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O. Introduction 

In his last letter to Hardy ([R1, pp. 354-355] and l-R2, pp. 127-131]), Ramanu- 
jan gave a list of 17 functions which he called "mock 0-functions". These are 
functions of a complex variable q, defined by q-series convergent for Iq[< 1. 
He stated that they have certain asymptotic properties as q approaches a root 
of unity, similar to the properties of 0-functions, but he conjectured that they 
are not, in fact, 0-functions. He also stated some identities relating some of 
the functions to each other. 

Ramanujan's list was divided into four groups of functions, which were 
described as being of orders 3, 5, 5, and 7. In [W1], Watson studied the 3rd 
order functions, and introduced three new ones. He began by proving some 
identities which give simpler formulas for the functions. For example, one of 
Ramanujan's functions is 

f(q)= Z (1 +q)2(1 +qq~i 2 (1 +q.)2" (0.0) 
n>0 "" " 

Watson gave the following identity for f(q): 

f(q) I~ (1 -- q") = 1 + 4 ~ (-- 1)" q.~3. +,)/2 
.>=1 .~1 1 +q" 

(oA) 

Using such identities, he proved not only that the 3rd order functions have 
the asymptotic properties asserted by Ramanujan, but also that they are not 
0-functions. 

In [W2], Watson proved the asymptotic formulas for the 5th order functions. 
In [S], Selberg did the same for the 7th order functions. Neither author found 
formulas similar to (0.1), nor did they prove that the functions are not expressible 
as 0-functions. 

In 1976, Andrews discovered Ramanujan's "Lost" Notebook (see [A2] and 
[R2]). It contained many identities involving q-series, including one for each 
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of the ten 5th order functions. In [A-G], Andrews and Garvan discuss these 
identities, showing that they lead to formulas analogous to (0.1). Presumably 
these can be used to prove that the 5th order functions are not 0-functions, 
though this has not yet been done. Andrews and Garvan show that the identities 
for the functions in Ramanujan's first group of 5th order functions are equivalent 
to each other; they call these the "First  Mock Theta Conjecture". Similarly, 
the identities for the second group are equivalent; they call these the "Second 
Mock Theta Conjecture". They also present combinatorial interpretations of 
the conjectures, in terms of the ranks of partitions. 

To state the mock theta conjectures, we need some notation: If q and x 
are complex numbers with I q[< 1 and n is an integer, let 

and 

(x)~ =(x;  q)~ = ~ (l --qix)  (0.2) 
i > 0  

(x)~ 
(x), = (x; q),-- . (0.3) 

(q"x)~ 

In particular, for n > 0,  

(x). = (1 -x ) (1  - q x ) . . .  (1 __qn-I X). (0.4) 

Two of the 5th order functions are 

and 

We also define 

q,2 

fo(q) = .~o ( = --q). 

qn2+n 

f, (q) 
.~o ( -  q). " 

0.5) 

(0.6) 

and 

q5n 2 
�9 (q) = -- 1 + 

.>=0 (q; qS),+, (q4; q5), 

q5n 2 
7J(q) = -- 1 + Z ._->0 (q2; qS).+l(q3 ; qS)~ 

(0.7) 

(0.8) 

Then the mock theta conjectures state that 

and 

fo(q)=(q~; qS)~(q5; q,O)~ 
. qS)~(q4; q5)~ 

(qS; qS)~(qS; qlO)~ 

fx(q) (q2; q5)~(q3; qS)o ~ 

24~(q 2) (0.9) 

2_ ~(q2). (0.10) 
q 

In this paper, we prove these conjectures. 
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The proof  relies on a pair of Hecke type identities discovered by Andrews 
(Eqs. (3.2) and (3.3) below); these express (q)~fo(q) and (q)~f~(q) as double 
sums of powers of q in which the exponents are given by indefinite quadratic 
forms. In I-A5] (and see also [A3]), Andrews showed how such identities could 
be used to express the 5th order functions as constant terms of 0-functions. 
In this paper, we use a modification of this technique. 

Section 1 presents some preliminary results concerning 0-functions and func- 
tional equations. In Sect. 2 we define a function g(x, q) which generalizes 4~(q) 
and qJ(q), express it as the constant term of a 0-function A(z, x, q), and obtain 
an identity relating A(z, x, q), g(x, q), and two generalized Lambert  series. By 
similar methods, Sect. 3 derives an identity relating a 0-function B(z,q), the 
functions fo(q) and fl(q), and generalized Lambert  series. In Sect. 4, we state 
a 0-function identity which decomposes B(z,q) into a sum of nine other 0- 
functions and use it, along with the results of Sects. 2 and 3, to prove the mock 
theta conjectures. Section 5 proves the decomposition of B(z, q). 

In a subsequent paper  we will prove analogous formulas for the 7th order 
functions. 

I wish to thank Dr. Andrews for several helpful suggestions. 

1. Preliminaries 

We will use the following notations for O-functions: 

Definition 1.0. If Iq[ < 1 and x+O,  then 

j(x,  q) = (x)o~ (q/x)~ (q)~. (1.o) 

If  m is  a positive integer and a is an integer, then 

J,,m=j(q", q"), (1.1) 

y,, ,, = j ( -  q", q"), (1.2) 
and 

j ,=j(q,. ,q3,,)=(qm; q,,)~. [] (1.3) 

By Jacobi 's triple product identity [H-W, p. 282], we have 

j(x, q) = Z ( -  1)" q"(" 1)/2 x". (1.4) 
n 

(Here and throughout  the paper, summation indices are to run through all 
integers, or through all integers satisfying the conditions listed under the summa- 
tion sign.) 

Definition 1.1. For r ~ 0, a O-product of the variables q, Xl, ..., x~ is an expression 
of the form 

C qe x(, ... xfr. gg 1, ... L~ ~, (1.5) 
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where C is a complex number, s >0,  e, fi, and g~ are integers, and each L i 
has the form 

j(D qh x k l . . ,  k r xr,  • (1.6) 

for some complex number D and integers h, ki, and m >  1. (In this paper, D 
will always be _+ 1.) A O-function is a sum of finitely many 0-products. [] 

The representation of a 0-product in the form (1.5) is not unique. For exam- 
ple, the following identities follow easily from the definitions: 

j(q/x, q)=j(x, q), 

j(q" x, q) = ( -- 1)" q-"~ 1)/2 x - " f i x ,  q) 

j ( - -x ,  q)= Jl'2j(x2' q2) 
j(x, q) 

�9 2J  2 
j ( --  1, q)= Z '  

j(x, q2)j(_ q x, q2) 
j(x, - - q ) -  

J1,4. 

J1 n j(x, q) = ~ j(x, q )j(q x, an).., j (qn-,  x, qn) 

if n is an integer, 

if x is not an integral power of q, 

(1.7) 

(1.8) 

(1.9) 

(1.1o) 

(1.11) 

if n>  1. (1.12) 

Many other 0-product identities can be derived from these and the defini- 
tions. We will often use such identities without proof; they can be verified by 
the following method: First apply (1.9), (1.10), and (1.11) to eliminate any minus 
signs from factors of the form (1.6). Then use (1.8) to ensure that O<=h<m 
in each such factor. Rewrite each factor using Definition 1.0. What results is 
an identity involving factors of the form (X; qm)~ o for various values of m. Let 
M be the least common multiple of the m's and rewrite each factor using 

M/m - 1 
(X; qm)o o = I-[ (qmkX; qM)o~; (1.13) 

k=O 

the resulting identity will be obvious. (Usually this process can be shortened 
by judicious use of (1.7) and (1.12).) 

For example, in Theorem 1.0 below we need the identity 

j ( - -x ,  q) j (qx 2, q2) 

"I2 

By (1.9), this is equivalent to 

J1 J (  X2, q) 

j(x, q) 
(1.14) 

j �9 x 2 2 �9 1 ,2J(  , q )J(q x2, q2) = J1 J 2 J (  x 2 ,  q)" 
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By (1.12) with n = 2 and x replaced by x 2, this becomes 

that is, 
J2 J1.2 = J2; 

(q2; q2)o ~ (q; 2 2 �9 �9 q )~  (qZ, q2)o ~ = (q ,  q ) 2 ,  

which follows from (1.13) with m= 1, M = 2 ,  and X = q .  
In addition to such rearrangements of 0-products, we will also need three 

identities which allow us to replace certain sums of two 0-products by single 
0-products. 

Theorem 1.0. I f  0 < Jq] < 1 and x is neither 0 nor an integral power of  q, then 

j (qx  3, q3) 'bxj(qZx 3, q3)-- Jtj(x2'  q) 
j(x,q) 

(1.15) 

Proof. The quintuple product identity [A1, Thm. 3.9] states that, for I q l< 1 
and x4:0, 

( -  1)" qnt3n - 1)/2 x3n(1 q_ q, x) 
n 

= (-- x)~ (-- q/x)o~ (q)o~ (q x2; q2)o~ (q/x2; q2)o~ �9 (1.16) 

But the left-hand side of this equals 

E (-- 1)nqn(3n-1)/2 x3nwx Z (-- i) n qn(3n+l)/2 X3n 
n n 

=j(q x 3, q3) + x j(q2 x 3, q3), 

while the right-hand side equals 

by (1.14). []  

j ( -  x, q) j(q x2' q2) _ J1 J( xz, q) 
J2 j (x, q) 

Theorem 1.1. For 0<[ql  < 1, xfi:0, and y+0 ,  

j ( x , q ) j ( y , q ) = j ( _ x y ,  q2 ) j ( - -qx - l y ,  q 2 ) - x j ( - - q x y ,  q2) j ( - -x - l y ,  q2). (1.17) 

Proof By (1.4), the left-hand side equals 

~.,(--1)m q'~Cm-l)/2 Xm~ (--1)" qmn-1)/2 y n 
m n 

= ~ ( -  1)"+"qt"~-'+"2-")/Zx"y ". 
m , n  

(1.18) 
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Break this double  sum into two parts, depending on whether m + n  is even 
or  odd. In  the ' even '  part, write m = r - s  and n = r + s .  In the ' o d d '  part, write 
r e = r - s +  1 and n = r + s .  Then (1.18) equals 

Z qr2+s2-rxr-syr+s- E qr2+s2-SXr-S+l yr+S 
r,s r,s 

= Z q r 2 - r x r y r E q S 2 x - S y S _ _ x Z q r 2 x r y ~ Z q ~ 2 - ~ x - ~ y  ~ 
r s r s 

= j (  -- x y, qa)j(  _ q x -  1 y, q2) _ x j (  -- q x y, q2)j( _ x - 1 y, q2), 

as required. [ ]  

Theorem 1.2. For 0 < ]q] < 1, x 4: O, and y 4: O, 

j ( - x , q ) j ( y , q ) - j ( x , q ) j ( - y , q ) = 2 x j ( x - ~ y ,  q 2 ) j ( q x y ,  q2). (1.19) 

Proof  Apply  Theorem 1.1 twice, once with x replaced by - x  and once with 
y replaced by - y ,  and subtract.  [ ]  

We will need to know the residues of various 0-functions at their poles. 
The following result enables us to compute  these. 

Theorem 1.3. Let  q be f ixed,  0 < [ q ] < l .  Let a, b, and m be f i x ed  integers with 
b 4:0 and m > 1. Define 

1 
F(z) = j ( q ,  zb ' qm)" (1.20) 

Then F is meromorphic for  z 4:0, with simple poles at all points z o such that 
zbo = qkm-,  for  some integer k. The residue of  F(z) at such a point z o is 

( __ 1)k+ l qmk(k- I)/2 ZO 
(1.21) 

Proof  That  F has only simple poles is clear. To  compute  the residue, write 
z = z 0 x and let x ~ 1. Then 

! 
F(z) = j(qk,. X b, q,,) 

1 
( _  1)k q-rak(k- 1)/2 x--bk j(xb, q,,) ' 

by (1.8). But as x-~ 1, 

j (x b, q") = (1 -- x b) (q" X b; q")~ (qm X - b; qm)o~ (q"; q") 

~" (1 -- X b) (qm; qm)~ = j3  m (1 -- xb). 
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Hence the residue is 

( _ 1)~ q,,k~k- 1)[2 Z0 (X-- 1) 
lira (z-- Zo) F(z) = lira - -  
. . . . . .  1 J3 (1-- xb) 

__ (__ 1)k + 1 q,,k(k - 1 ) / 2  ZO 

b J2 
as claimed. [ ]  

The  next few results show that  certain 0-products  can be writ ten in terms 
of generalized L a m b e r t  series and some related double  sums. We begin with 
R a m a n u j a n ' s  1~-/1 s u m m a t i o n  [A-A] :  

(a)rx'_(b/a)~(q)~(q/ax)~(ax)~ 
~ ( b ) ,  (b)~(b/ax)~(q/a)~(x)~ ' 

(t.22) 

provided that  0 <  Iql < 1, a4=O, tb/al < Ix[ < 1, and neither b nor  q/a has the form 
q-k where k is a nonnegat ive  integer, Setting a = y  and b = q y  and dividing 
by I - y  gives 

x r _ (q)2(xy)oo(q/xy)o~ 
V 

1 -- qr y (x)oo (q/x)~ (y)~ (q/y) 

for 0 < [ q l < [ x l  < 1 and y neither 0 nor  an integral power  of  q. Rewri t ing this 
in " j "  notat ion,  we have:  

Theorem 1.4. For 0 < Iql < Ixl < 1 and y neither 0 nor an integral power of q, 

x" j3 j (x  y, q) 

~ l - -q  y j ( , q ) j ( y , q )  
* - ' x  " . [ ]  (1.23) 

If, in addit ion,  Iql < lYl < 1, we can rewrite the left-hand side in a more  sym- 
metric  form, by expanding  it in powers  of  y. We need some notat ion.  

By the formula  for the sum of a geometr ic  series, we have 

1 
1 - z  ~ z~ (1.24) 

s>O 

for tz[ < 1, while for [z[ > 1 we have 

1 
z (1.25) 

1 --Z s<O 

It  will be convenient  to have a single formula  which works  for bo th  cases. 

Definition 1.2. Fo r  Ix[ 4= 1, let 

e(x)=~" 1 if I x [ < l ;  (1.26) 
( - -1  if I x l > l .  [ ]  
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Defini t ion 1.3. If s is an integer, let 

sg(s)= f 1 if s > 0 ;  
- 1  if s < 0 .  [ ]  

(1.27) 

Using these definitions, Eqs. (1.24) and (1.25) can be combined to give 

1 Z zS- 
1- -z  s 

sg(s) = e(z)  

(1.28) 

N o w  suppose that  I q l < ] y ] < l  in Theorem 1.4. Then  Iq~y l< l  if and only 
if r > 0, so e (q~ y) = sg (r). Hence the left-hand side of (1.23) equals 

X r 

~ l--qr y ~'xrsg(r)r ~ (q~ Y)~ 
sg(s)  = sg(r) 

= ~ sg(r)qrSx~YL 
r ,  s 

sg(r)  = sg(s) 

Therefore:  

Theorem 1.5. For Iql < Ixl < 1 and tq] < lyl < 1, 

sg(r)q~x~y s -  jaj(xy'q) . [] (1.29) 
j(x, q)j(y, q) sg(r)  = sg(s) 

We will also need the corresponding result in which the summat ion  indices 
r and s are required to have the same parity. 

T h e o r e m  1.6. For ]q{ < Ix{ < 1 and Iq[ < ]Yl < 1, 

sg(r)q~x~ yS=J2"4j(qx y'q2)j(-qxy-l'q2)j(x2y2'q4) 
sg(r) = sg(s) j(X 2, qZ)j(y2, q2) 
r _ = s ( m o d  2)  

(1.30) 

Proof Break up the sum on the left into two parts, depending on whether  
r and s are even or odd. In the ' even '  par t  replace r and s by 2r  and 2s; 
in the ' o d d '  par t  replace them by 2 r +  1 and 2 s +  1: 

sg (r) qrS x r yS 
sg(r)  = sg(s) 
r ~- s (mod 2 ) 

-= ~ sg(r) q4rSx2ry2s+ ~ sg(r) q4rS+Zr+2S+lX2~+ly2S+l 
sg(r)  = sg(s) sg(r)  = sg(s) 

= Z sg(r)(q4)rs(x2)r(Y 2)s+qxy Z sg(r)(q4)rS(q2x2)r(q2y 2)s" 
sg(r)  = sg(s)  sg (r) = sg(s) 
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By Theorem 1.5, this equals 

j3  j (x2 y2, q4) j3  j(qa x 2 y2, q4) 
�9 x 2 4 �9 z 4 + q x y  J( ,q  )J(Y ,q  ) j(qZx2, q4)j(qZy2,q4) 

�9 2 2 4 
Jz,4J (x Y , q )  - 1 . x 2  4 .  2 4 

- j ( x  z,q2)j(yE,q2) [j(q 2 x 2 , q a ) j ( q z y 2 , q 4 ) - q x - l y  j(  ,q  ) J ( Y , q  )], (1.31) 

by product rearrangements. The quantity in brackets can be simplified by using 
Theorem 1.1 with q, x, and y replaced by q2, q x - l y - 1 ,  and - q x y - X ;  (1.31) 
becomes 

J2,4j(x2 y2, q4) J(q x y, q2)j( _ q x y -  1, q2), 
j ( x  z, qZ)j(y2, q2) 

which equals the right-hand side of(1.30). []  

Although we will not need it, it is interesting to note that there is a similar 
result for sums in which r and s are required to have opposite parity �9 

~" y j z . 4 j ( x y  ' q2) j (__xy-1  ' q2)j(q2x2 y2, q4) 
s g ( r )  qr S xr yS = / ,  

�9 X 2  2 �9 2 2 
sg~r)~g~)  J( ,q  )J(Y ,q  ) 
r $ s (rood 2) 

(1.32) 

Finally, we consider the functional equation 

F(q z) = C z - "  F(z). (1.33) 

Our first result follows immediately from Lemma 2 of [A-S]. 

Theorem 1.7. Let q and C be complex numbers with 0 < l q [ < l  and C4:0, and 
let n be a nonnegative integer. Suppose that F(z) is analytic for z 4:0 and satisfies 
(1.33). Then either F(z) has exactly n zeros in the annulus Iq[ < ]z[ < 1 or F(z)=0  
for all z. [] 

Such a function F(z) must have a Laurent expansion valid for all z4:0. 
The next result expresses F(z) in terms of a finite number of its coefficients. 

Theorem 1.8. Suppose that 

F(z) = ~ Vr z r (1.34) 
r 

for all z 4:0 and that F(z) satisfies (1.33) where 0 < [ql < 1 and C 4: O. 
(a) Then 

n - - 1  

F(z)= ~ Frzr j ( - -C- lqrz" ,q" ) .  
r = O  

(1.35) 
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(b) If, in addition, n is odd, C = +_ 1, and F(z) satisfies 

then 
F(z-  l) = _ C z-"  F(z), 

n - 1  
2 

f ( z ) =  ~ F , [ z ' j ( - C q ' z  ~, q " ) - C z " - ~ j ( - C q " - ~ z  ~, q~)]. 
r = l  

(1.36) 

(1.37) 

Proof. (a) Substituting (1.34) in (1.33) and equating coefficients of z r gives 

F~+,=C-I qr F,. 

An inductive argument then yields 

Fr+k n = c - k  qrk + n k ( k -  1)/2 F~ 

for all integers r and k. Consequently, 

n--1  

F(z)= ~ ~ F,+k,Z ~+k" 
r = 0  k 

n - 1  

= Z Z z +k" 
r = O k  

n - 1  
= ~ F~Zr~,q"k(k-1)/E(C-lq~z")k 

r = O  k 

n - 1  

= ~ Frzrj(--C-lq 'z" ,q") ,  
r = O  

proving (1.35). 
(b) Similarly, substituting (1.34) in (1.36) and equating coefficients of z -r 

gives 

F~= --CF,,_,. (1.38) 

Hence F o = -CF, ,  = --CC-1 qOFo = _ Fo; that is, F o = 0. Substituting this in (1.35) 
and using (1.38) for r > n/2 implies (1.37). [] 

2. Generalization of �9 and 

In this section we will define a function g(x, q) which generalizes ~(q) and ~(q), 
and prove an identity relating g (x, q), a 0-function, and two generalized Lambert 
series. 

Definition 2.0. If ]q] < i and x is neither 0 nor an integral power of q, let 

qn2 ~. [] (2.0) 
g(x, q)=x -1 -- 1 + ~ (x).+,(q/x)J 

n>O 
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Obviously 

and 
q~(q) = q g(q, qS) 

7j(q) = q2 g(q2, qS). 

(2.1) 

(2.2) 

Note. g(x, q) can be defined more  simply: It is not  hard  to show that 

qn(n-1) 

g(x, q)=  ~, (x),(q/x)," 
n > l  

(2.3) 

However,  (2.0) is more  closely related to the mock  theta conjectures, 
will not  use (2.3). 

Lemma (7.9) of [G]  implies that, for Iq[ < [x[ < [q[-1 and x~e 1, 

1 X q3n(n+ 1)/2 

-- 1 + 1----~,~o q.2 __ ~ ( - - 1 ) "  q" = ( x q ) . ( x - ]  q). (q)~ 1--x 

SO w e  

(2.4) 

Analytic cont inuat ion then shows that  this is true whenever 0 < l q l <  1 and x 
is neither 0 nor  an integral power of q. The left-hand side is xg(x,q),  so we 
obtain" 

Theorem 2.0. For 0<[q[  < I and x not 0 or an integral power of q, 

J, g(x, q) = ~ ( -  1)" q3n(n+ 1)/2 
. i ~ x  . [ ]  (2.5) 

We will use this result to express g(x, q) as the constant  term of a 0-function. 

Definition 2.1. If Iql< 1 and neither x nor  z is 0 or an integral power of q, 
let 

, JZj(xz ,  q)j(z,q 3) 
A ( z ) = A ( z , x , q ) =  ~ , q ~ i  " [] (2.6) 

Theorem 2.1. Let q and x be fixed with 0 < l q l  < 1 and x neither 0 nor an integral 
power of q. Then g(x, q) is the coefficient of z ~ in the Laurent series expansion 
of A(z) in the annulus Iq] <iz[ < 1. 

Proof By Theorems 2.0 and 1.4, 

1 ~ - -  ( -  1)" q3n(n + 1)/2 
d lg (x ,q )=  1 - q ' x  

Z n 

=coefficient  o fz  ~ in ~] 1 --q"x ~ ( -  1)~ q3S(s+l)/z z-~ 
n �9 

= coefficient of z ~ in J ~  j (x z, q) q3). j(x, q)j(z, q) j(z, 

Dividing by J1 gives the theorem. [ ]  
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For fixed q and x, A(z) is meromorphic for z 4:0 with simple poles at z = q3k+_l 
for integers k. (Because of the factor j(z, q3) in (2.6), the singularities at  z = q  3k 

are removable.) Using (1.8), it is easy to show that A(z) satisfies the functional 
equation 

a ( q  3 z) = --  x - 3 z - 1 A(z). (2.7) 

Since A(z) has singularities, we cannot apply the results of Sect. 1 directly. How- 
ever, by adding two generalized Lambert series to A(z), we will obtain a function 
to which Theorem 1.8 applies. 

Theorem 2.2. I f  0 < [ q [ < l  and neither x nor z is 0 or an integral power of q, 
then 

A(z, x, q)=j(x  3 Z, q3) g(x ,  q) 

__ ~ ,  (__ 1)r q3r(r+ t)/2 x3r  + 1 zr+ l 

r l - - q  3 r + l z  

_ _ z ( _ _ l ) r  q 3 r ( r + 3 ) / Z + l x - 3 r - l z - r  1 

r 1 __q3r+l Z - I  (2.8) 

Proof Let q and x be fixed. Define 

and 

L(z) = }~ ( -- 1)r q3~(r + 1)/2 x3~+t z,+t 
r 1 --q3r+tz 

M(z) = ~ ( -  1)r q3r(r+3)/2+l x - 3 r - 1  z-r-1 
1 __q3r+l Z-1 

F(z) = A(z) + L(z) + M(z). 

(2.9) 

(2.10) 

(2.11) 

It is easy to verify that 
F ( q 3  z ) =  - -  x -  3 z -1 F ( z ) ,  (2.12) 

since each of A, L, and M satisfies this functional equation. 
We next show that F(z) is analytic for all z + 0. Clearly L and M are mero- 

morphic for z4:0, L has simple poles at  z = q  3k-1 and M has simple poles 
a t  z = q  3k+1. Hence F(z) is meromorphic for z#:0 with, at most, simple poles 
a t  Z=Q 3k+l. 

By Theorem 1.3 with a = 0 ,  b = m = k =  1, and Zo= q, the residue of A(z) at 
z = q  is 

j 2 j ( xq ,  q)j(q, q3) q _ q j ( x q ,  q ) _  x_l. 
j(x, q) J31 j(x, q) q 

The residue of M(z) at z = q  is found by considering the r = 0  term in (2.10). 
As z ~ q, 

q x - l z - 1  qx -1  
-I-0(1)= +0(1) ,  M(z)= l _ q  z_ 1 z - -q  
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so the residue is qx  -~. By (2.11), the residue of F(z) at z=q  is ( - q x - 1 ) + 0  
+ q x  -1 = 0 ;  i.e. F(z) is analytic at z=q. 

In the same way we find that  the residues of A(z) and L(z) at z = q - ~  are 
q -  2 x and - q -  2 x, so F(z) is analytic at z = q -  1. 

Since F satisfies (2.12), it follows that  F(z) is analytic at all points of the 
form z=q  3k+-1 and hence for all z * 0 .  Now apply Theorem 1.8(a) with n =  1, 
C =  - x  -3, and q replaced by q3: 

F(z) = F o j ( x  3 z, q3), (2.13) 

where F0 is the coefficient of z ~ in the Laurent  expansion of F(z) for z ~= 0. 
For  Iql < ]zl < I, the coefficient of z ~ in A(z) is g(x, q), by Theorem 2.1. For  

such z, Iq3"+lzl< 1 if and only if r > 0 ;  i.e. e,(q3"+az)=sg(r). By (1.28), 

SO 

1 
1 - - q 3 r + l T ,  =sg(r )  y, q(3r+l)szs,  

5 
s g ( r )  = s g ( s )  

L(z)= y' sg(r) (--1)rq3rtr+l)/2+(3r+l)sx3r+lz r+s+l. 
sg(r)=sg(s) 

But if sg(r)=sg(s)  then r + s + l  is either > 1  or < - 1 ,  so the coefficient of 
z ~ in L(z) is 0. Similarly, the coefficient of z ~ in M(z) is 0. Hence the coefficient 
of z ~ in F(z) is g(x, q). By (2.13), we have 

F(z) = g(x, q) j ( x  3 Z, q3), 

which implies the theorem. []  

3. A relation between fo, f l ,  and a theta function 

We now do for fo(q) and fl(q) what we just did for g(x, q). We begin by rewriting 
two Hecke type identities due to Andrews. 

Theorem 3.0. 

and 

r ,~ rs+~(r+s)2+~(r+~ ) 
Jafo(q)= ~ s g ( r ) ( - 1 )  2 q (3.0) 

sg(r) = sg(s) 
r =- s (rood 2 ) 

r--s rs+~(r+s)2+a4(r+s) 
J , f , (q)= ~" sg(r)(--1)  2 q (3.1) 

sg(r) = sg(s) 
r -= s (rood 2 ) 

Proof By Eq. (6.1) of [A4],  

J~ f0(q)---- ~ (-- 1)Jq "~5"+1)/2-j2(1 __q4n+2) 
n__>0 
UI<n 

= ~ (--1)Jq "~5"+1)/2-j2- ~ (--1)Jq t"+l)t5"+4)/2-j:. 
n > 0  n > O  
]jl<n [jl<=n 

(3.2) 
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Writing n = (r + s)/2 and j = ( r - s ) / 2  in the first sum on the right and n = 
- (r + s + 2)/2 and j = ( r -  s)/2 in the second, this becomes 

r- -s  r s+~(r+s)2+�88  ) r--s  rs+~(r+s)Z+�88  ) 
(--1) 2 q -- Z (--1) 2 q , 

r>O r <  - 1  
s > O  s <  --1 

r -= s (rood 2)  r -= s (mod 2) 

which equals the right-hand side of (3.0). 
Similarly, Eq. (6.5) of [A4] gives 

j ,  A(q) = ~ ( _  1)Jq,tS,+3)/2-J2(1 _q2,+1). (3.3) 
n>__0 
Ij[ <n 

Rearranging this in the same way yields (3.1). []  

Definition 3.0. For  lql < 1 and z not an integral power of q2, let 

z2 J 2 J ( - z ,  q)j(z, q3) 
B(z) = B(z, q)-- j(z, q2) []  (3.4) 

Note that B(z) is meromorphic for z 4 0 ,  with simple poles a t  z - - q  6k•  

(The singularities at z = q6k are removable.) Further, B(z) satisfies the functional 
equations 

B(q6z)=--z-S B(z) and B ( z - 1 ) = z - S  B(z). (3.5) 

Theorem 3.1. Let q be f ixed,  0 < [ q [ < l .  Then, in the annulus [q[2<[z]<l ,  the 
coefficient of  z 1 in the Laurent series expansion of B(z) is qfo(q) and the coefficient 
of  z 2 is f l  (q). 

Proof  By Theorem 1.6 with x =  - z  1/2 and y = z  ~/2, we have 

sg(r) ( -  1) r q,S z~, + s)/2 = J2 .4 J ( -  q z, q2)j(q, q2)j(zZ ' q4) 
~,~r) = ~g~) j(z, q2)2 
r -= s (mod 2) 

�9 I1J2J( - z ,  q) 
- ( 3 . 6 )  j(z,  q2) 

Hence 

�9 11 B(z) =z2 J1J2J( - z ,  q) j(z,  q3) 
j(z,  q2) 

= z  2 ~ sg(r)(--1)rqrSztr+s)/2~(--1)tq3m-a)/2Z t. 
sg(r)  = sg(8) t 
r ~- s (mod 2)  

(3.7) 

The coefficient of z 1 in (3.7) is obtained by setting t = - ( r  + s + 2)/2; it equals 
r - - $  

~" sg(r)(--1) 2 i-1 qrS+~(r+s)2+~(r+s)+3 
sg(r)  = sg(s) 
r ~ s ( m o d  2)  
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Replacing r and s by - 1 - r  and - 1 - s  and noting that s g ( - 1 - r ) = - s g ( r ) ,  
this becomes 

~, sg(r)(--1)r2Sqrs+~(r+s)~+�88 
sg(r) = sg(s) 
r z- s (mod 2) 

by (3.0). Dividing by J1 shows that the coefficient of z I in B(z) is qfo(q). 
Similarly, the coefficient of z 2 in (3.7) equals 

r--s rs+~(r+s)2+l(r+s ) 
sg(r)(--1) 2 q = J l f l ( q ) ,  

sg(r) = sgls) 
r ~ s (rood 2) 

so the coefficient of 2 .2 in B(z) is fl(q). [] 

Theorem 3.2. I f  0 < Iql < 1 and z is neither 0 nor an integral power of q2, then 

B(z) = q fo(q) [z J(q 6 z5, q30) + z4 j(q24 z 5, q30)] 

+fl(q) [z2j(q 12 z5, q30)+z3j(q18 z 5, q30)] 

+ 2 ~  ( -  1)r q15'2+ 15'+3 zSr+5 

r 1 - - q 6 r + 2 z  

( 1)'qlSr2+ xsr+az -s~ 
+ 2 ~ -  7 _ ~ 7 + 5 ~ i -  �9 

r l - - q  Z 
(3.8) 

Proof Let 

and 

(__ l)r q15r2+15r+ 3 zSr+ 5 

L(z)=2 ~" l__q6,+Zz 
r 

1)r q 1 5 r 2 +  1 5 r +  3 Z -  5r 

M(z)=2 2 ( -  ~ _  ~g,-+~ )~i- , 
r 

F ( z ) = B ( z ) - L ( z ) - - M ( z ) .  

(3.9) 

(3.10) 

(3.11) 

It is easy to verify that 
F(q 6 z) = - z - 5 F(z), (3.12) 

since each of the functions B, L, and M satisfies this functional equation. Further, 
L(z-1) = z -5  M(z) and M(z-1 )=  z -5  L(z), so F also satisfies 

F(z) is meromorphic for 
residue of B(z) at z = q2 is 

F(z -  ') = z -  s F(z). (3.13) 

z~=0 with, at most, simple poles at  2 = q  6k-+2. The 

q 2  

q4 J2 J(-- q2, q)j (q2, q3) J z  3 = 2 qS. (3.14) 
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The residue of M(z) at z = q  2 is given by the r = 0  term in (3.10): As z ~ q  2, 

l _ q 2 z _  1 2 q 3  ~ + O ( i ) =  2q5 M(z)= +O(1)= z _ ~ 2 +  O(1), 

so the residue is 2q 5. Hence the residue of F(z) at z=q  2 is 0; i.e. F is analytic 
at z = q  2. By (3.12) and (3.13), F is analytic at all points z = q  6k• and hence 
for all z+0.  By Theorem 1.8 (b) with q replaced by q6, n=5 ,  and C =  - 1, 

F(z) = Ft [z j(q 6 z 5, q30) + z4 j(q24 z 5, q30)] 

+ F2 [ z  2 j(ql 2 Z 5 ' 6/30) .q_ z3j(qt 8 Z 5, q 3 0 ) ]  (3.15) 

where F1 and F 2 are the coefficients of z t and z 2 in the Laurent series of F(z). 
Now restrict z to the annulus [qlZ<lz[<l. Then Iq6r+Zz]<l if and only 

if r > 0 ;  i.e. e(q6"+2z)=sg(r). Hence 

L(z)=2~'_~(-1)rq15rZ+t5r+3zSr+Ssg(r) ~" (q6r+2Z)S 

r sg(r) s sg(s) 

=2  ~ sg(r)(--1)rqlSr2+tSr+3+(6~+Z)sz 5r+s+5. 
sg(r) = sg(s) 

But if sg(r)=sg(s) then 5 r + s + 5  is either >5  or < - 1 ,  so the coefficients of 
z t and z 2 in L(z) equal 0. Similarly, the coefficients of z I and z 2 in M(z) equal 
0. Hence F t and F z equal the coefficients of z t and z 2 in B(z); by Theorem 
3.1 these are qfo(q) and fl(q), respectively. Substituting these values in (3.15) 
gives the theorem. [] 

4. The mock theta conjectures 

Theorem 3.2 gives an identity involving both fo and f~. To obtain the mock 
theta conjectures from it, we will decompose both sides of (3.8) in order to 
separate fo from ft- We write 

4 

B(z) = ~ z' Bi(zS), (4.0) 
i=O 

where each Bi is a single-valued function. This decomposition is clearly unique. 
We begin by finding BI and B 2 from the right-hand side of (3.8). (The other 
Bi's will not be needed.) 

We have 
1 I 4 

l_q6r+2Z l__q3Or+lOz 5 Zz iq  (6r+2)I 
i = 0  

and 
1 Z-5 5 

l__q6r+aZ_ I -- l__q3Or+1Oz_ 5 Zziq (6r+2)(5-i). 
i=I 
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By substituting these equations into the right-hand side of (3.8), we can read 
off the values of B 1 and B2: 

and 

BI (z 5 ) = q fo(q) j(q 6 z 5, q3O) 

+ 2 ~ (-- 1)'q15'2+21�9 5 zSr+ 5 
, 1 __q30r + 10 Z 5 

+ 2 ~  ( -  1)�9 q lS 'Z+ 39 '+  11 Z-5�9 
�9 1--q3Or+lOz -5 

Bz (zs) = fa (q) j (q, 2 z 5, q3O) 
(_ l)r qlS,2+27r+ 7 zS�9 s 

+ 2 ~ .  l_q3O�9 5 

Z ( - - 1 ) r  q15 �9  Z - 5 � 9  

+ 2 q3Or+ lo z- 5 
r l - -  

(4.1) 

(4.2) 

To obtain B and B2 from the left-hand side of (3.8), we use the following 0- 
function identity, which will be proved in the next section: 

Theorem 4.0. Let [q[ < 1. For 1 < r <  4, let 

j .z 6rz5 30~ G�9 lo z�9 ,q ) (4.3) 
J, 

and 

Let 

Then 

H,(z) = - 2 q  3 z �9 A(z 5, q2�9 qlO) 

2q3 z r jZoj(q2r z 5, qlO)j(z5 ' q3O) 

Jz�9 q 1~ 

2 ~ 3 j 2  ;~zlO q3O) t,/ 10Ji  , 
Ho(Z) = j ( z  5, qlO) 

4 
B(z ) :  G,(z)+ Gz(Z)- G3(z)-  G4(z)+ ~'. Hr(z), 

�9  

(4.4) 

(4.5) 

(4.6) 

provided that z4=O and z 
integer. [] 

Assuming this identity, we find that 

Bt (z 5) = z -  1 [G~ (z) + H1 (z)] 

q Js, toJz, sJ(q 6 z5' q3O) 

Jx 
and 

B2(z  2) = z -  ~ [6~(z) + n~(z)]  

Js, so'14, 5 J ( q l z zS, q30) 

J1 

is not of the form co q 2k where 09 5=1 and k is an 

2q3 A(zS, q2, ql O) (4.7) 

2q3 A(zS, q4, qlO). (4.8) 
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By Theorem 2.2, 

and 

A(z 5, q2, qlO)=j(q6 z 5, q30) g(q2, qlO) 

-- 2 ( -  l)r qlSr2+ 21r+ 2 25r+5 

r 1--q 3~ 

- - Z  ( -  l)r qlSrZ+a9r+a Z-Sr-5 

r l - -q  30r+lOZ-5 

A(z 5, q4, qlO) =j(qX 2 z 5, q30) g(q4, qlO) 
__y~ (-- 1)r q15'2+ 27r+4Z 5r+5 

r 1 -- q3Or+ 10 25 

- - 2  ( -  1)r q15r2+ 33r+6 z -  5 r -5  

r 1--q 3~ 

(4.9) 

(4.10) 

Combining (4.1), (4.7), and (4.9) yields 

Joe(q) = J5  l~ 5 , , 2q2 g(q2, q~O). (4.11) 
I1 

By (2.1), this is equivalent to the first mock theta conjecture (0.9). Similarly, 
combining (4.2), (4.8), and (4.10) gives 

f l  (q) = J5 lo J4 5 . , 2q3 g(q4, qlO), (4.12) 
J1 

which is equivalent to the second mock theta conjecture (0.10). 

5. Proof of Theorem 4.0 

Let 
4 

V(z) = B(z)-  6j(z)-  G2(z) + 63(z) + 64(z)- ~ H.(z). (5.0) 
r = 0  

We wish to prove that V(z) is identically 0. Each of the functions B, G,, and 
H, satisfies the functional equation 

In addition, B and H o satisfy 
f ( q 6  Z) = --  Z -  5 f(z). 

f ( z  - x )  = z -  5 f ( z ) ,  

and, for l_<r<_4, we have G,(z-1)=-z-SGs_r(Z ) and H~(z-a)=z-SHs_~(z). 
Therefore, 

V(q6z) = --z -5 V(z) and V(z-1)=z -5 V(z). (5.1) 



A proof of the mock theta conjectures 657 

V(z) is meromorphic for z:#0 with, at most, simple poles at the points z 
-----6oq 6k• where co5=1. We wild show that V(z) is, in fact, analytic for z:~0, 
by finding its residue at the points z = co q2. 

By (3.14), the residue of B(z) at z=q  2 is 2q5; B(z) is analytic at z=a~q 2 
for co4: 1. G,(z) is analytic for z~:0. For  1 <r_<4, the residue of H,(z) at z=coq 2 
is 

2q3(ogq2)rj2oj(q2r+ lo, qlO)j(qlO, q3O) 09 q2 __ 2o~,+ 1 qS. 
J2~,1o 5j3o 5 

This formula also applies when r = 0, but the derivation is different: The residue 
of H0 (z) is 

30" t o q  2 209 5 
2qa J(oj(qE~ ) ~ 3 o = ~ - q  . 

Hence the residue of V(z) at z = q2 is 

2 q 5 -  ~ 2 q 5 = 0 ;  
r = 0  

the residue at z = ~o q2 for 09 + 1 is 

~ 2 0 9  r+l  
O-- - - q S = O .  

r=O 5 

So V(z) is analytic a t  z = 6 9 q  2, ~o5=1. By (5.1), V(z) is analytic at all points 
z=o~q 6k• and hence for all z4:0. 

According to Theorem 1.7 with C =  - 1 ,  n = 5, and q replaced by q6, if V(z) 
is not identically 0, then it has exactly 5 zeros in Iql6<tzl<= 1. But we will 
show that V(z)=0 at the 6 points z = - q ,  _q2, +q3, _q4, and _qS, which 
will imply the theorem. 

By (5.1), V ( q 6 z - l ) = - z  5 V ( z - l ) = - V ( z ) .  In particular, V(+q3)=0,  
V ( - q 4 ) = -  V(-q2),  and V(-qS)  = - V ( - q ) .  Hence it suffices to show that 
V( - q) = V( -- q2) = 0. 

By (4.4), we have, for 1 < r < 4, 

Hs_,(z ) zS-2,j(qlO-2,zS, qlO)_ zS-Z*j(q2rz-5, qlO) 
Hr(z ) j(q2r z 5, q,O) j(qZ, z 5, q,O) 

If z -- -- qk where k is an integer, then (1.8) implies 

j(q2, z5 ' qlO)=j(qlOk, q2r z -  5 ' qtO) 

_____(__ 1)k q-5k(k-l)  q-2rkzSkj(q2r T-5 ' qlO) 

= q(5- 2r)kj(q2r 7. - 5, qXO) 

= __Z 5-2rj(qEr Z- 5, qlO), 
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hence H5 - r ( -  qk) = _ Hr(-- qk) and 

4 
~ H, ( - -qk)=o.  

r=l  

Also, it is clear from (3.4) that B(--qk)=O; therefore 

V (  - -  qk )  : __ a l ( __ qk )  __ 6 2  ( __ qk )  "Jr" a 3 ( - -  qk )  ..~ 6 4  ` ( __ qk )  __ n o  ( __ q k )  

J5 lO,  k + l r  5f5k+6 30--  2k = , q J4, 5 Jsk+ 12 30 J1 ~q az. 

--q3k + l J6, s Jsk + l S, 3o + q4k + 4 Js, s Jsk + 24, 3o ) 

2q3 j2oJlok, 3O 

gSk, 10 

J5 lO [qk + 
_ J f  1J2 .5(J5k+6,30_q3k J-"Sk+24 ,30)  

_ _  qEk,lt, 5 (Y5 k + X2, 30--qk Jsk+ 18, 30)] 

2qZ J2oJlok,3O 

fSk, 10 

In particular, 

V( - -q )=  q2 Js, ~0 [J2, 5 (,~,, 3 0 -  q3 "I29, 30)--J l ,  5(~7,  30 -- q J23, 30)] 
J, 

2q3 J13o 

J5,1o 

By Theorem 1.0 with q and x replaced by qlO and - q 3 ,  

~1 3 0 -  3 -  - 3 JloJ6,10 
�9 q J29"3~176 J29 '3~  J3,10 

Similarly, replacing q and x by qlO and - q  gives 

J l o  J2, lO 
~7"3~176176176  ~ , , o  

So the bracketed quant i ty  in (5.2) equals 

J2,~J~oJ6,~o J1.sJ1oJ2~ . l o _  J t , 4 ( ~ , l o J 3 , 1 o _ j 1  lof3 lo) 
J1,1o J2o ' ' 

= J1,4 2qJ2,2oJ14,2o- 2qJl  J2o 
J2o Slo 

D. Hickerson 

(5.2t 
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by Theorem 1.2 with q, x, and y replaced by qlO, q, and q3. Hence 

V(_q)=2q3Js, loJ2o 2q3 J3o = 0 "  

J,o JS, lO 
Similarly, we find 

V(-q2)- q3 JS'l~ [J2,5(~6,30-q6 J34,30)-q J1,5(Jz2,30-q2 J28,30)] 
J1 
2 q 3 j 3  o 

"~0, 10 " 

By Theorem 1.0, 

and 

-- -- -- J lOJ4 10 J16,30-q6 J34,30:J16,30-q2 J 2 6 . 3 0 - ~  
a2, 10 

-- 2j28 30=J22 4-- JloJ8, to 
J 2 2 , 3 0 - - q  , , 30 - -q  J 3 2 , 3 0 -  J4,10 

so the bracketed quantity in (5.3) equals 

J2. sJloJ4,1o qJ1,sJloJ8,1o 

J5 J2.4 (J6,10 J3,10 - q  J1, ,o Js, ,o). 
J lod lo ,  2o 

By Theorem 1.1 with q, x, and y replaced by -qS, q, and -q2,  this equals 

Hence 

JsJ2.4 j ( q , _ q S ) j ( _ q 2 , _ q S )  

JloJ, o,2o 

JsJz . . . .  4 ,I1 loJ6 lo J2,1OJT, 10 J1 Ji2o,2o 
J lo  J lo .2o J5,20 J5,20 Js,  xo 

2q3 J30 = 0  ' 
V(--q2)=q3 j2~176 ,~0,10 

and the proof is complete. IS] 

(5.3) 
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