µk+1
2

-th part of the

resulting partition. We see that this also does not affect the weight difference. By tracking

the exponent of (−1), we complete the proof. �

By employing a similar argument, we can prove the following theorem.

Theorem 4.2. Ψ−(q) generates n-color overpartitions satisfying

(1) the smallest part is of the form kk, which cannot be overlined,

(2) the weighted difference between two consecutive parts is 0 or −2.

ρ(q) generates n-color overpartitions satisfying that

(1) the smallest part is of the form kk or (k + 1)k,

(2) the weighted difference of two consecutive part is −2 if the smaller part is overlined

and 0 or −1 if it involves the unoverlined smallest part and −1, otherwise.

And λ(q) generates n-color overpartitions λ satisfying

(1) the smallest part is of the form kk or (k + 1)k,

(2) the weighted difference of two consecutive parts forms a non-decreasing sequence of

which sum equals −2(`(λ)− 1), where the exponent of (−1) is the sum of colors plus

the number of overlined parts.

Now we are ready to prove Theorem 1.5.
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Proof of Theorem 1.5. Combining Theorems 1.2, 4.1, and 4.2, we can derive the following

congruences. For all n ≥ 0, we have

AΨ(3n+ 3) + 2AΨ−(3n+ 3) ≡ 0 (mod 9),

2Aρ(3n+ 2) + Aλ(3n+ 2) ≡ 0 (mod 9).

We have completed the proof of Theorem 1.5. �

5. Crank analogue for c(n) and d(n)

Recall that c(n) and d(n) are partition functions defined by (4.3) and (4.4), respectively.

We find a Garvan-Kim-Stanton type crank [20] for c(n) and d(n) by modifying a crank given

in Z. Reti’s thesis [35]. Since Reti’s result has not been published and is not well-known,

we give details from his thesis, and show how this crank can be extended to c(n) and d(n).

Interested readers should consult [20] and [35]. The following lemma enables us to extend

a crank for t-core partitions to a crank for ordinary partitions. Here and in the sequel, P
denotes the set of ordinary partitions and P∗

t is the set of t-core partitions.

Lemma 5.1 (Bijection 1 of [20]). There is a bijection between π ∈ P and [π0, . . . , πt−1, π
∗] ∈

P × · · · × P × Pt, which satisfies

|π| = t
t−1∑
j=0

|πj|+ |π∗|.

Let us define the set

S∗(n) := {[π(1), π(2)] ∈ P∗
3 × P∗

3 : |π(1)|+ 2|π(2)| = n}.

Recall that rj(π) is the number of dots colored j in the 3-residue diagram of π. We define a

coordinate system a by

a := [r0(π(1))− r1(π(1)), r0(π(1))− r2(π(1)), r0(π(2))− r1(π(2)), r0(π(2))− r2(π(2))],

where [π(1), π(2)] ∈ S∗(n). We understand #S∗(n,A) as the number of elements in the set

S∗ satisfying the property A. Now we are ready to give cranks for S∗(3n+ 2).

Lemma 5.2 (Theorem 5 of [35]). The following two vectors are cranks for S∗(3n+ 2)

f(1) := [−1, 1,−1, 1] and f(2) := [−1, 1, 1,−1],

in the sense of

#S∗(3n+ 2, f · a ≡ k (mod 3)) =
#S∗(3n+ 2)

3
,

for all 0 ≤ k ≤ 2, where #(S) is the number of element in the set S.
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Even though the two cranks above are defined only on the set of S∗(n), we can extend

these cranks to S1(n) (resp. S2(n)) by using Lemma 5.1, where S1(n) (resp. S2(n)) is the

set of partitions enumerated by c(n) (resp. d(n)). In the next proposition, we give such an

extension in the spirit of [20, Proposition 1].

Proposition 5.3. Let [π(1), π(2)] be a partition in S1(n) or S2(n) and rj(π) be the number

of j-colored boxes in the 3-residue diagram of π. Then, the following two linear combinations

r1(π(1))− r2(π(1)) + r1(π(2))− r2(π(2)) and r1(π(1))− r2(π(1))− r1(π(2)) + r2(π(2)),

are crank statistics for S1(n) and S2(n).

The proof of the above proposition is analogous to that of Proposition 1 in [20]. The key

idea is that the above statistics are invariant under the removal of 3-rim hooks. By using

Proposition 5.3, we can deduce the crank statistics, which can be calculated from the Ferrers

diagram in the spirit of Theorem 3 in [20].

Theorem 5.4. For all partitions [π(1), π(2)] ∈ S1(n) (or S2(n)), we can define a crank from

f(1) by
2∑
j=1

`(π(j))∑
i=1

(δ(π(j)i − i)− δ(−i)) ,

where δ(x) = 1 for x ≡ 1 (mod 3) and 0, otherwise, and `(π) is the number of parts in π.

We can also define a crank from f(2) by

`(π(1))∑
i=1

(δ(π(1)i − i)− δ(−i))−
`(π(2))∑
i=1

(δ(π(2)i − i)− δ(−i)) .

The proof of Theorem 5.4 is easily obtained by calculating the contribution of each row

to the crank from Proposition 5.3, so we omit it.

6. Proof of two sixth order mock theta function identities

In this section, we prove the following two identities which played an important role in

Section 4.

Theorem 6.1. For |q| < 1,

Ψ(q) + 2Ψ−(q) = 3
q(q6; q6)3

∞
(q)∞(q2; q2)∞

, (6.1)

2ρ(q) + λ(q) = 3
(q3; q3)3

∞
(q)∞(q2; q2)∞

, (6.2)

where Ψ(q), Ψ−(q), ρ(q), and λ(q) are the sixth order mock theta functions defined by (1.3).
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Before proving these identities, we need to prove the following two eta function identities.

Throughout the proof, we let EN be a complete set of inequivalent cusps for Γ1(N).

Theorem 6.2. For z ∈ H,

− η4
2η

2
4η

6
6η

2
12η

2
4,2η

6
6,2η

2
12,2 + 4η2

1η
2
3η

8
4η

2
6η

2
3,1η

2
6,1 = 3η8

1η
2
4η

2
6η

2
12. (6.3)

Proof. For 1 ≤ i ≤ 3, let f 1
i be the product of eta-functions in each of the 3 products in

(6.3), and for 1 ≤ i ≤ 2, g1
i be the product of the generalized eta-functions in each of the

2 products in (6.3). Each f 1
i is the product of 14 eta-functions, and by Lemma 2.3 and

a straightforward calculation, each f 1
i is a modular form of weight 7 on Γ1(72) with the

multiplier system υ1, where for A =

(
a b

c d

)
∈ Γ1(72), υ1(A) = ζ4bd

24 . By Theorem 2.4

and a straightforward calculation, each g1
i is a modular form of weight 0 on Γ1(72) with the

multiplier system I. Therefore, f 1
1 g

1
1, f

1
2 g

1
2, and f 1

3 are modular forms of weight 7 on Γ1(72)

with multiplier system υ1.

Recall that [Γ(1) : Γ1(72)] = 3456. Let F1 denote the difference of the left and right

sides of (6.3). By applying the three equations in Lemma 2.5 to F1 and a straightforward

calculation, we find that for each k ∈ E72, k 6= ∞,

ord(F1; k) ≥ 0. (6.4)

Applying Theorem 2.2 for a fundamental region R for Γ1(72), and using (6.4), we deduce

that, for F1, ∑
z∈R

OrdΓ1(72)(F1; z) =
7 · 3456

12
= 2016 ≥ ord(F1;∞), (6.5)

since both sides of (6.3) are analytic on R. Using Maple, we calculated the Taylor series of

F1 about q = 0 (or about the cusp z = ∞) and found that F1 = O(q2017). Unless F1 is a

constant, we have a contradiction to (6.5). We have thus completed the proof of Theorem

6.2. �

Theorem 6.3. For z ∈ H,

− η16
1 η

4
4η

4
6η

4
12 + η16

2 η
8
3η

4
12η

4
3,1η

2
12,2 = 12η10

1 η
2
2η

2
3η

6
4η

2
6η

6
12. (6.6)

Proof. For 1 ≤ i ≤ 3, let f 2
i be the product of eta-functions in each of the 3 products in

(6.6), and g2 := η4
3,1η

2
12,2 be the product of the generalized eta-functions in the second term

in (6.6). Each f 2
i is the product of 28 eta-functions, and by Lemma 2.3 and a straightforward

calculation, each f 2
i is a modular form of weight 14 on Γ1(24) with the multiplier system υ2,
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where for A =

(
a b

c d

)
∈ Γ1(24), υ2(A) = ζ8bd

24 . By Theorem 2.4 and a straightforward cal-

culation, g2 is a modular form of weight 0 on Γ1(24) with the multiplier system I. Therefore,

f 2
1 , f 2

2 g
2, f 2

3 are modular forms of weight 14 on Γ1(24) with multiplier system υ2.

Recall that [Γ(1) : Γ1(24)] = 384. Let F2 denote the difference of the left and right sides of

(6.6). By applying the three equations in Lemma 2.5 to F2 and a straightforward calculation,

we have that for each k ∈ E24, k 6= ∞,

ord(F2; k) ≥ 0. (6.7)

By using the similar argument in the proof of Theorem 6.2, we can see that F2 = 0 by

checking the first 449 terms, which was done by Maple. �

We now derive two theta function identities from the previous eta function identities.

Theorem 6.4. For | q |< 1,

− f(q, q5)6f(q3, q3)2 + f(q2, q4)6f(1, q6)2 = 3
(q; q)2

∞(q3; q3)2
∞(q6; q6)8

∞
(q2; q2)4

∞
.

Proof. By the Jacobi triple product identity,

f(q, q5) = (−q; q6)∞(−q5; q6)∞(q6; q6)∞ =
(q2; q12)∞(q10; q12)∞

(q; q6)∞(q5; q6)∞
(q6; q6)∞, (6.8)

f(q3, q3) = (−q3; q6)2
∞(q6; q6)∞ =

(q6; q12)2
∞

(q3; q6)2
∞

(q6; q6)∞, (6.9)

f(1, q6) = 2(−q6; q6)2
∞(q6; q6)∞ = 2

(q12; q12)2
∞

(q6; q6)∞
, (6.10)

and by Euler’s identity,

f(q2, q4) = (−q2; q6)∞(−q4; q6)∞(q6; q6)∞ =
(q4; q12)∞(q8; q12)∞
(q2; q6)∞(q4; q6)∞

(q6; q6)∞. (6.11)

Dividing both sides of (6.3) by q2 η
4
2η

2
4η

2
12η

6
6,1η

6
6,2η

2
6,3

η2
6

, using η2`,`η
2
2` = η2

` and η3`,`η3` = η` fre-

quently, and employing (6.8)–(6.11), we get the identity in Theorem 6.4. �

Theorem 6.5. For | q |< 1,

− (q; q2)6
∞f(q3, q3) + (−q; q2)6

∞f(−q3,−q3) = 12q
(q6; q6)∞(q12; q12)4

∞
(q2; q2)2

∞f(−q2,−q10)2
.
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Proof. By Jacobi triple product identity, we can derive that

f(q3, q3) = (−q3; q6)2
∞(q6; q6)∞ =

(q6; q12)∞
(q3; q6)∞

(q6; q6)∞ (6.12)

and

(−q; q2)∞ =
(q2; q4)∞
(q; q2)∞

. (6.13)

Now, dividing both sides of (6.6) by q−
1
4η4

1η
10
2 η

6
4η

3
6η

4
12η

3
2,1η6,3η

2
12,2, using η2`,`η

2
2` = η2

` and

η3`,`η3` = η` frequently, and employing (6.12) and (6.13), we derive the identity in Theorem

6.5. �

Finally, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. First, we prove (6.1). Replacing z by q in Theorem 4 [18] and using

Theorem 6.4, we deduce that

1 + q

q
(ψ(q) + 2ψ−(q; q))

= −q
2

2

(−q−1,−q−1,−q3,−q,−q; q2)∞
(q,−q2, q, q, q; q2)∞

f(1, q6) +
1

2

(−1,−1,−q2,−q2,−1; q2)∞
(q,−q3, q, q, q; q2)∞

f(q3, q3)

= −(1 + q)(−1; q)3
∞

128

(
8(−q; q2)6

∞f(1, q6)− (−1; q2)6
∞f(q3, q3)

)
= −(1 + q)(−1; q)3

∞
128

16(−q3; q3)2
∞

(q6; q6)7
∞

{
f(q, q5)6f(q3, q3)2 − f(1, q6)2f(q2, q4)6

}
= 3

(1 + q)(q6; q6)3
∞

(q; q)∞(q2; q2)∞
.

Multiplying both sides of the above equation by q
1+q

, we conclude

ψ(q) + 2ψ−(q; q) = 3
q(q6; q6)3

∞
(q; q)∞(q2; q2)∞

.

Now we turn to (6.2). Using Theorem 6.5 with q replaced by q1/2, we obtain

2ρ(q) + λ(q; q) = −
(q

1
2 ; q

1
2 )6
∞f
(
q

3
2 , q

3
2

)
− (−q 1

2 ;−q 1
2 )6
∞f
(
−q 3

2 ,−q 3
2

)
4q

1
2 (q; q)3

∞(q2; q2)3
∞

= −(q
1
2 ; q)6

∞f(q
3
2 , q

3
2 )− (−q 1

2 ; q)6
∞f(−q 3

2 ,−q 3
2 )

4q
1
2 (−q; q)3

∞

= 3
(q; q)∞(q3; q3)∞(q6; q6)4

∞
(q2; q2)3

∞f(−q,−q5)2

= 3
(q3; q3)3

∞
(q; q)∞(q2; q2)∞

.

�



24 Y.-S. CHOI AND B. KIM

7. Concluding Remarks

The following questions naturally arise from our work. First, it is desirable to find a proof

for Theorem 6.2 by using Ramanujan’s modular equations. From the fact that the generating

function for n-color partitions (resp. n-color overpartitions) and the generating function for

plane partitions (resp. plane overpartitions) are the same, it would be interesting if we can

describe mock theta functions as generating functions for certain class of plane partitions or

plane overpartitions. Finally, we define the function M(m,n) by

∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn =
(q3; q3)3

∞
(q; q2)∞(zq2; q2)∞(z−1q2; q2)∞

. (7.1)

Note that M(0, 3, 3n+ 2) +M(1, 3, 3n+ 2) +M(2, 3, 3n+ 2) = d(3n+ 2) and M(0, 3, 3n+

2) = M(1, 3, 3n + 2) = M(2, 3, 3n + 2) for any nonnegative integer n, where M(i, 3, n) =∑
m≡i (mod 3)M(m,n). Since the function M(m,n) explains the congruence d(3n + 2) ≡ 0

(mod 3), we can call the function M(m,n) as a crank function for d(n). Therefore, it is

natural to ask what M(m,n) counts.
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