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Abstract. In his last letter to Hardy, Ramanujan defined 17 functions F(g), where |g| < 1. He called them
mock theta functions, because as ¢ radially approaches any point ¢>™” (r rational), there is a theta function F,(g)
with F(q) — Fr(g) = O(1). In this paper we obtain the transformations of Ramanujan’s fifth and seventh order
mock theta functions under the modular group generators 7 — 7 + 1 and T — —1/7, where ¢ = €™'%. The
transformation formulas are more complex than those of ordinary theta functions. A definition of the order of a
mock theta function is also given.
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1. Introduction
In Ramanujan’s last letter to Hardy [13, pp. 354-355; 14, pp. 127-131; 16, pp. 56-61], he

observes that the asymptotic expansions of certain g-series with exponential singularities
at roots of unity “close” in a striking manner. For example, let

e qn(nJrl) 00 1
H(g) = = 1.1
D=L T - La—gea-es O

(where the last equality is the second Rogers-Ramanujan identity). If g = e¢™" and t — 0%
(so that g approaches 1 radially from inside the unit circle), then

2 11
H(g) = g —f) +o(1). (1.2)

2
5+ 5 exP(lSt 60

In the same letter Ramanujan notes that it is only for some special g-series f(g) that the
exponential closes, i.e. its argument terminates with some power . If f(g) is not the sum
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of a theta function and a function which is O(1) at all roots of unity p, and if for each such
p there is an approximation of the form

M N
HOEDIE exp( > c,m“) +0(1)
n=l1

v=—1

ast — 07 with g = pe™’, he calls f(q) a mock theta function. It appears from his
letter, however, that he was actually concerned with functions having the (possibly) more
restrictive property that for every root of unity p, there are modular forms h(jp ) (g) and real
numbers a;, 1 < j < J(p), such that '

J(p)
f@) =Y q“h @)+ o)

J=1

as g radially approaches p.

Ramanujan listed seventeen such functions, to which he assigned orders 3, 5 and 7. (The
order is analogous to the level of a modular form.) Watson [16] found three more mock
theta functions of order 3, and two more of order 5 appear in the Lost Notebook [14, p. 9].
In [16] Watson obtained the transformation laws for some of the third order functions under
the action of the modular group. However, his method could not be applied to the fifth and
seventh order functions, owing to the lack of suitable expansions into generalized Lambert
series. In this paper we complete the transformation theory for the third order functions, and
obtain the analogous formulas for some new infinite families of mock theta functions. Then,
using the mock theta conjectures proved by Dean Hickerson [10], we extend the theory to
Ramanujan’s fifth and seventh order functions. As a corollary we show that they are not
ordinary theta functions.

We use the standard notation for g-shifted factorials:

(@;+q") = 1,
(@3¢ = (1 — a)1 — ag")(1 —ag™)--- (1 — ag™"),
(a;—¢", = (1 —a)1 +ag")(1 — aq2k)...(1 _ (_l)n—laq(n—l)k)7

(@;¢" = [ [ = ag™),

2 1 e

@;—q"e = [ [(1 = (=1)"ag™).

m=0

When k = 1 we usually write (a), and (a) instead of (a;q), and (a; q)~, respectively.
For rational r with O < r < 1, define

0 nn—1)

q
M= 2

x n(n—1)

q
MnD =2

n=1
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o0 n(n—1)

q
My(r, q) =
2 ) ; @ =Dn(—=q"" =@

9

2

) n? n

00
q q
N(r,q) = E ————— =1+ E 0 )
( 6]) — (ezmr)n(e—Zmr)n — Hk:l(l _ 2qk cos2mwr + q2k)

o 2n(n—1) 0 2n(n—1)

q q
Ni(r,q) = 4 4 = .
; (ezmrq;q2)n(e—2mrq;q2)n ; HZ:I(I _ 2q2k71 cos2mr + q4k72)

Ramanujan’s mock theta functions have ordinary power series expansions. For this reason,
if ¥ = a/b with a and b relatively prime, we often replace g by ¢ in the defintions of M,
M, and M,. In particular, we define

o bn(n—1)

q
M(r, q) = E ,
() = (q%:9")n(q" % q")n

o qbn(n—l)
Mi(r, q) = ,
; (=q“:9")n(=q"*; q")n
o bn(n—1)
q
WHIEDS

= (g% —=g"n(=q"% —qb)

The functions N and N; appear in Watson’s paper [16, p. 64, 66]. The third order mock
theta functions, described in Ramanujan’s last letter to Hardy [13, pp. 354-355] (also see
[16, p. 62]), can be expressed in terms of our new functions:

1
fl@) = N(g, q) =2-2M0,q) =2 —-2M (1, q),

1
1
W(q)=qM<Z,q>,
1
x(q)=N<6,q>,
1 |
CU(Q) - Nl(Ov C]) - N1<_7 _q> = M<_v 6])’

2 2
I
v(g) = N Z,qz ,

1
v(—gq) = Mz<§, q>,
=N : =N !
po(q) = 1(5,61)— 1(6,—q>-
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The identity f(q) = 2—2M;(0, q) is a special case of equation (1.2) below, and the identity
¥ (q) = gM(3, q) follows from

x qn2 e q(2nfl)2 q(Zn)2 e q(2n71)2 1
w<>=§j—=§j( + )=§:—= M(—, )
1 @95 S\ @Pm (@9D0n) = @97)m N\a

n=1 n=1

Applying the half-shift method [9, pp. 328] to a mock theta function often gives rise to
another mock theta function. In view of the identities

[e9) n?
— 14 g M9 (1.1)
n=0 (CI )n+l(q )n
and
& qnz
>y — —— =1-¢"M(r.q). (12)
(=g Nur1(—q" ")y

nothing new is obtained by the half-shift method. Dean Hickerson [10, pp. 648—649] prefers
to work with the form

q(x q) X ( + ; (-x)n+l(Q/x)ll>

which equals M (r, g) when x is replaced by ¢".
The second author proved (1.1) and (1.2) using recurrences. The following proof com-
municated to us by Hickerson is easier. The identity

i ,12 i n2 00 qn(n+1)
—~ (x)n+1(q/x)n (n (q/x)n = (Ont1(q/X)n
00 n? o0 gD
=1+ o L oo
o0 nn—1)

:1+xz a4

2 (g%

with x = ¢g” gives (1.1). Setting x = —q" gives (1.2).
To obtain transformation formulas we use the following generalized Lambert series:

1 o —1)" n+r ;
M(r,q) = > Sk i (S (1.3)

(Do i, 1 — g™

1 o0
M) = >

=—00

(_1)n+lqn+r
1 + qn+r
0 (_1)%n(n+1)qn+r

%n(}’H*l)’ (14)

%n(n+1)’ (15)

M =
2 (r, (*I) (—C]§ _Q)oo H:Z:oo 1+ (_1)n+1qn+r



MODULAR TRANSFORMATIONS 197

i (=D +q")(2_2C0527”)q%n(3n+1) (1L6)
1 —2g" cos2mr + g2 ’

N(r,q)=(q+[l+

1 & (=11 = g**")
(@)oo “=4 1 = 2¢"F2 cos 277 + g2t

n=1

Ni(r, q) = an(nt ) (1.7)

Equations (1.3) and (1.4) can be further simplified by replacing r by 1 — r and n by
—n — 1. This gives

1 00 (_l)nq%n(nJrl)
M@, q) = — T
(q)oo n=—00 1—- qn+

and

1 00 (_1)nq%n(n+l)
M](r, q) = — 7]44
(@)oo e —o00 1+gq"

To prove Egs. (1.3)-(1.7) we begin with the Watson-Whipple transformation [8, p. 242,
Eq. (IL.17)]:

aq ag dey 3934 (1.8)

b’ ¢’ a

aqg aq aq
(aq,%,ﬁ,g)oo |:%,d,e,f :|

Now

(qa%)n(—qa%)n _ (1 _an)(l _aq4)...(1 _ann) _ 1 _aq2n
@), (—ab), (-a(—ag) (—ag?  l1-a

Letd, e and f tend to infinity. Then (aq/d),, (aqg/e), and (aq/f), tend to 1. Also,
)y =1 —d)(1 —dg)---(1 —dq"™")
= ay(-L 1) (-2 4+ L
- d a9 a9
~ (_d)nq%n(n—l)

as d — oo. Similarly, (¢), ~ (—e)'q2"" D as e — 0o and (f), ~ (—f)'q2""=D as
f — oo. Hence in the limit, (1.8) becomes

- (%)n n_n®> _ = (l—dq2n> (a)"(b)”(c)" ( a2>” 1n@GBn+1)
@2 i), @, = 2T )igm, @), Tee )
(1.9)
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Now puta =¢q,b =¢" and ¢ = ¢'~" to obtain

®) i _ e f:(—l)n<1 —q2"+]> e gD
. -
o S C A M O/ M L—q (@)@

e 2n+1 r I—r
_ Z(—l)n<1 —q + > 1-g"H1—-q'™) q%n(;1+1).
n=0

1— q (1 _ qn+r)(1 _ qn+lfr)
Thus
00 n 2n+1
DA =g™) s
(@)ocM(r, q) = an(ntD)
; (1 _ qn-‘rr)(l _ qn-‘rl—r)
Since

1— q2n+l q

n+r 1 n+r —n—1+4r
_ 4 _ 4 q
(1 =g — qn+17r) T 1= gt 1— qn+17r T 1= gt 1— q7n71+r ’

it follows that

(_l)n(l _ q2n+l) _ (_1)nqn+r (_1)—11—1q—n—1+r
(1 _ qil+r)(1 _ qn+1—r) - 1 _ qn+r 1 _ q—n—l+r

As n runs from 0 to 0o, —n — 1 runs from —1 to —oo. Moreover g 2"(1+1) = g3(=n=D(m)
Hence

o0

@M (r.q) =Y

n=—0oo

(—l)nqn+r %n(n-H)’
1 _ qn+r

which completes the proof of (1.3).

Equation (1.4) follows from (1.9) witha = g, b = —¢" and ¢ = —¢'~". To prove (1.5)
first replace g by —¢ in (1.9) and then seta = —¢q, b = ¢" and ¢ = —¢'~". Equations (1.6)
and (1.7) are given in [16, p. 64, 66]. If we leta — 1 and put b = >, ¢ = ¢=>"" in (1.9),
then we obtain (1.6). Lettinga — 1, b = 2> and ¢ = gze~>"" in (1.9) yields (1.7).

2. Transformation formulas

From the definitions of M(r, q¢), M(r, ¢) and M (r, ¢) we observe that when r = a/b,

Mo(r, q) if a is even and b is odd,
M(r,—q) = 3 Mx(1 —r,q) ifaandb are odd,
M@, q) if a is odd and b is even,
Mo(1 —r,q) ifaisevenandb isodd,
My(r, —q) = 3 Ma(r, q) if a and b are odd,
M(r, q) if a is odd and b is even,
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M(r, q) if a is even and b is odd,
My(r, —q) = { My(r, q) if a and b are odd,
Mo(1 —r,q) ifaisoddandb is even.

Also observe that Ni(r, —q) = Ni(|3 — rl, q).
Since any substitution of the modular group can be decomposed into a finite number of
substitutions of the forms

'=1t+1 and 1’ =-1/1,
it is sufficient to construct the transformations that express the 10 functions M(r, +¢),
Mi(r, £q), My(r, £q), N(r, £q) and N;(r, &¢q) in terms of similar functions of g; (or

powers of ¢;), where ¢ = ¢ and q; = e # with @8 = n2. In view of the above
observations these transformations can be obtained from the following three formulas:

; _1 3
7N MG g) = [ ——cse(ar)gy CN(r.qt) — | = T (r, @), 2.1
200 2
Sr(1-r—% 2 4 2 3a
E #Mi(rq) = =\ —4i N (r.q7) — 5 i), (22)
FODE () = | ese( 2D g ¥ N ( I e, @3
rq)=.— — =, =q1 | = =— Ja(r, @), .
4 24 4 A T 2

where the Mordell integrals J, J;, J» are defined by

© _5,.2c08h(3r — 2)ax + cosh(3r — Dax
J(r,a) = e 3 dx
0 cosh S0x

e = /oo T sinh(3r — Z)a'x —SSinh(3r — Dax d
0 sinh sax

® 5, 7 5
J(r,a) = f e 2 { cosh <3r — —)ax + cosh <3r _ —)ozx
0 2 2
1 1
+ cosh (3r — E)ax — cosh <3r + §>ozx}/cosh 3axdx.

The presence of the Mordell integrals proves that these functions are not ordinary theta
functions.

We now prove (2.1). The proofs of (2.2) and (2.3) are similar. In (1.3) put g = ¢™* with
a > 0 and consider the contour integral

)

1 +oo—ei T efa(err)

3
I=L+5L=-— . e 2% gz
270 J_oo_ei SinTz 1 — G+

1 —o00o+€i T e—ot(z+r)

—%ozz(H—l)dZ,

270 Jyooqei STz 1 — 2G4
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where € > 0 is sufficiently small. By Cauchy’s residue theorem, / is equal to the sum of
the residues of the poles of the integrand inside the contour. Now 7/ sinmz has a simple
pole of residue (—1)" at each integer # and 1/(1 — e~*@*+") has a simple pole of residue

1/ at z = —r. If € is sufficiently small, there are no other poles inside the contour. Hence
00 _1\n n+tr —ér(l—r)
W 1—q" sin(—nr) «

We now consider /. In the upper half plane we have

1 o0
. n+Dri
i = —92; Ze( n+ )mz’
sinmz ot
SO
o) +oo+tei e(2n+1)nizfa(z+r)f%az(erl) o)
h=y [ S —d=Y
n=0 v —oo+tei n=0

say. The integrand of J, has poles in the upper half plane at the points z where 1 —e ™G+ =

0, that is, at the points

2wim

Im = —r +

form =1, 2, .... The residue at z,, is

DT iz =0 @ +r) =302 @+ 1)
Anm = 2mi

o
2mi e—(2n+1)m’rq§2ﬂ+1)2mq—%r(l—r)e—%(I—Zr)Zm‘mql—émz7
o
7f2 . . . .
where q; = e~ '« . Next, we symmetrize the denominator of the integrand of J, by using
the identity

~
N
(SIS
_|_
~
[N
_I_
~
I

—_
|
~
~
|
wlw
|
~
wIw

Applying this with t = e~*¢*")_ we find that the integrand of J, is

e%a(z-&-r) + e—%a(z-&-r) + e—%a(z-&-r) 3

e 2 ozze(2n+l)rriz— %az2

e%a(z+r) _ efgot(zﬂ')
To find the saddle point, we set the derivative of the last factor equal to 0, getting (2n +
i —3az=0o0r
2n + Dmi
1= ———————
3a

- no

say. We move the upper contour of J, up to the horizontal line through w,, getting J/. By
the residue theorem,

Ju = J, + sum of residues of poles of integrand between the two contours.
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These poles are the points z,, = —r 4 2wim/a for which 0 < 2m < (2n 4 1)/3, or
equivalently, 0 < m < n/3. Hence

Jn=J/+ Z )\nm

O<m=<3
Summing over n, we obtain
00 0o
12 = Jn + )\n m
n=0 m=1 n=3m
Now
__ 2mizy —2mir 4m
Anglm =€ Anm = q7" Mnm-
Hence
nm —
m=1n=3m 1_ e 2mr 4m
- —(6m+Dmir , Om+12m _3r(1—r) —3(1-2r)27im ,—6m>
_ 27i e ¢ ) q q 5r(1=r)p=5( ) q;
- _ =2mir ,4m
m=1 &% l—e a9,
. o) m_ 6m*+2m
_ 2mi qur(lfr)efnir Z (=D a9
- _ p—2mir ,4m’
o —l—e q;
SO

( l)m 6m? +2m o0
1— e—2mrqu + Z J”' (25)

2mi 3 .
12 — q—ir(l—r)e—mr
o Z n=0

m=1

Before going on to evaluate the integral J/, we remark that the integral I; over the lower

contour can be handled similarly. This time the expansion

1

=2 2 7(2n+1)mz
sinmz =0

is employed. Note that this is just the complex conjugate of the expansion used in the upper
half plane. Thus

where

+o00—€i e —Q@n4Dmiz—az+r)—2 saz(z+1)
K, _/ dz.

—oo—ci 1— efa(ZJrr)

The lower contour is moved down to the horizontal line through w,,, giving
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The sum here is just the complex conjugate of the one evaluated above, so from (2.5) it
follows that

2mi s & (—1ymgbmitm
I = __qfir(lfr)emr 71”1 + Nis (26)
o W; 1— eZmIqi‘ ; n
Adding (2.5) and (2.6) we obtain
I=5L+1
2mi 3 & 2 e Tir emir > -
— = —sr(d=n) —1y" 6m +2m|: _ i|+ J/ —|—]/
o q mX::l( ) il 1 — e—Znirq?m 1 — eZnirqilm nX:(:)( n ’1)
A7 S 00 (_l)mqlﬁm2+2m(1 +qilm 00

) +Y U+ T

— 3r(l=r) o
=—q 7 sinrr 1 g
1 —2g\"cos2nr +qi" =5

o m=1

It now follows from Egs. (1.3) and (2.4) that
T q—%r(l—r)
sin(—r) o

mg=3ra=n |:1 N i": (=2 — 200s2nr)q16m2+2m(1 + q?’"):|

(@)ooM(r, q)

8m

asinmgr 1 —2g{" cos2nr + g}

m=1

+ i(Jn’ +J)).
n=0

Using (1.6) with ¢ replaced by g we get

—3r(1-r) 00
_ 5 4, 4 4 7
(q)ooM(V, q)— W(Ql,ql)wN(r, q1)+;(-]n+]n) (27)
‘We now evaluate
00 —_
Y Unt T
n=0

In the integral J, put z = —r + p + x, where p = (2n + 1)7i /3« and x is a real variable
running from —oo to oco. This gives

3 o0
J = q_i"/ ABC dx,
—0o0
where
A= e(2n+1)m‘(7r+p+x)
e~ Upt) 4 o=20(ptx) 4 o=3e(pt)

B = 3 3 ’
e29(pt+x) _ p—3a(p+x)

C = e—%(x(—r-&-[H—x)z
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Simplifying, we obtain

_ Q@nibmi _2@n+hmi
3 e T e 2ax

1?2 OO
J = q—-’(l r)q e H) / € e + ’ e3m‘x—%ax2dx
" _ 2(—1)"i cosh 3ax

(e ¢]
2

—-r(l " (2n+l) oo e—3ax63arx—%ax
—q q 5 —dx
—o0 2(—1)"i cosh sax

=P, + Qna
say. Since Q,, is purely imaginary, we have J! + J/ = P, + P,. Making use of the fact that
2n + Dmi . 2@n+ Dmi
in —— =sin ——
3
for all integers n, we find that

(Zn + 1)7-[ 4(1_ ) (211+1)

P+ Py = (=1 sin————g a,
/"O _3g,2 €0sh(3r — 2)ax + cosh(3r — Dax
X e 2 3 dx
oo cosh sax

2n + an—%r(l—r) (2n21)2

=2(=1)""'sin 3 q, © J(r ),

where J(r, o) is the Mordell integral used in formula (2.1). In [18, p. 464] we see that

] (n—i—l)n @n+1)? T 2
ZZ( )" sin ————¢q, ° :91(3»5113)
1 > an am 21 sm
=2q1681 l:[( )( —2q13 COST"‘(]I )

3
Z“/géh ﬁ( 4m)(l‘f“h +611 )
= V34 (a3 al)

e} _ e8] _ s ., 1
DUt Ty =3 P+ P = =3¢ g (g5 4) 0 0.
= n=0

Substituting this into Eq. (2.7) yields

angr(lfr)

asinmr (a1301) N (- a1) = V39~ -0 6(41’611) J(ra). (2.8)

(@)ooM(r, q) =
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By the functional equation for the Dedekind n-function (see, for example [5, p. 48]) we

have
27 §( 4. 4
(@ =/ —a" g (qtiaf) .- (2.9)

Using this to eliminate (g)~, from (2.8) we obtain

gINEMG ) = | esctera; N (raf) - I
’ 2 ! ! A

which completes the proof of (2.1).

In [16] Watson does not give transformation formulas for the mock theta functions x and
p. These transformations involve the new mock theta functions £(g) = 1+ 2q/\/l(%, q) and
o(q) = ./\/ll(%, q). It follows from (2.1)—(2.3) that

Z 3w
q 24x(q) ,/ %‘ i +,/—W1(oc),
qz&x(—q)z\/iql % \/ W(a)

2 5 o
q3p(q)=—\/7q (q1)+ 4nW2<2)
qép(—q)z,/lé(—q%>—\/3—aW(a)

4o 1 e
_ 47 —L 2 9aW 3¢
s(q)—\/gql x(ql)— - z<7>,
4 2 1 36

s =\ 50 p(—ai) +/ T WiGa),

7 2w 4 Z 9
qso(q) = —\/3—qu qﬁ +\/—W1(3a),
7 T
gio(—q) = ,/3 ql ‘/ W(3a)

whereg = e %, q; = e~ ? with aff = 72 and the Watson-Mordell integrals W, Wy, W,, W;
are defined in [16, pp. 77-79] by

00 5 1
_ 3 ,cosh 3ax 4 cosh sax
W(a) = e 2% 2 2 " dx,
0 cosh 3ax

;.. sinhax
W] (Ol) = e 2 73dx s
0 sinh S0x
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oo
_3_ 2 coshax
Wo(a) = e 2% ———dx,
0 cosh 3ax
2 sinhax

* 3
W — —3ax” 2
3(@) /0 ¢ sinh 3ax *

These are related to our Mordell integrals by

1 1 1 1 T
W(a) = 2J<Z,4a> = Jz(g,a) = 5(12(0, a)+ Ll a) = EJz(l,a)Jr,/aeﬂ“,

1 1
Wl(Ol) = —2]1(1,4Ol> = —]1(5,()[),
Wate) = J( 2 40 ) = 27( .4 7
2a - 27 (24 - 67 (44 6(17
Wate) = —~ai( 220 ) = 0 (L20) + |2
sO=TM ) T e ™ 120’
where we used the fact that
° 1 2
]2(0,05)=2/ e=39 cosh [ —ax dx:,/—neﬁ“.
0 2 3a
Watson’s asymptotic expansion of Wi(«) is incorrect. It should read

w2 L (2 L
RO =6V 3 9% T g%

for small values of «.
The function y(q) = N (%, q) is defined in Ramanujan’s “lost” notebook [14, p. 17] (also

see [4, p. 62]), but the related function M(%, q) is not mentioned there.

3. The fifth and seventh order mock theta functions

Ramanujan’s fifth order mock theta functions are [13, pp. 354-355; 14, pp. 127-131; 17,

pp. 277-278]:
o n? o nn+1)
q q
folg) = . filg) = ,
; (=q)n ; (=q)n
00 2n? 00 2n(n+1)
q q
Fo(g) = . Fig) = —_——,
,,2:(:) (459)n = (q:9Pnn1

$o@) =Y a"(~a:a, d1@) =Y q" " (~q:4"n,
n=0 n=0
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o0 oo
1 1
Yol@) =Y 2" —g)e. Yi@) = q>" (=),
n=0 n=0

n l‘l

oo q oo
x0(@) = ay s ai@) = Z(q”“)+1

n=0 (q n=0

These functions are connected to the functions M (g, q) and M (5, q) by the mock theta
conjectures [3, pp. 245-246] (see also [10]):

1
folq) = —2q2M<§, q”’> + 60400, ¢°)G(q),
2
filg) = —2q3M(§, qm) + 6040, ¢°)H(q),
_ _ l 5) _ 5 2
Fo(g) — 1 —qM(S,q ) q¥(q”)H(q"),
2
Fi(q) = qM(g, q5> — ¥ (g°)G(gD),

1 %:¢°)G @) H
¢0(_q)=_qM<§’qs>+(q )xG@)H(g)

H(g?)
(205 4@ 4G H (G
¢1(—=q) =¢q M<5 q) G ,

<
=
Q
>
Il
Q
(3]
<

,q1°> +9(@:4")0(@”: 0o (@' ¢ s H(Q),

vi(g) = ¢*°M ,q1°)+<q :0"%(q":0"(q"% 4" )G (q),

(@°:9)=G(q)*

) - H
)

x0(q) —2 =3qM :

LS

(@47 H(q)?
T ew

x1(q) =3gM >

NN N — Ll | —
)

~ N/

where

2
64(0, q) = Z (_1)n n?* __ (q)oo _ (Q)oo

[ P (@53
Y=Y g = D @)
(4:9%) Do

[ee) q,,Z B 1

G(q) = L
@ = Dn (607)00@* G700

qn(n-H) 1
H )
@ = Z @Dn  (@%9)0(% 470

Note that Egs. (3.8)r and (3.9)r in [3, pp. 245-246] are stated incorrectly.
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To prove the transformation formulas for the fifth order mock theta functions we need
the following transformations obtained from (2.9):

1 2 1
77 (@)oo =/ anf’ (a1541)
4 1L
0:0.9) = || —-a; v (4}). (3.1)
S(g) = | ——04(0, 2
qs¥(q) = Y 4( . 41)

where ¢ = e™® and q; = e™# with af = 2. The Rogers-Ramanujan functions G and H
satisfy [15] (also see [12])

1 5+ u
. L [5- By
q (@)= 10

b= 2 - Sk
q q 10

The transformation formulas for Ramanujan’s fifth order mock theta functions are:

(3.2)

and

| 27 (5 1 27 (5
o sy = | O gy — 1) O i
o
+ 6()—aj<l,10a>,
T 5
" 27(5+5) 2t(5 -5 u
99 fi@) = =< ——a " (Folai) = 1) - | 5 ——a" Fi(4])
+ “_“J(%,loa)
T 5
5—4/5) 5
0 fo(—q) = — | TV mf T o)y ) +f) a® fi(=qn)
(0%
+ 6()—aj<l,10a>
T 5

5
4% fi(—q) = +f) a7 folmqn) +y T f) ¥ fi(=qn)

Wl N
—_
o
Q

N———



208 GORDON AND MCINTOSH

o 5-=v5 -4 [m(5++/5) u
q ™(Fo(g) -1 = HT% folat) + ET‘H fi(qt)
lSOlJ 1 5
Voor (5 a)’
n 5++5) -4 [n(5 =5 u
g™ Fi(q) = z 00 I folat) — nzo—a% fiat)
5 ()
2 5
(54 /5) 7(5—-+5) 2

¢ (Fo(—q)— 1) = g7 (Fo(—qn) — 1) + 9 Fi(=q))

i

S
S

O

71 5—45 L 5445 1
g™ Fi(—q) = l lof)ql P (Fo(=q1) — D+ MQ]IZOFI(_QI)
o 10«
1501J 2 5
W 5 “)
1 54+V5) -1 5—45) —x
q ™ao(q) = MTﬂ41 " do(q1) + Mﬁh P o1(q1)
o 10«
15aJ 4 5
Vg P50
49 5—45 L 5+45 _—w
g g = | lof)q1 B gotan) — | YD =B
o 10
_ 15_“12(%,5a>
2 5
i w5 =5 4 7(5++5 4
q D Po(—q) = s D I/f(qlz)"‘ -l Wl(‘hz)
lSo{J 1 5
TV 5
_a 54+V5 -4 5-+5) 1
g o=~ o 4 P vola?) + %qﬁwl(q%)

|
=—
vz
~
N
W N
(9,}
Q
N——"
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! -5 5 _®
T Yo(q) = Tf “go(—qf) - T £ Y5) (-
o

B lSOlJ(l 10)
I
1 5 5 5—
a0 yi(g) = ”(%f) 7 o ,/”( f) a7 P (-
(074
_ 15_0‘;(31005)
T 5
| 5—4/5 5
4 Po(—q) = — ”(Tf) T o(—g ,/”( Y5 B
[04
B lSOlJ(l 10)
7 5

i 5 5
aH Y (—q) = M T p(—q) | T f) af i)

1 2
+ ﬁ](—,looe),

T 5
L 7'[(5—\/_ _L n(5+f) 71
4 (0(e) ~2) = - )—2) =,/ FR V)

o
135aJ 1 5
2 524

il (5 ++/5) lo n(S—f) ;(1]
a@) = = 0 (el

o
a7 ™ (xo(— ql)—2>+\/ 3 B can

5 I
a7 Gtol—aq1) — 2) — \/”( V5 B o
,501).

We will prove the first transformation formula. The other 19 are similar.

|
¥R
1S
~
N
Wl o
W
1S
~—

5

4 ™ (xo(—q) —2) =

+
=
vlgl s
Q
S
—
AN
wn
S
v

°1( q) =

]

+
HE
S
S
N
N
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Using the mock theta conjectures to eliminate fj(g), Fo(ql ), Fi (q ) in the first transfor-
mation formula we obtain

119

1 |
—2q M (g’ q‘°) +4q” 9040, 47)G(q)
27(5 — 119 119
\/ﬁ[ 60 M( ql ) _ qlso w(qll())H(qix):I
Sa 5
2r(5+ V5[ o (2 1 c0a /1
+\/§[‘h M(gﬂfo)ﬂh w(‘]llo)G(Q?)}-F,/TaJ(g,lO(x). (3.3)

Equation (2.1) with » = 1/5 and ¢ — ¢'° becomes

w1 n(5+f) 1 2 150 (1
Ml = 10 — 60 5) e 1 .
a° (5"’ ) T N(s > V7 5 10w

Substituting this into (3.3) yields

275+ /5) 1 :

G (gl ) +atno.a6w
277(5 — 119 w
- af)[ 60M<5 @ >_q'mw(qlm)H(q?)}
S+ V[ w2 o

+ %[4{’" M<§» qf°> +°1f°1/’(q110)6(‘ﬁ)]'

1
Equation (3.1) with ¢ — ¢° (and hence @ — 5« and ¢; — q; ) becomes

040, ¢°) = \/gqfl" W (qf)

Using this equation and (3.2) to eliminate the variable g in (3.4) we get

(3.4)

2G5+ YY) g 2\, 25 +V5) o (g
T 25a N(s q1>+ T 25a ‘”( 1) (47)
[2m(5 — V/5) T

+ 25a W( ) (4)
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2w (5 — ﬁ 119 1 119
% [qf” M(g, ql“’) -q," w(QIIO)H(q?)}

2 (5 5 191 2 71
+y %ﬂ [qﬁ“ M(g, 611'°> + ql“W(ql‘O)G(qf)}

and dividing by —¢q, ®/27(5 + +/5)/25a we obtain

w(Lad) = w(ad)oh + Lt abu o )
(5:40) z
_3 _2\6 [qf(é, qf”) - qu(CIfO)H(CIf)]

16

16 2 6
~/_[ : (5 >+q‘w(qf°)G(Qf)}-
For brevity we will drop the subscript form ¢; and then replace g by g 3. This gives

1 5—-1
N<§, q) = ¥(q)G(q'"") + %q%(g)mqm)
5—-4/5 1
— zf [qSM(g, q”) - q5w<q25>H(q‘0>]
—ﬁ[cﬁM(%, q”) + q3w<q25>G<ql°>]. (3.5)

The coefficients in the taylor series of N (é, q) lie in the field Q(\/g). The idea is to show
that (3.5) is equivalent to a pair of g-series identities with integer coefficients. One of these
will involve M (é, q) and the other will involve M (%, q).

By the generalized Lambert series (1.6) we have

1 [ee) 1)n(1+q”)(2—2COS 2?7[) 1n@3 +]):|
v(l 3n(3n
(5 q) q )oo[ Z " !

2
P 1 —2g" cos & + ¢

> (=D)"(1+g")(2—2cos &) Gt )
2nen . 3.6
(q)oo|: nz_; l—esq)(l—e %q”)q G0

Since
1
(1=e%g)(1-e"%g")
:(l—f-ezm "ye g 4 )(1+e_%q"+e_%q2"+-~-)

2 4r 2 6\ ,
1+ 2COS? q" + 1—|—2(:os? g + 2cos?+2005? q"
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4 8\ 4
+ l+2005?+2005 5 g+ -

=1-I-fq"—qun—q3"+q5"+fq6”—fq an_i_ql()n_i_.“
(1+an_tq2n_q3n)(l+q5n _’_q10n+q15n_’_'”)
1+an_1.q2n_q3n

1_q5n

)

where T = 2cos(2r/5) = (v/5 — 1)/2, (3.6) simplifies to

(—1y'V/5e(1 + ¢ )(1+rq — g — ™) q;n(3n+1>}
l _

1+
I i (15 (r+q -4 —rq“")q%n@m)]

- (q)oo an
\/51' 1)11(1 — q ) LGt
= - —|— 1(3n
(@ Z T g T
J3 1= g™ 3
* (q)oo |: + ; 1— an q
_ V5tA@) N «/gB(q)’ .
5 5
where
A(CI) 1 2+52L§q)q—n(3n+l)
( )OO n= q "
and

Blg)= (- [ +5Z( Dn(l_q )4'"("+1)}

n=1

Returning to Eq. (3.5), we view Q(+/5) as a vector space over Q with basis {v/57, V5).
Hence (3.5) is equivalent to the following pair of equations:

1
A(g) + 5q5M<—, q”

5 )=2w<q>G(q‘°>—qzw(cpH(q“’)+5q5w<q25>H<q‘°> (3.8)

and

2
B<q>+5q8M<5 ) v(@)G(q'"") +2¢°Y()H(") — 5¢° ¥ (@*)G(g"). (3.9)
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We now prove (3.8). The proof of (3.9) is similar. We will need the function j(x, q)
defined by

J(x, @) = (X)oo(q /X)oo(@)oo
and equal to
> 1
Z (_l)nqin(nfl)xn
n=—0oo

by Jacobi’s well-known triple product identity (see, for example [8, p. 12]). Equation (2.13)
in [6] withm = 0, ¢ = 5 and x = g becomes

Zoo n 1 Zoo =D"A+¢") 1,60
N(0159n)q = 5n q2 & +1)’
n=1 (q)oo n=—00 - q

n#0

where N(0, 5, n) (not to be confused with our N(r, g)) denotes the number of partitions of
n with rank congruent to 0 modulo 5. The rank of a partition is defined as the largest part
minus the number of parts. Atkin and Swinnerton-Dyer did not define the rank of the empty
partition. We prefer to define it to have rank 0. Since

o0
1 n_Ln@Gn
@oe = j(g. g =1+ Y (=1)'g2"CmD,

n#0

we get

iN(O, 5, n)q'l = L 142 i (_l)n q%n(3n+1)
n=0 (Q)oo 1

_ gon
n=—oo q

_ 1 142 S (D1 —g*) Ln@Gn+1) ’
(‘])oo n=1 l_qsn

from which it follows that

1 o0 o0
2A9) = == +5 D ON(,5,mg" =) [5N(O0,5,n) — p(n)q",
0 n=0 n=0

where p(n) denotes the number of unrestricted partitions of n. As usual we take p(0) = 1.
Since p(n) is the sum of N(i, 5, n) for i from O to 4, and since N(i,5,n) = N(5 —i,5,n)
fori = 1,2 [6, p. 85], we can rewrite this as

n=0
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We break this sum into 5 parts depending on n modulo 5, and use the results of Atkin and
Swinnerton-Dyer’s Theorem 4. Since we define the rank of the empty partition to be 0, the
“—1” term is dropped from the rightside of their Eq. (6.12). Therefore

4 00
Alg) = qu[Z[n(O, 5.5n+d) — N(1,5,5n + d)lg™
d=0 n=0

o0
+ ) [N(0.5,5n+d) - N2, 5,52 + d)]q5’1:|
n=0

4
=Y q¢'lra(d, @)+ ro(d, ¢°)]

d=0

2P(O)P2)  5¢°5(1,00  29P©0) ¢*P©0) = ¢*PO)P(1)
O PX1)  PO) Py  PQ) P2(2)
_ 2475970504 a®) SMG 25> 29> 4°@%:97)%
T @by 75\51 i@ a® i@ qP)

N (%922 i@q°, g*)
J(q'°, ¢*)? '

where the functions r, P and X are defined in [6]. Hence the leftside of (3.8) is equal to

2(q25;q25)§oj(q107 qZS) 2q(q25;6]25)§o B qZ(qZS;qZS)gO q3(q25;q25)goj(q5’ q25)
i@, q*) i@, ¢*) i@, ¢%) i(q', ¢*)?
2 25; 25 G 552
_ 2a7q )Gl +29(@%;4*)xG(q@) — ¢*(q7:9™) H(q")
H(q)
*@%;9*)cH(g”)?
G(q?)

We now show that the right side of (3.8) is also equal to this sum. Observe that

o [o.¢]
W(q) = Z (qgn(snﬂ) + q%(5n+4)(5n+5)) + Z (q%(5n+l)(5n+2) + q%(5n+3)(5n+4))
n=0 n=0

oo
+ Z q 3 (5n+2)(5n+3)
n=0

0 5 20 1 1 0 1
_ Z qin(5n+1)+ Z q§(5n+1)(5n+2)+§ Z q§(5n+2)(5n+3)

n=-00 n=—0co n=—oc
. ) |
= j(—¢", ¢®) + qj(=¢°, ¢*) + 5q3J(—1, q>)
@59 H @) | q(q7:4%)G(qY)

3025
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where the exponents of ¢ in the first sum are congruent to 0 modulo 5, the exponents of ¢
in the second sum are congruent to 1 modulo 5 and the exponents of ¢ in the third sum are
congruent to 3 modulo 5. Hence the right side of (3.8) is equal to

2(9%;4*)H(g*)G(q")
H(q'"%)
— 4% @®; 4P H(@) + 2¢° ¥ (¢%)G(q"") —

2(4%:4)eH(q*)G(q"")
= Hoquo) +44°@7:47)o(=073 472 H(g"")

+29(¢%;47)G(q") — 47(q7: ) H(q")

3( 25; 25) G( 5)H( 10)
+2q3(q25;q25)00(—q25;qzs)ioG(qlo)—q 97397 )cblg q

G(q')
2% 9%) 0 G(g°)?
_ 24 2(;5) (q”) + 206746 @%) — 207 47 H(g)

N 7°(q%;9")cH(g)
G(gd) '

where we made use of the identities

G(@)*H(q*) + H(@)Y’G(g») = 2(—¢°;¢°)2. G(q)G(g*)* (3.10)

+4¢°Y(@*)H(G") + 29473 ¢%)G(q)

7*@%;4*)G(g*)H(q")
G(q'")

and
G(q’H(g») — H(q'G(q*) = 29(—4°: ") H(@) H(g*). (3.11)
These identities can be easily obtained by Theorem 1.2 of [10], which states that
JEx @) = jO (v, @) = 2xj(y/x. 47 j(xyq. 4°) (3.12)
for 0 < |g| < 1 and xy # 0. Replacing g by ¢°, x by ¢, and y by ¢? yields
J(=4.9j@* @) = jq. (=4 ¢*) = 2qj(q, 4", 4"
If we replace ¢ by ¢°, x by 1/q, and y by ¢? in (3.12), and multiply by ¢ we get
J=4.4j@* ) + jq. a)j(~a* ¢*) = 2j(@. 4")jq" . ")
Identities (3.10) and (3.11) are obtained by multiplying these equations by
(@"%q"O%2
J(a.4°)j@* ¢*)j@* q')jg* ¢')

The proof of (3.8) and hence the proof of the first transformation formula for the fifth order
mock theta functions is now complete.

Remark. It can be shown that

A(@)=N ! N 2
(@) = (g,q)+ <§,q>
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and

1+V5 (1 1—V5_ (2
B(g) = sz(g,q)+ 2 N(g,q).

In his “lost” notebook [14, p. 9] Ramanujan gave four more fifth order (sometimes called
tenth order) mock theta functions:

00 Ln(n+1) 00 Ln+1)(n+2)
q: q-2
Pr(@) =Y ———. Yr(@)=) o,
n=0 (CI’C] )n+l n=0 (l],q )n+1
0 2 =) n+1)>%
(_ )n n (_])nq(1+
Xr(q) = Xe(@) =Yy  ———
0 ( )n =0 (=211

Numerical calculations suggest that they satisfy the following transformation formulas:

! (5+f) -t (5 —+5) 2 /20
q3or(q) = z 0w L Xr(qt) - HT% xr(q7) — TaKs(Ol),
5—45) _1 5 5) _»o 20
oG ala?) + \/ T a(a?) 2 Ko,
(03
¢ or(—q) = | 7C +‘fql pr(— q1>+,/ f) gy Vr(— q1>+,/ ? K@),
1 5
q 3 Yr(—q) = qud)( qn—W SYR(— ql)—\/7K3<a)
! 5 5 5— _2 10
¢ Xnlq) = | ;f)ql bela) + 2 aK4<a)
o 2
5 5) _:2 10
q 4"XR(CI) \/ 5 5¢R TO+ ) +f) q, “Yr( 611 O[Kz< )
o 2
| 5—4/5 5 40
05 Xp(—q) = ,/”(Tf) T X p(— q1)—\/n( V) by wcan - 2 ko)
o0 10« T

5 5
q 4°xR( q) = Y EICh D) IJ(;[) 4°X( q1)
o

5— 40
e T 0w f) Xr(=a0) + | — Ky(@),
(0% T

where ¢ = e™* and q; = e ? with af = 72. The Mordell integrals K, K>, K3, ..., K3

3l

SWR(Q)
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are defined by
K (@) /Oo _say2 Sinhox d Kx() /oo _sgy2 Sinh 2ax d
o) = e —dax, o) = e 7 dx,
1 0 sinh Sa.x 2 0 sinh 5ax
Ks(@) = /we,saxzm &Ko) = /oo sz Sinhdary
0 sinh Sox 0 sinhSax
Ks(a) = /Ooe_jaxzm dx Ke(a) = /‘Ooe_swzmdx
0 coshSax 0 coshSax o
o0 cosh9ax — coshax
K — —10ax? ’
7 ./0 ¢ cosh 10ax .
Ks(@) /°° 1oas2 €0sh 7ax + cosh3ox
o) = e
’ 0 cosh 10ax

Without generalized Lambert series we do not see an easy way to prove these formu-
las. Since these Mordell integrals are not related to the Mordell integrals involved in the
transformation formulas of the other fifth order mock theta functions, it is unlikely that these
functions are related to the other fifth order mock theta functions or the functions M (%, q)
and M(%, q).

Ramanujan’s seventh order mock theta functions are [13, p. 355] (also see [1, pp. 132—
133] and [2, p. 286]):

00 an oS q(n+1)2 00 qn(n+1)
Folp)=) —— F@=) —7— F@=) —vg—
; (qnﬂ)n ; (anrl)nJrl n=0 (qn+1)n+1

Analogous to the mock theta conjectures are the following identities proved by Dean
Hickerson [11]:

1 (g% g7
f —2=2aM —, 7) _d4)
(@) g (7 . i
i 732
Filg) = ZqZM(%,q7) + M’
7 (@)oo
2 T2
7 (@)

To prove the transformation formulas for the seventh order mock theta functions one
needs the following transformations of j(q, q"), j(g*, q"). j(¢>.q"):

% 8w . (2w B 8t . (3w\ 2 .
q%jq.q) == sm<7)ql‘ ilai.ai®) =\ = Sln<7>q1”1(q§, q:’)
8T . (mw\ L.
+,/ T sm<7>ql"‘j(ql]2, qlzs),
9 8t . (3m\ = . 8t . [\ 2 .
9%j@*q") ==/ 7 sm<7>611”1(6ﬁ, ") =\ 7 Sln(7)ql‘4j(q18, ai’)
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[8 . (2w L
+ %sm<7> 1 ( q ,611 )’
L. 3 7 87 4 28 87 27\ %8 28
9% j@’q") =\ = sm(7>q1 jlat.qi®) + —asm< - )q “j(q}. atb)
T . (3w L
+ %8111( - >q1‘41(q112,61128),

where ¢ = e and ¢; = e~# with af = 7%, These formulas are special instances of the
more general transformation formula

/4 S oy 2n = DB
Z( l)n An? +Bn _ T COS( n ) 7'[’
2A

n=—0o0

which follows from the transformation formula for 653(z, ¢) (see for example [7, p. 4]).
The transformation formulas for Ramanujan’s seventh order mock theta functions
are:

—_L 87 : n 2r 42
q lbs(fo(q)—2)=,/%sm<7)ql Fo(q?) \/ﬂsm(7> Fi(q})
8t . (3m\ 4 /
=+ %Sln(7> .7:2 = (7,7 ),
_25 8t . (27 _2s
q ‘6*7'-1((])=\/%51n<7> \/ 7 S ( ) “Fi(q))
+ /3 n( a2 Fo ,/ iy
7a T\ 7 2(47)
7 8t . (3w = o
= () B )ql -
42 3
Bl pbr 1)
To T 7
1 / fﬁ [4m — e
q 1 (Fo(—q) —2) = — ( ) Fo(—q1) + 2 sm( )611 Fi(—=q1)
o 7
42 6
+\/ ( ) '68]:2( —q1) + —aJ2<—,70t),
T 7
5 4T . (m\ - L 4T . (2w -
61_‘2“.7:1(—61) =,/ %sm<7>q1 " Fo(—q1) — ,/%sm<7)611 “Fi(=q1)
a7 . (37w %}_( ) 4205J 2 -
7 A B VA
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B Fs—q) = | o sin( 22 ) g Fo(—q0) + | o sin( = ) g, Fi(—q)
—q) =,/ =— sin| — — — sin{ — _
q 2(—¢q T 7 q o—q1 T 7 q1 1(—41
|47 T\ 4 (420 4
IR . 168 _ _ _
+ 7o Sm(7)q1 Far(—q1) — J2<7,7a>.

The proof of the above formulas is similar to the proof of the fifth order formulas. We will
outline the proof of the first seventh order transformation formula.

Proceeding along the same lines used in the proof of the first fifth order transformation
formula we obtain the following analogue of Eq. (3.5):

1 1 2 2
N(—, q) = 4sinZz + 4q7M<—, q49> sinzz + 4q13M<—, q49> sin% sin—n

7 7 7 7 7 7
3 7 . 37w 2 T
+4¢"M( =, g% ) sin=sin— + ————| — j(¢*', ¢*)*sin® =
! (7 7 77 @59 Ja=-a7) 7
.o, 2w . . . 3w
+4°%j(q’, ¢*) sin= sin— + ¢*j(g", ¢*)* sin= sin—-
7 7 7 7
+ S 4°j(q". g sin® = + g2 (", ¢*)? sin = sin? m
NGO ’ 7 ’ 7 7
. .. ,3m ) ) o 2n
+ @@, ¢*)* sin— 51H27 +24%jq", q*)j@q", ¢*) sm27 sin—-
. . L . 3w
+2¢°j(q’. 4" q®) sz7 sin—-
2 3
+29j(q". 4*)j@q* . q%) Sin% sinTn sin?]. (3.13)

The coefficients in the taylor series of N(%, q) lie in the field Q(cos(27r/7)). The idea is to
show that (3.13) is equivalent to three g-series identities with integer coefficients; the first
involving M (%, q), the second involving M (%, q) and the third involving M (%, q). From
the generalized Lambert series (1.6) we obtain

1 1 00 (_1)11(1 _i_qn)q%n(fin-H)
N _,q)=—|:l+ E (2_qn+q4n_2q5n
(7 (Q)oo n=1 1 - q7n

+u(_1+2qn_2q2n +q3n_2q4n+q5n)

+ v(_qn 4 3q2n _ 3q3n +q4n))]

4A(),2n+4B(),7r . 2n+4c(),n . 3w
== sin“— + — sin— sin— + — sin— sin—,
7 S T PRSI S T g R ) S S
where u = 2 cos(2w/7),v = 1 4+ 2 cos(4m/7) and

1 2 (—1)*(1 — ¢%) ln@“n}
Alg)= —|3+4+7) —— 1242 :
(4) (Q)oo |: + Z 1 — q7n q

n=1
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B(q) = [ Z 1)"(1 _7,? )ql"o”“)}
1 S (=Dl —g*) —n(3n+1)i|

C 247 —

(CI) ( )oo|: — 1_q7n q

Considering the field Q(cos(2w/7)) as a vector space over Q with basis {sin®(r/7),
sin(zr /7) sin(2rr /7), sin(;r /7) sin(37/7)}, we can show that (3.13) is equivalent to the fol-
lowing three equations:

[A(q) — 7q7M(%, q‘”) - 7}(q7;q7>oo

=-2¢°1(q". 4" —q%j(q", ¢*Y — 4j@* . ¢ + 4" i@’ ¢*)j@q". ¢*)
+24°j(q". ¢®)j@*". %) +3qj@@". ¢*) @@, ¢*).

[B(q) — 76113M(§, q49>](q7;q7)oo

=44°j(q’, ¢*Y + 4% jq". ¢*) + @', ¢¥) —2¢%j(q’. 4*)j(q". ¢*)
+3¢%@". i@ 4*) + ai@", ¢*)i > ¢®).

[C(q) — 76116M<;, 6149)](47;617)00

=q%j(q", ) +44%j(q"™, ¢*)* +2j@*. ¢*Y + 34", ¢*)jq"™, ¢*)
-4’ i@, 4®)j@*. q*) +24j@", ¢*)j@*. ¢*).

With much more work a proof of these equations should be obtained by the method used
to prove (3.8).

4. Concluding remarks

Ramanujan divided his list of mock theta functions into “third order,” “fifth order” and
“seventh order” functions, but did not say what he meant by this. We will define the “order”
of amock theta function by its behavior under the action of the modular group. Observe that if
a isrelatively prime to b, then the coefficients in the Taylor series expansion of N(a /b, q) lie
in the field Q(cos(27/b)). If k is the smallest positive integer such that these coefficients lie in
the field Q(cos(27/k)), then we will assign order k to the mock theta function M(a/b, g).
This definition of order can be extended from the functions M(a/b, q) to other mock
theta functions whose Taylor series expansions have integral coefficients. Suppose the map
T — —1/7 (hence g — ¢q) transforms f(g) into Lg* g(q1) (plus a Mordell integral), where
A € C, u € Qand g(q;) has Taylor coefficients in Q(cos(27/k)). The smallest such & > 0
is defined to be the order of f(g). In Eq. (2.1) we find a factor /7 /2« csc(zr) in front
of N(r, qf). Such factors must be taken into account in determining the transform g(q;) of
f(q). For example, first in our list of transformation formulas for the fifth order mock theta
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functions is

4% folq)

25 -5 —4 2(5++/5) 1 60 (1
=\ T " (Folad) = 1)+ e Filad) + — 1(5710“)
(5 -5 -1 1+4/5 ¢ 60 1
=\ "5 [ () =1+ —5 4 F1(6112)}+,/—:J(§,10a>,
_2r5—=5) —p 1 [60c (1
VT s 8 1)+ TJ(E’IOO‘)’

where
1+45
2

0
Fy
(a
8(q@) = Foq¢"") — 1+ q°Fi(q").

The Taylor coefficients of g(g) lie in the field Q(v/3) = Q(cos(27/5)). Hence by the above
definition fy(q) is a fifth order mock theta function.

Since Q(cos(2m/k)) = Qwhenk = 1, 2, 3, 4 and 6, mock theta fuctions of second, third,
fourth and sixth order are actually of first order by this definition. Since Q(cos(rr/k)) =
Q(cos(2mr/ k)) for odd k, mock theta functions of order 2k are actually order k when k is
odd.

According to this definition the functions Uy(q), Ui(q), Vo(g), Vi(g) in our paper on
some eighth order mock theta functions [9] are actually first order mock theta functions, but
the functions So(q), S1(gq), To(q), T1(g) are eighth order mock theta functions. By Eq. (4.1)
in that paper

_1 T 2r _1 4o
q 158(q) = ,/4—Vo(q1)+ V41 " Vilg) + ) — Ko()
o o T
il 4
=/ 41611 ! |:6114 Volq1) + 2\/§V1(6]1)} +4/ —aKo(Ol)
o T

where g(q) = g Vo(g*) + 2+/2Vi(g*). Since the Taylor coefficients of g(g) lie in the field
Q(2) = Q(cos(2r /8)), So(g) is an eighth order mock theta function.
Equation (1.11) in [9] is incorrect. It should read

Vi(@) — Vi(=q) = 24(—4¢%; 4o (—q*: D% (@% ¢

In [9] we did not express Ry(q) and R|(q) as linear combinations of Euler products. Such
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combinations can be easily obtained from our equation
(@:9)2@% D)0 (@:47)2(G%: 40
(=4* 4Moo(—4% 40 (=% 4P

= (4:9°)% 040, ¢°).
@.1)

Ro(¢») — qRi(¢*) =

Replacing g by —g we get
Ro(@*) + qRi(q%) = (=¢; %)% 640, ¢°). 4.2)
Adding (4.1) and (4.2) yields

1 1 1
Ro(q) = 5[(—612); + (QZ);]@;(O, q)

and subtracting (4.1) from (4.2) gives

1
Ri(q) = chf[(—q

[N

)i~ (42)2 )60,
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