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Abstract. Together with his collaborators, most notably Kathrin Bringmann and Jan
Bruinier, the author has been researching harmonic Maass forms. These non-holomorphic
modular forms play central roles in many subjects: arithmetic geometry, combinatorics,
modular forms, and mathematical physics. Here we outline the general facets of the the-
ory, and we give several applications to number theory: partitions and q-series, modular
forms, singular moduli, Borcherds products, extensions of theorems of Kohnen-Zagier and
Waldspurger on modular L-functions, and the work of Bruinier and Yang on Gross-Zagier
formulae. What is surprising is that this story has an unlikely beginning: the pursuit of
the solution to a great mathematical mystery.

Modular forms are central in contemporary mathematics. Indeed, modular forms play
crucial roles in algebraic number theory, algebraic topology, arithmetic geometry, com-
binatorics, number theory, representation theory, and mathematical physics. The recent
history of the subject includes (to name a few) great successes on the Birch and Swinnerton-
Dyer Conjecture, Mirror Symmetry, Monstrous Moonshine, and the proof of Fermat’s Last
Theorem. These celebrated works are dramatic examples of the evolution of mathematics;
indeed, it would have been impossible to prophesy them fifty years ago.

Instead of travelling back in time to the 1950s, our story (also see [165]) begins in 1887,
in a village in India. Our mathematics1, which is about harmonic Maass forms, begins
with the legend (see [6, 39, 40, 110, 111, 133, 165]) of the great mathematician Srinivasa
Ramanujan, and the mathematics he conjured from his death bed.

1. The gift from Kumbakonam

Ramanujan was born on December 22, 1887 in Erode, a town about 250 miles southwest
of Chennai (formerly known as Madras). He was a Brahmin, a member of India’s priestly
caste. He grew up in Kumbakonam, a small town roughly 150 miles south of Chennai,
where his father Srinivasa was a cloth merchant’s clerk. Kumbakonam, which is situated
on the banks of the sacred Cauvery River, was (and remains today) a cosmopolitan center
of the rural Indian district of Tanjore in the state of Tamil Nadu.

As a boy, Ramanujan was a stellar student. Indeed, he won many awards2 at Town
High School in Kumbakonam. Thanks to his exemplary performance, Ramanujan won a
scholarship to Government College. His life took a dramatic turn when a friend loaned

The author thanks the support of the NSF, the Manasse family, and the Hilldale Foundation.
1This is an exposition of the author’s lectures at the ’08 Harvard-MIT CDM Conference.
2Present day visitors to Town High School can view copies of these treasured awards.
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him a copy of G. S. Carr’s Synopsis of elementary results in pure mathematics, which G.
H. Hardy would later describe (see page 3 of [111]) as

“...the ‘synopsis’ it professes to be. It contains enunciations3 of 6165 theorems, systemat-
ically and quite scientifically arranged, with proofs which are often little more than cross-
references...”

The amateur Ramanujan became infatuated with mathematics research, recording his
“discoveries” in notebooks, imitating Carr’s format. He typically offered no proofs of any
kind. His addiction for mathematics made it impossible for him to focus on schoolwork
at Government College, and he unceremoniously flunked out. He would later get a second
chance, a scholarship to attend Pachaiyappa’s College in Madras. His obsession again kept
him from his school work, and he flunked out a second time (see [41]).

By 1907, the gifted Ramanujan was an academic failure. There was no room for him
in India’s system of higher education. His friends and parents must have recognized his
genius, and, to their credit, they continued to support him by allowing him to work
on mathematics full bore. There are vivid accounts (for example, see page 67 of [133]) of
Ramanujan hunched over his slate on the porch of his house, and in the halls of Sarangapani
Temple working feverishly on mathematics.

“....Ramanujan would sit working on the pial (porch) of his house. . . , legs pulled into his
body, a large slate spread across his lap, madly scribbling,...When he figured something
out, he sometimes seemed to talk to himself, smile, and shake his head with pleasure.”

For the next few years, Ramanujan continued his research in near isolation4. Thankfully,
Ramanujan secured a job as a clerk at the Madras Port Trust which provided a salary,
and left time for mathematics. Although some Indian patrons acknowledged his genius,
he was unable to find suitable mentors since Indian mathematicians did not understand
his work. He was unable to share his passion and raison d’être with others.

After years in purgatory, Ramanujan boldly wrote distinguished English mathemati-
cians. He wrote M. J. M. Hill, and then H. F. Baker and E. W. Hobson, without success.
Then on January 16, 1913, he wrote G. H. Hardy, a young analyst and number theorist at
Cambridge University. With his letter he included nine pages of mathematical scrawl. C.
P. Snow later elegantly recounted (see pages 30-33 of [112]) Hardy’s reaction to the letter:

“One morning in 1913, he (Hardy) found, among the letters on his breakfast table, a large
untidy envelope decorated with Indian stamps. When he opened it...he found line after
line of symbols. He glanced at them without enthusiasm. He was by this time...a world
famous mathematician, and ...he was accustomed to receiving manuscripts from strangers.
....The script appeared to consist of theorems, most of them wild or fantastic... There were
no proofs of any kind... A fraud or genius? ...is a fraud of genius more probable than
an unknown mathematician of genius? ...He decided that Ramanujan was, in terms of
...genius, in the class of Gauss and Euler...”

In response to the letter, Hardy invited Ramanujan to Cambridge. Although Hindu
beliefs forbade such travel at the time, Ramanujan’s mother had a vision from Goddess

3B. C. Berndt has informed me that there are actually 4417 theorems in Carr’s book.
4He did share his work with S. Narayana Aiyar, a friend who earned a Master’s in mathematics.
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Namagiri granting him permission to accept the invitation. Ramanujan left his life in
south India for Cambridge University, home of some of the world’s most distinguished
mathematicians. He arrived on April 14, 1914.

Over the next five years, Ramanujan published extensively on a wide variety of topics:
hypergeometric series, elliptic functions, modular forms, probabilistic number theory, the
theory of partitions and q-series, among others. He would write over thirty papers, includ-
ing seven with Hardy. He was named a Fellow of Trinity College, and he was elected a
Fellow of the Royal Society (F.R.S.). News of his election spread quickly, and in India he
was hailed as a national hero.

Ramanujan at his Master’s graduation ceremony

Sadly, the story of Ramanujan’s life ends tragically. He fell ill towards the end of his
stay in England. He returned to south India in the spring of 1919 seeking a return to
health and a forgiving climate. Unfortunately, his health steadily declined over the course
of the ensuing year, and he died on April 26, 1920 in Madras. He was thirty two years
old. Amazingly, despite his illness, he spent the last year of his life, again in mathematical
isolation, conjuring a most beautiful theory, one which was nearly lost to the world.

Ramanujan’s 1919 passport photograph5

5These images illustrate Ramanujan’s poor health in 1919. He seems to have lost considerable weight.
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The legend of Ramanujan has continued to grow with the ever-increasing importance
of his mathematics. To explain, it is appropriate to recall Hardy’s own words6 written
shortly after Ramanujan’s death:

“Opinions may differ about the importance of Ramanujan’s work, the kind of standard by
which it should be judged, and the influence which it is likely to have on mathematics of
the future. ...He would probably have been a greater mathematician if he could have been
caught and tamed a little in his youth. On the other hand he would have been less of a
Ramanujan, and more of a European professor, and the loss might have been greater than
the gain....”

In view of the last eighty five years of progress in number theory, it is clear that the loss
would have been much greater than the gain. On one hand, as Hardy did, we may largely
base our conclusion on the contents of Ramanujan’s notebooks, which, apart from the “lost
notebook” that contained the work of his last year, were known to mathematicians at the
time of his death. They are a repository of thousands of cryptic entries on evaluations
and identities of strangely named functions. Through the tireless efforts of B. C. Berndt,
adding to the accumulated effort of earlier mathematicians such as Hardy, G. N. Watson,
B. M. Wilson, and R. A. Rankin, a clear picture has emerged which reveals Ramanujan’s
incredible gift for formulas and combinatorial relations (see [32, 33, 34, 35, 36, 111, 175]).
Perhaps he was the greatest such mathematician of all time.

On the other hand, this flattering assessment is grossly inadequate, for it does not take
into account Ramanujan’s impact on Hardy’s “mathematics of the future”. Indeed, num-
ber theory has undergone a tremendous evolution since Ramanujan’s death, and today
it bears no resemblance to the number theory of his day. The subject is now dominated
by the arithmetic and analytic theory of automorphic and modular forms, the study of
Diophantine questions under the rubric of arithmetical algebraic geometry, and the emer-
gence of computational number theory and its applications. These subjects boast many of
the most celebrated achievements of 20th century mathematics such as: Deligne’s proof of
the Weil Conjectures, the solution to Gauss’ Class Number Problem by Goldfeld, Gross,
and Zagier, Wiles’ proof of Fermat’s Last Theorem, and Borcherds’s work on the infinite
product expansions of automorphic forms. A proper assessment of Ramanujan’s greatness
must then take into account the remarkable fact that his work, the portion which was
known to Hardy, makes intimate contact with all of these notable achievements. Clearly,
Ramanujan was a great anticipator7. His work provided examples of deeper structures,
and suggested important questions which are now inescapable in the panorama of modern
number theory (see [165]).

This brings us to the mysterious mathematics Ramanujan developed during his last
year, which was nearly lost. For nearly 60 years, the only information about this work was
contained in the surviving portion of Ramanujan’s last letter to Hardy, dated January 20,
1920. The task of teasing his theory from this letter has been one of the greatest challenges
for Ramanujan historians. Then in 1976, G. E. Andrews unearthed Ramanujan’s “lost
notebook”, the sheafs of mathematical scrawl containing the results Ramanujan described

6See page xxxvi of [110].
7I first heard Ramanujan described this way by Manjul Bhargava.
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in this last letter. What are the secrets of the mathematical scrawl Ramanujan penned
during his last days? What is its impact on Hardy’s “mathematics of the future”?

2. Ramanujan’s playground

The new mathematics described in this paper is born from the enigmatic theory Ra-
manujan conjured during the last year of his life. To set the stage, it makes sense to first
ponder some of Ramanujan’s early work which we think led him to conceive this theory.

At first glance, the stuff of partitions seems like mere child’s play:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Therefore, there are 5 partitions of the number 4. As happens in number theory, seemingly
simple problems, such as the business of adding and counting, can quickly lead to difficult
and beautiful problems (for example, see [4, 16, 24]). A partition of the natural number
n is any non-increasing sequence of natural numbers whose sum is n. The number of
partitions of n is denoted by p(n) (by convention, we let p(0) := 1).

2.1. Ramanujan’s work on partitions. Ramanujan was perhaps the first mathemati-
cian to seriously investigate the properties of this function p(n). He sought a formula for
p(n), one which describes the phenomenal rate of growth suggested by the table below.

n p(n)

0 1
1 1
2 2
3 3
4 5
5 7
...

...
50 204226
...

...
200 3972999029388
...

...
1000 24061467864032622473692149727991

Together with Hardy, Ramanujan gave a remarkable asymptotic formula [113, 114],
which was perfected by H. Rademacher [168, 169] two decades later to obtain a formula
which is so accurate that it can be used to compute individual values of p(n). More
precisely, Rademacher defined explicit functions Tk(n) such that for all positive n we have

(2.1) p(n) =
∞∑

k=1

Tk(n).
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The function T1(n) alone gives the Hardy-Ramanujan asymptotic formula

(2.2) p(n) ∼ 1

4n
√

3
· eπ
√

2n/3.

The rate at which Rademacher’s series converges is astonishing; for example, the first eight
terms give the approximation

p(200) ≈ 3, 972, 999, 029, 388.004,

which nicely compares with the exact value in the table above. These works stand out
further in importance since they mark the birth of the circle method, now one of the
fundamental tools in analytic number theory.

Ramanujan also investigated the divisibility properties of p(n). At first glance, the
combinatorial definition of the partition function gives no reason to believe that it possesses
any interesting arithmetic properties. There is nothing, for example, which would lead us
to think that p(n) should exhibit a preference to be even rather than odd. A natural
suspicion might be that the values of p(n) are distributed evenly modulo 2. Numerics
seem to confirm this suspicion, as well as its obvious generalization when 2 is replaced
by 3. However, when we replace 3 by 5, something quite different happens; we discover
that 3,611 (many more than the expected one-fifth) of the first 10,000 values of p(n) are
divisible by 5.

The explanation must have been clear to Ramanujan when he first saw the famous
table of values of p(n) computed by P. A. MacMahon, a well-known combinatorialist and
major in the British Royal Artillery. These values, starting with n = 0, were listed in five
columns, and so Ramanujan would have seen something like the following.

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565.

What is striking, of course, is that every entry in the last column is a multiple of 5. This
phenomenon, which persists, explains the apparent aberration above, and was the first of
Ramanujan’s ground-breaking discoveries on the arithmetic of p(n). He proved [173, 174],
for every non-negative integer n, that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).
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Ramanujan conjectured (and in some cases proved) [38, 173, 174] that there are further
congruence properties in which the moduli are powers of 5, 7, or 11.

Subsequent works [28, 208] by A. O. L. Atkin and Watson resolved the conjectured
congruences of Ramanujan, and in an important paper [29] Atkin discovered completely
new congruences modulo some further small primes. The author proved [162] that Atkin’s
phenomenon generalizes to all prime moduli exceeding 3, and in later work Ahlgren and
the author further extended [2, 3] these results to include all moduli coprime to 6. In
particular, it turns out that there are such Ramanujan-type congruences for every modulus
M coprime to 6. For example, we have that

(2.3) p(4063467631n+ 30064597) ≡ 0 (mod 31).

This comprehensive theory requires deep works of Deligne, Serre, and Shimura [83, 187,
197].

2.2. Ramanujan’s playground is a testing ground. Ramanujan’s work on p(n), and
the research it inspired, underscores the fact that the theory of partitions has historically
served as a delightful “testing ground” for some of the deepest developments in the theory
of modular forms. Indeed, (2.1) and (2.2) are the first triumphs of the circle method, while
congruences such as (2.3) arise from the interplay between the Deligne-Serre theory of
`-adic Galois representations, the “language” of the proof of Fermat’s Last Theorem, and
Shimura’s theory of half-integral weight modular forms.

To make this connection between partitions and modular forms, we simply require Eu-
ler’s combinatorial generating function

(2.4)
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + · · · .

This formal power series is essentially a “weakly holomorphic modular form”.
To make this a bit more precise, let Γ ⊂ SL2(Z) be a subgroup. An element γ = ( a b

c d ) ∈
SL2(Z) acts on H, the upper-half of the complex plane, by the linear fractional transfor-
mation γz := az+b

cz+d
. Loosely speaking, a weight k modular form on Γ is a holomorphic

function f on H which satisfies

(2.5) f(γz) = (cz + d)kf(z)

for all γ ∈ Γ, which in addition is holomorphic “at the cusps”. A weakly holomorphic
modular form satisfies this definition but is permitted to have poles at cusps.

At the heart of the matter is Dedekind’s weight 1/2 modular form, the eta-function:

η(z) := q1/24

∞∏
n=1

(1− qn),

where q := e2πiz. For z ∈ H, it turns out that

η(z + 1) = e
πi
12η(z) and η(−1/z) = (−iz)

1
2η(z).

Since SL2(Z) is generated by

T :=

(
1 1
0 1

)
and S :=

(
0 −1
1 0

)
,
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it follows that η(z) is a weight 1/2 modular form on SL2(Z) with a “multiplier system”.
Since η(z) is nonvanishing on H, (2.4) then implies that

(2.6)
1

η(z)
=

∞∑
n=0

p(n)qn− 1
24

is a weight −1/2 weakly holomorphic modular form.

2.3. How did Ramanujan think of modular forms? Since we view Ramanujan’s
results on the partition function, and the research it inspired, as a testing ground for the
theory of modular forms, we are compelled to ask how Ramanujan thought of modular
forms. A brief inspection of most of his works (for example, see [38, 175]) suggests that
his view was consistent with the classical treatment found in most textbooks (for example,
see [71, 84, 125, 134, 143, 155, 164, 177, 185, 193, 196]) on modular forms. Indeed, the
bulk of his work on modular forms depends on the properties of the q-series

P (q) := 1− 24
∞∑

n=1

σ1(n)qn,

Q(q) := 1 + 240
∞∑

n=1

σ3(n)qn,

R(q) := 1− 504
∞∑

n=1

σ5(n)qn,

(where σν(n) :=
∑

d|n d
ν), which are the classical Eisenstein series E2(z), E4(z) and E6(z)

from the theory of modular forms. Therefore, much of his work followed classical lines.
This assessment, however, ignores Ramanujan’s extensive work on combinatorial q-

series, which at first glance have nothing to do with the theory of modular forms. Ra-
manujan, a master manipulator of power series, thought deeply about combinatorial power
series such as infinite products, which are often modular like Dedekind’s eta-function η(z),
and Jacobi’s identity

∞∏
n=1

(1− q2n)(1 + t2q2n−1)(1 + t−2q2n−1) =
∑
n∈Z

t2nqn2

.

He also thought deeply about power series he referred to as Eulerian series, such as

(2.7) Ω(t; q) := 1 +
∞∑

n=1

qn2

(1− tq)2(1− tq2)2 · · · (1− tqn)2
,

which seems to have nothing to do with modular forms. However, in some rare cases such
series turn out to coincide with modular forms.

We now give one such coincidence, an identity which is particularly relevant for Ramanu-
jan’s work on partitions. We first recall some elementary combinatorial notions. One may
visualize a partition λ1 + λ2 + · · · + λk as a Ferrers diagram, a left justified array of dots
consisting of k rows in which there are λi dots in the ith row:
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• • · · · • λ1 nodes

• • · · · • λ2 nodes

...
...

• · · · • λk nodes.

The Durfee square of such a Ferrers diagram is the largest square of nodes in the upper
left hand corner of the diagram. The boundary of a Durfee square naturally then divides
a partition into a perfect square and two partitions whose parts do not exceed the side
length of the Durfee square.

Example 2.1. The Ferrers diagram of the partition 5 + 5 + 3 + 3 + 2 + 1 is:

• • • ... • •

• • • ... • •

• • • ...
· · · · · · · · ·
• • •

• •

•
Therefore, this partition decomposes as the Durfee square of size 9, and the two partitions

2+2, and 3+2+1.

Armed with these notions, we prove the following q-series identity for the generating
function for p(n).

Theorem 2.2. The following combinatorial identity is true:
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
= 1 +

∞∑
m=1

qm2

(1− q)2(1− q2)2 · · · (1− qm)2
= Ω(1; q).

In particular, we have that

1

η(z)
= q−

1
24

∞∏
n=1

1

1− qn
= q−

1
24 +

∞∑
m=1

qm2− 1
24

(1− q)2(1− q2)2 · · · (1− qm)2
.

Proof. For every positive integer m, the q-series

1

(1− q)(1− q2) · · · (1− qm)
=

∞∑
n=0

am(n)qn
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is the generating function for am(n), the number of partitions of n whose summands do
not exceed m. Therefore by the discussion above, the q-series

qm2

(1− q)2(1− q2)2 · · · (1− qm)2
=

∞∑
n=0

bm(n)qn

is the generating function for bm(n), the number of partitions of n whose Ferrers diagram
has a Durfee square of size m2. The theorem follows by summing in m. �

Although they are quite rare, there are further examples of such q-series identities in
which an Eulerian series is essentially a modular form. Among them, perhaps the most
famous are the Rogers-Ramanujan identities [171, 182, 183, 184]:

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
.

(2.8)

These infinite products are essentially the Fourier expansions of weight 0 weakly holo-
morphic modular forms, the type studied classically by Jacobi, Klein, and Siegel, and
again more recently by Kubert and Lang in their work on modular units (for example, see
[139, 186]).

Remark 1. The literature on such identities is extensive (for example, see works by An-
drews, Gordon, Göllnitz, and Slater [8, 102, 101, 195] to name a few), and the pursuit of
further identities and their interpretations remains an active area of research largely due
to applications in combinatorics, Lie theory, number theory and physics (for example, see
[13], [129] and [145] to name a few). In this direction, W. Nahm [159] has very interesting
work related to the question of when a basic hypergeometric-type series is automorphic.

These identities stand out since there is no reason to believe, for function theoretic
reasons, that an Eulerian series should ever be modular. Indeed, there is no general theory
of transformation laws for Eulerian series.

It is not difficult to imagine Ramanujan’s mindset. Understanding this quandary, it
seems that Ramanujan, largely motivated by his work on partitions and the Rogers-
Ramanujan identities, spent the last year of his life thinking deeply about the “near”
modularity of Eulerian series. He understood the importance of developing a “new the-
ory”, one which overlaps in spots with the classical theory of modular forms.

He discovered the mock theta functions.

3. Ramanujan’s last letter to Hardy

Hardy’s romantic story of Ramanujan opens with the delivery of the landmark letter
from Ramanujan in 1913. Our tale begins with Ramanujan’s last letter to Hardy, dated
January 12, 1920, just three months before his death. We quote (see pages 220-224 of
[39]):
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“I am extremely sorry for not writing you a single letter up to now.. . . I discovered very in-
teresting functions recently which I call “Mock” ϑ-functions. Unlike the “False” ϑ-functions
(studied partially by Prof. Rogers in his interesting paper) they enter into mathematics as
beautifully as the ordinary theta functions. I am sending you with this letter some exam-
ples.”

This letter contained 17 examples including:

f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

ω(q) :=
∞∑

n=0

q2n2+2n

(1− q)2(1− q3)2 · · · (1− q2n+1)2
,

λ(q) :=
∞∑

n=0

(−1)n(1− q)(1− q3) · · · (1− q2n−1)qn

(1 + q)(1 + q2) · · · (1 + qn−1)
.

(3.1)

At first glance, these series indeed seem to resemble the Eulerian series in Theorem 2.2
and (2.8). For example, in terms of (2.7), we have that both

f(q) = Ω(−1; q) and
1

η(z)
= q−

1
24 Ω(1; q).

However, as Ramanujan asserts, series such as f(q), ω(q) and λ(q) are not modular; they
are what he calls mock theta functions.

Most of the surviving text of the letter, which amounts to roughly 4 typewritten pages,
consists of explicit formulas for these 17 strange formal power series. The theoretical
content is rather obtuse, and consists of an elementary discussion on the asymptotics of
Eulerian series and their behavior near points on the unit disk. He gives no indication
of how he derived his 17 examples. He even divides these examples into groups based on
their “order”, a term he never defines. With such flimsy clues, how could one rederive
Ramanujan’s theory? What did he mean by a mock theta function?

Despite these formidable challenges, a few mathematicians such as G. E. Andrews, L.
Dragonette8, A. Selberg, and Watson [7, 85, 190, 206, 207] investigated Ramanujan’s mock
theta functions for what they were, a list of enigmatic power series. For example, Andrews
and Dragonette [7, 85] investigated Ramanujan’s claimed asymptotic formula for the mock
theta function

(3.2) f(q) = Ω(−1; q) =
∞∑

n=0

α(n)qn := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

They proved, for positive n, that

α(n) ∼ (−1)n−1

2
√
n− 1

24

· eπ
√

n
6
− 1

144 .

8Leila Dragonette is better known under her married name, Leila Bram.
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Remark 2. Strictly speaking, Dragonette first proved the asymptotic [85], while Andrews
refined her work to obtain [7] the asymptotic with an improved error term.

Despite the absence of a theory, or much less, just a simple useful definition of a mock
theta function, these few early works bolstered the belief that Ramanujan had discovered
something important. Watson, in his own words9, proclaimed [206]:

“Ramanujan’s discovery of the mock theta functions makes it obvious that his skill and
ingenuity did not desert him at the oncoming of his untimely end. As much as any of his
earlier work, the mock theta functions are an achievement sufficient to cause his name to
be held in lasting remembrance. To his students such discoveries will be a source of delight
and wonder until the time shall come when we too shall make our journey to that Garden
of Proserpine (a.k.a. Persephone)...”

4. The “lost notebook” and Dyson’s “challenge for the future”

By the mid 1970s, little progress had been made on the mock theta functions. They
remained a list of enigmatic power series, without any apparent connection to the theory
of modular forms, or any other comprehensive theory for that matter.

Then in the spring of 1976, Andrews discovered Ramanujan’s “lost notebook” in an old
box of papers hidden away in the Trinity College Library at Cambridge University. This
notebook, consisting of over 100 pages of mathematical scrawl [176], was archived among
papers from Watson’s estate. Miraculously, the “lost notebook” had somehow survived
a circuitous journey from India in the early 1920s to lie forgotten in the Trinity College
Library archives. The journey was indeed miraculous, for the contents of the box almost
met a catastrophic end in 1968 when Rankin saved them just a few days before they
were scheduled to be burned. Although the manuscript was never truly lost, it was long
forgotten, and buried among Watson’s random papers. Andrews proclaimed [9]:

“. . . the fact that its existence was never mentioned by anyone for over 55 years leads me
to call it “lost”.

The discovery of the “lost notebook” was the catalyst which made it possible to begin
chipping away at the puzzle of Ramanujan’s mock theta functions. On top of giving
2 further mock theta functions, adding to the 17 from the last letter and 3 defined by
Watson [206], the pages contained many clues: striking identities and relations. As usual,
these were given without proof.

To illustrate the value of these clues, we consider some examples of Ramanujan’s claimed
identities, the famous “mock theta conjectures.” To state them, we first fix notation. For
non-negative integers n, let

(4.1) (x)n := (x; q)n :=
n−1∏
j=0

(1− xqj),

9This text is from Watson’s 1936 Presidential Address to the London Mathematical Society
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and let

(4.2) (x)∞ := (x; q)∞ :=
∞∏

j=0

(1− xqj),

where an empty product equals 1. Let f0(q), f1(q),Φ(q), and Ψ(q) be the mock theta
functions

f0(q) :=
∞∑

n=0

qn2

(−q)n

,

Φ(q) := −1 +
∞∑

n=0

q5n2

(q; q5)n+1(q4; q5)n

f1(q) :=
∞∑

n=0

qn2+n

(−q)n

,

Ψ(q) := −1 +
∞∑

n=0

q5n2

(q2; q5)n+1(q3; q5)n

.

(4.3)

These q-series resemble (2.7) and the Eulerian series in the Rogers-Ramanujan identities
(2.8). The mock theta conjectures are a list of ten identities involving these 4 functions.
Thanks to work of Andrews and F. Garvan [26], these ten identities follow from the truth
of the following pair of identities.

Conjecture (Mock Theta Conjectures). The following identities are true:

(q5; q5)∞(q5; q10)∞
(q; q5)∞(q4; q5)∞

= f0(q) + 2Φ(q2),

(q5; q5)∞(q5; q10)∞
(q2; q5)∞(q3; q5)∞

= f1(q) + 2q−1Ψ(q2).

These surprising identities equate simple infinite products to linear combinations of
mock theta functions. These infinite products, like those in Theorem 2.2 and (2.8), are
well known to essentially coincide with the Fourier expansions of certain weakly holo-
morphic modular forms. Therefore, the truth of these identities directly related mock
theta functions to modular forms. These clues from the “lost notebook” finally placed
Ramanujan’s mock theta functions in the vicinity of the theory of modular forms.

Unfortunately, these clues would not prove to be enough to rederive Ramanujan’s theory.
Indeed, mathematicians even had to wait 10 years, until the work of D. Hickerson [118],
just for a proof of these particularly vicious q-series identities.

Nonetheless, Andrews’s discovery of the “lost notebook” in 1976 almost immediately
sparked an explosion of research on the mock theta functions, largely spearheaded by
Andrews. By the late 1990s, works by Andrews, Y.-S. Choi, H. Cohen, F. Dyson, Garvan,
B. Gordon, Hickerson, R. McIntosh, M. Wakimoto [9, 11, 12, 14, 15, 21, 26, 27, 72, 73, 74,
75, 76, 80, 103, 104, 118, 119, 204], among numerous others, revealed many of the deeper
properties of the mock theta functions. Thanks to these works, and too many others to
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list, Ramanujan’s 22 mock theta functions had been related to a surprising collection of
subjects:

• Artin L-functions in number theory
• Hypergeometric functions
• Partitions
• Lie theory
• Mordell integrals
• Modular forms
• Polymer chemistry
• . . .

Despite this flurry of activity, the essence of Ramanujan’s theory remained a mystery.
The puzzle of his last letter to Hardy, thanks to the “lost notebook,” had morphed into
the enigmatic web of Ramanujan’s 22 mock theta functions. The presence of this web
strongly suggested the existence of a theory, and it also demanded a solution. In his
plenary address at the Ramanujan Centenary Conference at the University of Illinois in
1987, Freeman Dyson beautifully summed up the situation [91]:

“The mock theta-functions give us tantalizing hints of a grand synthesis still to be dis-
covered. Somehow it should be possible to build them into a coherent group-theoretical
structure, analogous to the structure of modular forms which Hecke built around the old
theta-functions of Jacobi. This remains a challenge for the future. My dream is that I
will live to see the day when our young physicists, struggling to bring the predictions of
superstring theory into correspondence with the facts of nature, will be led to enlarge their
analytic machinery to include mock theta-functions...But before this can happen, the purely
mathematical exploration of the mock-modular forms and their mock-symmetries must be
carried a great deal further.”

5. Back to the future

By the late 1990s, the vast literature on Ramanujan’s mock theta functions contained
many important clues for Dyson’s “challenge for the future”. In addition to the identities
comprising the mock theta conjectures, there were further clues such as q-series identities
relating mock theta functions to Lambert-type series and indefinite theta series. We recall
two such identities involving the mock theta functions f(q) and f0(q) (see (3.1) and (4.3)).
In 1936, Watson [206] proved that

f(q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
=

2

(q)∞
·
∑
n∈Z

(−1)nq(3n2+n)/2

1 + qn
,

and in 1986 Andrews [12] proved that

f0(q) =
∞∑

n=0

qn2

(−q)n
=

1

(q)∞
·

 ∑
n+j≥0
n−j≥0

−
∑

n+j<0
n−j<0

 (−1)jq
5
2
n2+ 1

2
n−j2

.
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Such identities served as motivation for the 2002 Ph.D. thesis, written under the direc-
tion of D. Zagier, of S. Zwegers [218, 219]. Indeed, Zwegers researched the following two
questions of Zagier (see page 2 of [219]):

(1) How do the mock ϑ-functions fit in the theory of modular forms?
(2) Is there a theory of indefinite theta functions?

His thesis brilliantly addressed these questions by combining and extending ideas from
a number of sources such as works of Lerch [146, 147] on the functions

(5.1)
∑
n∈Z

(−1)neπi(n2+n)τ+2πinν

1− e2πinτ+2πiu
,

where τ ∈ H, ν ∈ C, u ∈ C/(Zτ + Z), work of L. Göttsche and Zagier on indefinite ϑ-
functions [105], the theory of Jacobi forms [93], Mordell integrals [157, 158], and works of
Andrews [10, 12, 14, 15].

Zwegers related Ramanujan’s mock theta functions to real analytic vector-valued modu-
lar forms. Loosely speaking, he “completed” Ramanujan’s mock theta functions by adding
a non-holomorphic function, a so-called period integral, to obtain real analytic functions
which obey desired modular transformation laws. We shall recount some of his work10

in Section 6. The real analytic modular forms of Zwegers turned out to be examples of
harmonic Maass forms (see Section 7.1 for the definition) which were defined about the
same time by Bruinier and Funke [63], a coincidence which catalyzed much of the research
described here.

These developments sparked an immediate explosion in a wide number of new direc-
tions. Indeed, recent works by the author, Andrews, Eguchi, Hikami, Kac, Lawrence,
Malmendier, Mellit, Okada, Wakimoto, and Zagier [15, 18, 21, 26, 92, 120, 121, 122, 130,
131, 144, 152, 153, 211] apply this theory to:

• Donaldson invariants
• Gauge theory
• Representation theory of Lie superalgebras
• Knot theory
• Mathematical physics
• Probability theory
• Topology.

The author and his collaborators have aimed to employ this new perspective to an-
swer deep questions about many of the number theoretic topics captured by the web of
Ramanujan’s mock theta functions. Here we describe the implications of this theory to:

• Partitions and q-series
• Modular forms
• Traces of singular moduli
• Borcherds products

10Zagier delivered a Séminaire Bourbaki lecture on these recent works on Ramanujan’s mock theta
functions in 2007 [213].
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• Modular L-functions à la Kohnen-Waldspurger and Kohnen-Zagier.

Remark 3. This paper is not intended to be a comprehensive treatise; instead, it is only
meant to serve as an overview of the main aspects of this program.

The remainder of the paper is organized as follows. In Section 6, we give one beautiful
example of Zwegers work, as it pertains to Ramanujan’s mock theta functions f(q) and
ω(q), and we briefly describe his important construction of a weight 1/2 non-holomorphic
Jacobi form. In Section 7 we give the formal definition of a harmonic Maass form, and
we present many of their basic properties. In Section 8 we give various examples of such
forms. In the remaining sections we summarize our results on the following topics:

Section 9 (Dyson-Ramanujan theory of partition congruences).
In an effort to provide a combinatorial explanation of Ramanujan’s congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

Dyson introduced [90] the so-called rank of a partition, a delightfully simple statistic. The
rank of a partition is defined to be its largest part minus the number of its parts.

For example, the table below includes the ranks of the partitions of 4.

Partition Rank Rank mod 5

4 4− 1 = 3 3
3 + 1 3− 2 = 1 1
2 + 2 2− 2 = 0 0

2 + 1 + 1 2− 3 = −1 4
1 + 1 + 1 + 1 1− 4 = −3 2

One observes that each residue class modulo 5 occurs exactly once in the last column above.
Based on further numerics, Dyson made the following conjecture whose truth provides a
combinatorial explanation of Ramanujan’s congruences modulo 5 and 7.

Conjecture (1944, Dyson). The partitions of 5n + 4 (resp. 7n + 5) form 5 (resp. 7)
groups of equal size when sorted by their ranks modulo 5 (resp. 7).

In 1954, Atkin and H. P. F. Swinnerton-Dyer proved [31] Dyson’s conjecture11. In view
of the more general theory of partition congruences, which includes examples such as

p(4063467631n+ 30064597) ≡ 0 (mod 31),

it is natural to investigate the role that Dyson’s rank plays in the general theory of partition
congruences. Using a new class of harmonic Maass forms, which will be described in
Section 8.4, the author and K. Bringmann [47, 55] have obtained general results in this
direction. These works will be described in in Section 9.

11A short calculation reveals that the obvious generalization of the conjecture cannot hold for 11.
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Section 10 (Eulerian series as modular forms).
The Rogers-Ramanujan identities

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
,

and the mock theta conjectures provide examples of Eulerian series as modular forms.
Thanks to the framework of the theory of harmonic Maass forms, we have a better under-
standing of the modular transformation properties of certain Eulerian series. In Section 10
we discuss work by the author, Bringmann, and R. Rhoades [57] on Eulerian series as mod-
ular forms. This work immediately gives many new identities such as∑

n≥0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

+
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)2
n+1

= 2
(q4; q4)5

∞
(q2; q2)4

∞
.

Section 11 (Exact formulas).
As described earlier, Rademacher perfected the Hardy-Ramanujan asymptotic (2.2) to

obtain an exact formula for p(n) (for example, see [168, 169]). To state his formula, let
Is(x) be the usual I-Bessel function of order s, and let e(x) := e2πix. Furthermore, if k ≥ 1
and n are integers, then let

(5.2) Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(5.3)

If n is a positive integer, then one version of Rademacher’s formula reads

p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

We address the following classical partition problem.

Problem. Determine exact formulas for Ne(n) (resp. No(n)), the number of partitions of
n with even (resp. odd) Dyson rank.

Thanks to Rademacher’s formula, and the obvious fact that

p(n) = Ne(n) +No(n),

it turns out that this question is equivalent to the problem of deriving exact formulas for
the coefficients

α(n) = Ne(n)−No(n)

of the mock theta function f(q). This deduction is a simple modification of the proof of
Theorem 2.2.
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As mentioned earlier, Andrews and Dragonette had already proved that

α(n) ∼ (−1)n−1

2
√
n− 1

24

· eπ
√

n
6
− 1

144 .

This result falls short of the problem of obtaining an exact formula, and as a consequence
represents the obstruction to obtaining formulas for Ne(n) and No(n). In his plenary
address “Partitions: At the interface of q-series and modular forms”, delivered at the
Millenial Number Theory Conference at the University of Illinois in 2000, Andrews high-
lighted this classical problem by promoting his conjecture12 of 1966 (see page 456 of [7],
and Section 5 of [17]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

The author and Bringmann [53] proved this conjecture using work of Zwegers and the
theory of Maass-Poincaré series. Since Ne(n) = (p(n) + α(n))/2 and No(n) = (p(n) −
α(n))/2, the proof of the conjecture, combined with Rademacher’s exact formula, provides
the desired formulas for Ne(n) and No(n).

The proof of the Andrews-Dragonette Conjecture is a special case of a more general
problem.

Problem. Determine exact formulas for the coefficients of holomorphic parts of harmonic
Maass forms.

We shall also give general theorems which provide such exact formulas for harmonic
Maass forms with weight≤ 1/2. These new results include the classic results of Rademacher
and Zuckerman [169, 170, 216, 217] which give exact formulas for the Fourier coefficients
of negative weight weakly holomorphic modular forms. Indeed, these results follow since
weakly holomorphic modular forms are harmonic Maass forms. They also recover some
results of Bruinier, Hejhal, and Niebur [62, 117, 160, 161] for harmonic Maass forms of
non-positive weight.

Section 12 (Applications to classical modular forms).
Using the properties of various differential operators, it is possible to address old prob-

lems about classical modular forms. For example, we address the classification of linear
relations among cuspidal Poincaré series, and we obtain a theorem which detects the van-
ishing of Hecke eigenvalues for integer weight newforms. We also show that Lehmer’s
Conjecture, which asserts that none of the coefficients of the discriminant function

∆(z) =
∞∑

n=1

τ(n)qn := q

∞∏
n=1

(1− qn)24 = q − 24q + 252q3 − · · ·

12This conjecture is suggested as a speculation by Dragonette in [85].
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vanish, is implied by the irrationality of the coefficients of the “holomorphic part” of a
certain Maass-Poincaré series.

The work on linear relations among cuspidal Poincaré series is contained in Rhoades’s
Ph.D. thesis [179] (also see [178]). The theorem which detects vanishing Fourier coefficients
is in a recent paper by J. H. Bruinier, Rhoades, and the author [68]. These results are
described in Section 12.

Section 13 (Generating functions for singular moduli).
Let j(z) be the usual modular function for SL2(Z)

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · · .
The values of modular functions such as j(z) at imaginary quadratic arguments in H are
known as singular moduli. Singular moduli are algebraic integers which play many roles
in number theory. For example, they generate class fields of imaginary quadratic fields,
and they parameterize isomorphism classes of elliptic curves with complex multiplication.

In an important paper [212], Zagier gave a new proof of Borcherds’ famous theorem on
the infinite product expansions of integer weight modular forms on SL2(Z) with Heegner
divisor. This proof, as well as all of the results of [212], are connected to his beautiful
observation that the generating functions for traces of singular moduli are essentially
weight 3/2 weakly holomorphic modular forms.

Zagier’s paper has inspired an extraordinary number of research papers with general-
izations in a variety of directions in works by the author, Bringmann, Bruinier, D. Choi,
W. Duke, A. Folsom, J. Funke, O. Imamoḡlu, P. Jenkins, D. Jeon, S.-Y. Kang, C. Kim, R.
Masri, A. Miller, A. Pixton, J. Rouse, and A. Toth [54, 58, 64, 65, 77, 78, 87, 88, 89, 95, 154].
In Section 13 we describe one theorem which gives typical examples of such generating
functions. In addition to giving further generating functions for singular moduli, we shall
also describe a beautiful theorem of Duke [87] related to the classical observation that

eπ
√

163 = 262537412640768743.9999999999992 . . . .

is nearly an integer.

Section 14 (Borcherds Products).
Recently, Borcherds [42, 43, 44] provided a striking description for the exponents in

the naive infinite product expansion of many modular forms, those forms with a Heegner
divisor. He proved that the exponents in these infinite product expansions are certain
coefficients of modular forms of weight 1/2. For example, let c(n) denote the integer
exponents one obtains by expressing the classical Eisenstein series E4(z) as an infinite
product:

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn = (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n).

Borcherds proved that there is a weight 1/2 meromorphic modular form

G(z) =
∑
n≥−3

b(n)qn = q−3 + 4− 240q + 26760q4 + · · · − 4096240q9 + . . .

with the property that c(n) = b(n2) for every positive integer n.
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These results may be generalized where the Borcherds exponents are given by certain
Fourier coefficients of weight 1/2 harmonic Maass forms. As a nice example, consider
Ramanujan’s mock theta function (see (3.1))

ω(q) =
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+

q12

(1− q)2(1− q3)2(1− q5)2
+ · · · .

Define integers a(n) by the expression∑
n∈Z+1/3

a(n)qn := −2q1/3
(
ω(q1/2) + ω(−q1/2)

)
= −4 q1/3 − 12 q4/3 − 24 q7/3 − 40 q10/3 − . . . .

These new results on generalized Borcherds products imply that

∞∏
n=1

(
1 +

√
−2qn − q2n

1−
√
−2qn − q2n

)(n
3 )a(n2/3)

= 1− 8
√
−2q − (64− 24

√
−2)q2 + (384 + 168

√
−2)q3 + (64− 1768

√
−2)q4 + . . .

(5.4)

is a modular form on the congruence subgroup Γ0(6).
A brief indication of these results is given in Section 14.

Section 15 (Derivatives and values of L-functions).
Once armed with a generalized Borcherds-type theorem, one is then able to construct

modular forms with a prescribed divisor, a twisted Heegner divisor, with the additional
property that one can determine the field of definition of the product Fourier expansion.
For example, the modular form in (5.4) clearly has Fourier coefficients in Z[

√
−2], thanks

to the fact that Ramanujan’s mock theta function ω(q) has integer coefficients. This
phenomenon is extremely useful in arithmetic geometry since it allows us to determine
whether certain divisors vanish in the Jacobian of a modular curve, a condition which
plays a central role in the work of Gross and Zagier on the Birch and Swinnerton-Dyer
Conjecture. Here we explain how to make use of these generalized Borcherds products to
extend deep theorems of Waldspurger and Kohnen.

In the 1980s, Waldspurger [205], and Kohnen and Zagier [135, 136, 137] established
that certain half-integral weight modular forms serve as generating functions of a new
type. Using the Shimura correspondence [192], they proved that certain coefficients of
half-integral weight cusp forms essentially are square-roots of central values of quadratic
twists of modular L-functions.

When the weight is 3/2, these results appear prominently in works related to the Birch
and Swinnerton-Dyer Conjecture. For example, Tunnell [202] made great use of explicit
examples of these results in his work on the ancient “congruent number problem”: the
determination of those positive integers which are areas of right triangles with rational
sidelengths. More generally, these results of Kohnen, Waldspurger and Zagier play cen-
tral roles in the deep works of Gross, Zagier and Kohnen [108, 107] on the Birch and
Swinnerton-Dyer Conjecture.
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The author and Bruinier [67] have generalized this theorem of Waldspurger and Kohnen
to prove that the Fourier coefficients of weight 1/2 harmonic Maass forms encode the
vanishing and nonvanishing of both the central values and derivatives of quadratic twists
of weight 2 modular L-functions.

Here we describe a special case of the main theorem. Suppose that

(5.5) G(z) =
∞∑

n=1

BG(n)qn ∈ S2(p)

is a weight 2 newform with prime level p. As usual, we let

(5.6) L(G, s) =
∞∑

n=1

BG(n)

ns

denote its Hecke L-function. If ∆ is a fundamental discriminant of a quadratic field coprime
to p, then we let L(G,χ∆, s) be the quadratic twist Hecke L-function

(5.7) L(G,χ∆, s) =
∞∑

n=1

BG(n)χ∆(n)

ns
,

where χ∆(•) :=
(

∆
•

)
denotes the Kronecker character for Q(

√
∆). It is well known that

L(G, s) and L(G,χ∆, s) have functional equations relating their values at s and 2− s.
Here is a special case of the main result in [67].

Theorem 5.1. Assume the hypotheses and notation above. In addition, suppose that the
sign of the functional equation of L(G, s) is ε(G) = −1. Then there is a weight 1/2
harmonic Maass form f(z) on Γ0(4p) with Fourier expansion

f(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2; 4π|n|y)qn,

where y = Im(z) and Γ(α; t) is the usual incomplete Gamma-function (see (7.5)), satisfying
the following:

(1) If ∆ < 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then

L(G,χ∆, 1) = αG ·
√
|∆| · c−g (∆)2,

where αG is an explicit non-zero constant.

(2) If ∆ > 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then L′(G,χ∆, 1) = 0

if and only if c+g (∆) is algebraic.

Remark 4. Theorem 5.1 is a special case of the general result which holds for all levels,
and any arbitrary sign.

Example 5.2. Here we present an example which numerically illustrates the most general
form of Theorem 5.1 for the weight 2 newform G which corresponds to the conductor 37
elliptic curve

E : y2 = x3 + 10x2 − 20x+ 8.
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The table below includes some of the coefficients of a suitable f which were numerically
computed by F. Strömberg (also see [69]).

∆ c+g (−∆) L′(E(∆), 1) = L′(G,χ∆, 1)

−3 1.0267149116 . . . 1.4792994920 . . .
−4 1.2205364009 . . . 1.8129978972 . . .
−7 1.6900297463 . . . 2.1107189801 . . .
...

...
...

−136 −4.8392675993 . . . 5.7382407649 . . .
−139 −6 0
−151 −0.8313568817 . . . 6.6975085515 . . .

...
...

...
−815 121.1944103120 . . . 4.7492583693 . . .
−823 312 0

Strictly speaking, the cases where ∆ = −139 and −823 were not obtained numerically.
We have that L′(E(−139), 1) = L′(E(−823), 1) = 0 by the Gross-Zagier formula. The
evaluations c+g (139) = −6 and c+g (823) = 312 arise from explicit generalized Borcherds
products (for example, see Example 8.3 of [67]). The rank 3 elliptic curve E(−139) is
quite famous, for it was used as input data for Goldfeld’s celebrated effective solution
to Gauss’s “Class Number Problem”. For the other ∆ in the table, the derivatives are
non-vanishing and the coefficients c+g (−∆) are transcendental.

Theorem 5.1 relates the algebraicity of coefficients of harmonic Maass forms to the van-
ishing of derivatives of modular L-functions. It is then natural to ask whether these ideas
can be used to exactly compute these derivatives. In other words, can the theory of har-
monic Maass forms be used to obtain the deep formulas (as well as generalizations) of
Gross and Zagier which relate heights of Heegner points to such derivatives? Bruinier and
T. Yang have used these results, combined with their theory of Green’s functions and theta
lifts for harmonic Maass forms, to show that this is indeed the case. In addition to formu-
lating a deep conjecture about derivatives of L-functions and heights (see Section 15.2),
they have proved the following striking theorem (see [70]).

Theorem 5.3. If G ∈ S2(N) is a weight 2 newform with the property that the sign of the
functional equation of L(G, s) is ε(G) = −1, then there is a weight 1/2 harmonic Maass
form f , a weight 3/2 cusp form g, and a Heegner divisor Z(f) whose Neron-Tate height
pairing is given by

〈Z(f), Z(f)〉NT =
2
√
N

π‖g‖2
L′
(
G, 1).

Remark 5. To ease notation in Theorem 5.3, we did not describe the relationship between
G, g, f and Z(f). Loosely speaking, they are related as follows. We let g be a weight
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3/2 cusp form whose image under the Shimura correspondence is G. The harmonic Maass
form f in Theorems 5.1 and 5.3 is selected so that its principal part is defined over the
number field generated by the coefficients of G, and also satisfies

ξ 1
2
(f) = ‖g‖−2g.

Here ξ 1
2

is the differential operator considered in Lemma 7.4. The Heegner divisor Z(f) is

then defined using the principal part of f .

These works shall be described in Section 15.

6. The mock theta functions of Ramanujan d’après Zwegers

Here we give a typical example of Zwegers’s results on Ramanujan’s mock theta func-
tions, and we briefly describe his construction of a weight 1/2 non-holomorphic Jacobi
form.

6.1. Ramanujan’s mock theta functions f(q) and ω(q). We first consider Ramanu-
jan’s third order mock theta function f(q). Important results concerning its modularity
properties were first obtained by G. N. Watson in [206]. Although f(q) is not the Fourier
expansion of a usual meromorphic modular form, in this classic paper Watson determined
its complicated modular transformation properties. Watson’s modular transformation for-
mulas are difficult to grasp at first glance; they involve another third order mock theta
function, as well as terms arising from Mordell integrals.

Zwegers [218] nicely packaged Watson’s results in terms of real analytic vector-valued
modular forms. We now describe this result. As before, let ω(q) be the third order mock
theta function defined by (3.1). Define the vector-valued function F (z) by

(6.1) F (z) = (F0(z), F1(z), F2(z))
T := (q−

1
24f(q), 2q

1
3ω(q

1
2 ), 2q

1
3ω(−q

1
2 ))T .

Similarly, let G(z) be the vector-valued non-holomorphic function defined by

(6.2) G(z) = (G0(z), G1(z), G2(z))
T := 2i

√
3

∫ i∞

−z

(g1(τ), g0(τ), −g2(τ))
T√

−i(τ + z)
dτ,

where the gi(τ) are the cuspidal weight 3/2 theta functions

g0(τ) :=
∞∑

n=−∞

(−1)n

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ ,

g1(τ) := −
∞∑

n=−∞

(
n+

1

6

)
e3πi(n+ 1

6)
2
τ ,

g2(τ) :=
∞∑

n=−∞

(
n+

1

3

)
e3πi(n+ 1

3)
2
τ .

(6.3)

Using these vector-valued functions, Zwegers defined the vector-valued function H(z) by

(6.4) H(z) := F (z)−G(z).

The following description of H(z) is the main result of [218].
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Theorem 6.1. (Zwegers)
The function H(z) is a vector-valued real analytic modular form of weight 1/2 satisfying

H(z + 1) =

ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

H(z),

H(−1/z) =
√
−iz ·

0 1 0
1 0 0
0 0 −1

H(z),

where ζn := e2πi/n. Furthermore, H(z) is an eigenfunction of the Casimir operator Ω 1
2

:=

−4y2 ∂2

∂z∂z
+ iy ∂

∂z
+ 3

16
with eigenvalue 3

16
, where z = x + iy, ∂

∂z
= 1

2

(
∂
∂x
− i ∂

∂y

)
, and

∂
∂z

= 1
2

(
∂
∂x

+ i ∂
∂y

)
.

Remark 6. This Casimir operator is essentially the weight 1/2 hyperbolic Laplacian oper-
ator (see (7.1)) which plays an important role in the definition of harmonic Maass forms.

This beautiful theorem nicely describes the modular transformations of both f(q) and
ω(q). In particular, they are essentially the “holomorphic parts” of components of a 3-
dimensional vector-valued weight 1/2 real analytic modular form. The “non-holomorphic”
parts of these components are “period integrals” of classical weight 3/2 functions which
turn out to be single variable theta functions. The functions in Theorem 6.1 can be thought
of as prototypes for the theory of harmonic Maass forms.

6.2. Zwegers’s weight 1/2 non-holomorphic Jacobi form. In his thesis, Zwegers
constructed weight 1/2 harmonic Maass forms by making use of the transformation prop-
erties of Lerch sums. Here we briefly recall some of these important results which address
the difficult problem of constructing weight 1/2 harmonic Maass forms.

For τ ∈ H, u, v ∈ C \ (Zτ + Z), Zwegers defined the function

(6.5) µ(u, v; τ) :=
z1/2

ϑ(v; τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn
,

where z := e2πiu, w := e2πiv, q := e2πiτ and

(6.6) ϑ(v; τ) :=
∑

ν∈Z+ 1
2

eπiνwνqν2/2.

Remark 7. We stress that q := e2πiτ in this subsection, which is a brief departure from our
convention that q := e2πiz.

Zwegers (see Section 1.3 of [219]) proves that µ(u, v; τ) satisfies the following important
properties.
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Lemma 6.2. Assuming the notation above, we have that

µ(u, v; τ) = µ(v, u; τ),

µ(u+ 1, v; τ) = −µ(u, v; τ),

z−1wq−
1
2µ(u+ τ, v; τ) = −µ(u, v; τ)− iz−

1
2w

1
2 q−

1
8 ,

µ(u, v; τ + 1) = ζ−1
8 µ(u, v; τ) (ζN := e2πi/N)

(τ/i)−
1
2 eπi(u−v)2/τµ

(
u

τ
,
v

τ
;−1

τ

)
= −µ(u, v; τ) +

1

2i
h(u− v; τ),

where

h(z; τ) :=

∫ ∞

−∞

eπix2τ−2πxzdx

cosh πx
.

Remark 8. The integral h(z; τ) is known as a Mordell integral.

Lemma 6.2 shows that µ(u, v; τ) is nearly a weight 1/2 Jacobi form, where τ is the
modular variable. Zwegers then uses µ to construct weight 1/2 harmonic Maass forms. He
achieves this by modifying µ to obtain a function µ̂ which he then uses as building blocks
for such Maass forms. To make this precise, for τ ∈ H and u ∈ C, let c := Im(u)/Im(τ),
and let

(6.7) R(u; τ) :=
∑

ν∈Z+ 1
2

(−1)ν− 1
2

{
sgn(ν)− E

(
(ν + c)

√
2Im(τ)

)}
e−2πiνuq−ν2/2,

where E(x) is the odd function

(6.8) E(x) := 2

∫ x

0

e−πu2

du = sgn(x)(1− β(x2)),

where for positive real x we let β(x) :=
∫∞

x
u−

1
2 e−πudu.

Using µ and R, Zwegers defines the real analytic function

(6.9) µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ).

Zwegers construction of weight 1/2 harmonic Maass forms depends on the following theo-
rem (see Section 1.4 of [219]).

Theorem 6.3. Assuming the notation and hypotheses above, we have that

µ̂(u, v; τ) = µ̂(v, u; τ),

µ̂(u+ 1, v; τ) = z−1wq−
1
2 µ̂(u+ τ, v; τ) = −µ̂(u, v; τ),

ζ8µ̂(u, v; τ + 1) = −(τ/i)−
1
2 eπi(u−v)2/τ µ̂

(
u

τ
,
v

τ
;−1

τ

)
= µ̂(u, v; τ).

Moreover, if A =
(

α β
γ δ

)
∈ SL2(Z), then

µ̂

(
u

γτ + δ
,

v

γτ + δ
;
ατ + β

γτ + δ

)
= χ(A)−3(γτ + δ)

1
2 e−πiγ(u−v)2/(γτ+δ) · µ̂(u, v; τ),

where χ(A) := η(Aτ)/
(
(γτ + δ)

1
2η(τ)

)
.
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Theorem 6.3 shows that µ̂(u, v; τ) is essentially a weight 1/2 non-holomorphic Jacobi
form. In analogy with the classical theory of Jacobi forms, one may then obtain harmonic
Maass forms by making suitable specializations for u and v by elements in Qτ + Q, and
by multiplying by appropriate powers of q. Without this result, it would be very difficult
to explicitly construct examples of weight 1/2 harmonic Maass forms.

Harmonic Maass forms of weight k are mapped to classical modular forms (see Lemma 7.4),
their so-called shadows, by the differential operator

ξk := 2iyk · ∂
∂τ
.

The following lemma makes it clear that the shadows of the real analytic forms arising
from µ̂ can be described in terms of weight 3/2 theta functions.

Lemma 6.4. [Lemma 1.8 of [219]] The function R is real analytic and satisfies

∂R

∂u
(u; τ) =

√
2y−

1
2 e−2πc2yϑ(u;−τ),

where c := Im(u)/Im(τ). Moreover, we have that

∂

∂τ
R(aτ − b; τ) = − i√

2y
e−2πa2y

∑
ν∈Z+ 1

2

(−1)ν− 1
2 (ν + a)e−πiν2τ−2πiν(aτ−b).

7. Harmonic Maass forms

For the remainder of the paper, we shall assume that the reader is familiar with the
classical theory of elliptic modular forms (for example, see [71, 84, 125, 134, 143, 155, 164,
177, 185, 193, 196]).

D. Niebur [160, 161] and D. Hejhal [117] constructed certain non-holomorphic Poincaré
series which turn out to be examples of harmonic Maass forms. Bruinier [61] made great
use of these Poincaré series in his early work on Borcherds lifts and Green’s functions.
He then realized the importance of developing a “theory of harmonic Maass forms” in
its own right. Later in joint work with Funke [63], he developed the fundamental results
of this theory, some of which we describe here. After making the necessary definitions,
we shall discuss Hecke operators and various differential operators. The interplay between
harmonic Maass forms and classical modular forms shall play an important role throughout
this paper.

7.1. Definitions. In 1949, H. Maass introduced the notion of a Maass form13 (see [149,
150]). He constructed these non-holomorphic automorphic forms using Hecke characters of
real quadratic fields, in analogy with Hecke’s theory [115] of modular forms with complex
multiplication (see [180] for a modern treatment).

To define these functions, let ∆ = ∆0 be the hyperbolic Laplacian

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

13In analogy with the eigenvalue problem for the vibrating membrane, Maass referred to these auto-
morphic forms as Wellenformen, or waveforms.
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where z = x + iy ∈ H with x, y ∈ R. It is a second-order differential operator which acts
on functions on H, and it is invariant under the action of SL2(R).

A Maass form for a subgroup Γ ⊂ SL2(Z) is a smooth function f : H → C satisfying:

(1) For every ( a b
c d ) ∈ Γ, we have

f

(
az + b

cz + d

)
= f(z).

(2) We have that f is an eigenfunction of ∆.
(3) There is some N > 0 such that

f(x+ iy) = O(yN)

as y → +∞.

Furthermore, we call f a Maass cusp form if∫ 1

0

f(z + x)dx = 0.

There is now a vast literature on Maass forms thanks to the works of many authors such
as Hejhal, Iwaniec, Maass, Roelcke, Selberg, Terras, Venkov, among many others (for
example, see [116, 117, 124, 126, 149, 150, 181, 191, 199, 200, 203]).

This paper concerns a generalization of this notion of Maass form. Following Bruinier
and Funke [63], we define the notion of a harmonic Maass form of weight k ∈ 1

2
Z as

follows. As before, we let z = x+ iy ∈ H with x, y ∈ R. We define the weight k hyperbolic
Laplacian ∆k by

(7.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

For odd integers d, define εd by

(7.2) εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Definition 7.1. If N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), then a weight

k harmonic Maass form on Γ ∈ {Γ1(N),Γ0(N)} is any smooth function M : H → C
satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ and all z ∈ H, we have

M

(
az + b

cz + d

)
=

{
(cz + d)kM(z) if k ∈ Z,(

c
d

)2k
ε−2k
d (cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Here
(

c
d

)
denotes the extended Legendre symbol, and

√
z is the principal branch

of the holomorphic square root.
(2) We have that ∆kM = 0.
(3) There is a polynomial PM =

∑
n≤0 c

+(n)qn ∈ C[q−1] such that

M(z)− PM(z) = O(e−εy)

as y → +∞ for some ε > 0. Analogous conditions are required at all cusps.
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Remark 9. Maass forms and classical modular forms are required to satisfy moderate
growth conditions at cusps, and it is for this reason that harmonic Maass forms are often
referred to as “harmonic weak Maass forms”. The term “weak” refers to the relaxed
condition Definition 7.1 (3) which gives rise to a rich theory. For convenience, we use the
terminology “harmonic Maass form” instead of “harmonic weak Maass form”.

Remark 10. We refer to the polynomial PM as the principal part of M(z) at ∞. Obviously,
if PM is non-constant, then M(z) has exponential growth at ∞. Similar remarks apply at
all cusps.

Remark 11. Bruinier and Funke [63] define two types of harmonic Maass forms based on
varying the growth conditions at cusps. For a group Γ, they refer to these spaces as Hk(Γ)
and H+

k (Γ). Definition 7.1 (3) corresponds to their H+
k (Γ) definition.

Remark 12. Since holomorphic functions on H are harmonic, it follows that weakly holo-
morphic modular forms are harmonic Maass forms.

Remark 13. Here we recall the congruence subgroups. If N is a positive integer, then
define the level N congruence subgroups Γ0(N), Γ1(N), and Γ(N) by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, and c ≡ 0 mod N

}
,

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, and b ≡ c ≡ 0 mod N

}
.

Remark 14. For k ∈ 1
2
Z \ Z, the transformation law in Definition 7.1 (1) coincides with

those in Shimura’s theory of half-integral weight modular forms [192].

Remark 15. Later we shall require the classical “slash” operator. For convenience, we recall
its definition here. Suppose that k ∈ 1

2
Z. For A = ( a b

c d ) ∈ SL2(Z) (Γ0(4) if k ∈ 1
2
Z \ Z),

define j(A, z) by

(7.3) j(A, z) :=

{√
cz + d if k ∈ Z,(

c
d

)
ε−1

d

√
cz + d if k ∈ 1

2
Z \ Z,

where εd is defined by (7.2), and where
√
z is the principal branch of the holomorphic

square root as before. For functions f : H → C, we define the action of the “slash”
operator by

(7.4) (f |k A)(z) := j(A, z)−2kf(Az) = j(A, z)−2kf

(
az + b

cz + d

)
.

Notice that Definition 7.1 (1) may be rephrased as

(M |k A) (z) = M(z).

Remark 16. We shall also consider level N weight k ∈ 1
2
Z forms with Nebentypus χ. To

define such forms, suppose that N is a positive integer (with 4 | N if k ∈ 1
2
Z \ Z), and
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let χ be a Dirichlet character modulo N . To define these forms, one merely requires14, for
every ( a b

c d ) ∈ Γ0(N), that

M

(
az + b

cz + d

)
=

{
χ(d)(cz + d)kM(z) if k ∈ Z,(

c
d

)2k
ε−2k
d χ(d)(cz + d)k M(z) if k ∈ 1

2
Z \ Z.

Throughout, we shall adopt the following notation. If Γ ⊂ SL2(Z) is a congruence
subgroup, then we let

Sk(Γ) := weight k cusp forms on Γ,

Mk(Γ) := weight k holomorphic modular forms on Γ,

M !
k(Γ) := weight k weakly holomorphic modular forms on Γ,

Hk(Γ) := weight k harmonic Maass forms on Γ.

Furthermore, if χ is a Dirichlet character modulo N , then we let

Sk(N,χ) := level N weight k cusp forms with Nebentypus χ,

Mk(N,χ) := level N weight k holomorphic modular forms with Nebentypus χ,

M !
k(N,χ) := level N weight k weakly holomorphic modular forms with Nebentypus χ,

Hk(N,χ) := level N weight k harmonic Maass forms with Nebentypus χ.

When the Nebentypus character is trivial, we shall suppress χ from the notation.
The real analytic forms in Theorem 6.1 provide non-trivial examples of weight 1/2

harmonic Maass forms. More generally, the work of Zwegers [218, 219], shows how to
complete all of Ramanujan’s mock theta functions to obtain weight 1/2 harmonic Maass
forms. In Section 8, we shall present further examples of harmonic Maass forms.

7.2. Fourier expansions. In this paper we consider harmonic Maass forms with weight
2− k ∈ 1

2
Z with k > 1. Therefore, throughout we assume that 1 < k ∈ 1

2
Z.

Harmonic Maass forms have distinguished Fourier expansions which are described in
terms of the incomplete Gamma-function Γ(α;x)

(7.5) Γ(α;x) :=

∫ ∞

x

e−ttα−1 dt,

and the usual parameter q := e2πiz. The following characterization is straightforward (for
example, see Section 3 of [63]).

Lemma 7.2. Assume the notation and hypotheses above, and suppose that N is a positive
integer. If f(z) ∈ H2−k(Γ1(N)), then its Fourier expansion is of the form

(7.6) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where z = x+ iy ∈ H, with x, y ∈ R.

As Lemma 7.2 reveals, f(z) naturally decomposes into two summands. In view of this
fact, we make the following definition.

14This replaces (1) in Definition 7.1.
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Definition 7.3. Assuming the notation and hypotheses in Lemma 7.2, we refer to

f+(z) :=
∑

n�−∞

c+f (n)qn

as the holomorphic part of f(z), and we refer to

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn

as the non-holomorphic part of f(z).

Remark 17. A harmonic Maass form with trivial non-holomorphic part is a weakly holo-
morphic modular form. We shall make use of this fact as follows. If f1, f2 ∈ H2−k(Γ) are
two harmonic Maass forms with equal non-holomorphic parts, then f1 − f2 ∈M !

2−k(Γ).

7.3. The ξ-operator and period integrals of cusp forms. Harmonic Maass forms are
related to classical modular forms thanks to the properties of differential operators. The
first nontrivial relationship depends on the differential operator

(7.7) ξw := 2iyw · ∂
∂z
.

The following lemma15, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [63]), shall play a central role throughout this paper.

Lemma 7.4. If f ∈ H2−k(N,χ), then

ξ2−k : H2−k(N,χ) −→ Sk(N,χ)

is a surjective map. Moreover, assuming the notation in Definition 7.3, we have that

ξ2−k(f) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Thanks to Lemma 7.4, we are in a position to relate the non-holomorphic parts of
harmonic Maass forms, the expansions

f−(z) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

with “period integrals” of modular forms. This observation was critical in Zwegers’s work
on Ramanujan’s mock theta functions.

To make this connection, we must relate the Fourier expansion of the cusp form ξ2−k(f)
with f−(z). This connection is made by applying the simple integral identity

(7.8)

∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny)q−n.

This identity follows by the direct calculation∫ i∞

−z

e2πinτ

(−i(τ + z))2−k
dτ =

∫ i∞

2iy

e2πin(τ−z)

(−iτ)2−k
dτ = i(2πn)1−k · Γ(k − 1, 4πny) q−n.

15The formula for ξ2−k(f) corrects a typographical error in [63].
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In this way, we may think of the non-holomorphic parts of weight 2− k harmonic Maass
forms as period integrals of weight k cusp forms, where one applies (7.8) to∫ i∞

−z

∑∞
n=1 a(n)e2πinτ

(−i(τ + z))2−k
dτ,

where
∑∞

n=1 a(n)qn is a weight k cusp form. In short, f−(z) is the period integral of the
cusp form ξ2−k(f).

In addition to this important observation, we require the following fact concerning the
nontriviality of certain principal parts of harmonic Maass forms.

Lemma 7.5. If f ∈ H2−k(Γ) has the property that ξ2−k(f) 6= 0, then the principal part of
f is nonconstant for at least one cusp.

Sketch of the proof. This lemma follows from the work of Bruinier and Funke [63]. Using
their pairing {•, •}, one finds that {ξ2−kf, f} 6= 0 thanks to its interpretation in terms of
Petersson norms. On the other hand, Proposition 3.5 of [63] expresses this quantity in
terms of the principal part of f and the coefficients of the cusp form ξ2−k(f). An inspection
of this formula reveals that at least one principal part of f must be nonconstant. �

7.4. The D-operator. In addition to the differential operator ξ2−k, which defines the
surjective map

ξ2−k : H2−k(N,χ) −→ Sk(N,χ),

we consider the differential operator

(7.9) D :=
1

2πi
· d
dz
.

We have the following theorem for integer weights.

Theorem 7.6. Suppose that 2 ≤ k ∈ Z and f ∈ H2−k(N), then

Dk−1(f) ∈M !
k(N).

Moreover, assuming the notation in (7.6), we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+f (n)nk−1qn.

To prove this theorem, we must first recall some further differential operators, the Maass
raising and lowering operators (for example, see [63, 71]) Rk and Lk. They are defined by

Rk = 2i
∂

∂z
+ ky−1 = i

(
∂

∂x
− i

∂

∂y

)
+ ky−1,

Lk = −2iy2 ∂

∂z̄
= −iy2

(
∂

∂x
+ i

∂

∂y

)
.

With respect to the Petersson slash operator (7.4), these operators satisfy the intertwining
properties

Rk(f |k γ) = (Rkf) |k+2 γ,

Lk(f |k γ) = (Lkf) |k−2 γ,
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for any γ ∈ SL2(R). The Laplacian ∆k can be expressed in terms of Rk and Lk by

(7.10) −∆k = Lk+2Rk + k = Rk−2Lk.

If f is an eigenfunction of ∆k satisfying ∆kf = λf , then

∆k+2Rkf = (λ+ k)Rkf,(7.11)

∆k−2Lkf = (λ− k + 2)Lkf.(7.12)

For any positive integer n we put

Rn
k := Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk.

We also let R0
k be the identity. The differential operator D := 1

2πi
d
dz

= q d
dq

satisfies the

following relation
Rk = −4πD + k/y.

The next well known lemma (for example, see (4.15) of [148]) is often referred to as Bol’s
identity.

Lemma 7.7. Assuming the notation and hypotheses above, we have

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

By Lemma 7.7, we see that Dk−1 defines a linear map

Dk−1 : M !
2−k(N) −→M !

k(N).

Theorem 7.6 asserts that this map extends to harmonic Maass forms. Moreover, the
theorem provides a simple description of the images.

Proof of Theorem 7.6. It is clear that Dk−1f has the transformation behavior of a modular
form of weight k.

We now show that LkD
k−1f = 0. This implies that Dk−1f is holomorphic on H. By

Lemma 7.7, it suffices to show that LkR
k−1
2−kf = 0. Since ∆2−kf = 0, it follows from (7.11)

by induction that
∆k−2R

k−2
2−kf = (2− k)Rk−2

2−kf.

Using (7.10), we obtain

LkR
k−1
2−kf = (LkRk−2)R

k−2
2−kf = (−∆k−2 − (k − 2))Rk−2

2−kf = 0.

Finally, the growth behavior of f at the cusps implies that Dk−1f is meromorphic at
the cusps. Therefore, Dk−1 indeed extends to H2−k(N).

To complete the proof, we compute the Fourier expansion of Dk−1f . Assuming the
notation in (7.6), a straightforward calculation gives

Rk−2
2−kf(z) =

∑
n�−∞

c+f (n)Γ(k − 1, 4πny)(−y)2−ke2πinz̄ + (k − 2)!2
∑
n<0

c−f (n)(−y)2−ke2πinz̄.

Moreover, Rk−1
2−kf has the Fourier expansion

Rk−1
2−kf(z) =

∑
n�−∞

c+f (n)(−4πn)k−1qn.
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In particular, we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+f (n)nk−1qn.

The first two formulas follow from the Fourier expansion of f and the differential equations
∆k−2R

k−2
2−kf = (2− k)Rk−2

2−kf and ∆kR
k−1
2−kf = 0. The third formula is a consequence of the

second and Lemma 7.7. �

Remark 18. Note that g := yk−2Rk−2
2−kf is a harmonic Maass form of weight 2 − k in the

(slightly more general) sense of Section 3 of [63]. Moreover, ξ2−kg = y−kL2−kg = Rk−1
2−kf .

This can also be used to compute the Fourier expansions in the proof of Theorem 7.6.

Theorem 7.6 implies that the coefficients c+f (n), for non-zero n, are obtained by dividing

the nth coefficient of some fixed weakly holomorphic modular form by nk−1. Therefore we
are compelled to determine the image of the map

Dk−1 : H2−k(N) −→M !
k(N).

It is not difficult to see that this map is not generally surjective. Our next result determines
the image of Dk−1 in terms of regularized inner products. The following result is obtained
by Bruinier, Rhoades and the author in [68].

Theorem 7.8. If 2 ≤ k ∈ Z, then the image of the map

Dk−1 : H2−k(N) −→M !
k(N)

consists of those h ∈ M !
k(N) which are orthogonal to cusp forms with respect to the regu-

larized inner product, which also have constant term 0 at all cusps of Γ0(N).

To make Theorem 7.8 precise, we must define what it means for a weakly holomorphic
modular form to be orthogonal to cusp forms. To this end, we first recall the regularized
inner product.

We stress again that k ≥ 2 is an integer. Obviously, Γ0(N) has finite index in Γ(1) =
SL2(Z). We define a regularized inner product of g ∈ Mk(N) and h ∈ M !

k(N) as follows.
For T > 0 we denote by FT (Γ(1)) the truncated fundamental domain

FT (Γ(1)) = {z ∈ H : |x| ≤ 1/2, |z| ≥ 1, and y ≤ T}
for Γ(1). Moreover, we define the truncated fundamental domain for Γ0(N) by

FT (N) =
⋃

γ∈Γ0(N)\Γ(1)

γFT (Γ(1)).

Following Borcherds [44], we define the regularized inner product (g, h)reg as the constant
term in the Laurent expansion at s = 0 of the meromorphic continuation in s of the
function

1

[Γ(1) : Γ0(N)]
lim

T→∞

∫
FT (N)

g(z)h(z)yk−s dx dy

y2
.

Arguing as in Section 6 of [44], it can be shown that (g, h)reg exists for any g ∈ Mk(N)
and h ∈ M !

k(N). (It also exists for g ∈ Mk(N) and h ∈ Hk(N). But note that it does
not exist in general if g and h are both weakly holomorphic with poles at the cusps.) For
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cusp forms g and h, the regularized inner product reduces to the classical Petersson inner
product.

Remark 19. If h ∈M !
k(N) has vanishing constant term at every cusp of Γ0(N), then

(g, h)reg =
1

[Γ(1) : Γ0(N)]
lim

T→∞

∫
FT (N)

g(z)h(z)yk dx dy

y2
.

The following theorem provides a formula for the regularized inner product in terms of
Fourier coefficients.

Theorem 7.9. If g ∈Mk(N) and f ∈ H2−k(N), then

(g,Rk−1
2−kf)reg =

(−1)k

[Γ(1) : Γ0(N)]

∑
κ∈Γ0(N)\P 1(Q)

wκ · cg(0, κ)c+f (0, κ),

where cg(0, κ) (resp. c+f (0, κ)) denotes the constant term of the Fourier expansion of g

(resp. f) at the cusp κ ∈ P 1(Q), and wκ is the width of the cusp κ.

Proof. For simplicity, we carry out the proof only in the special case Γ0(1) = SL2(Z). We

put H := yk−2Rk−2
2−kf , and let h := Rk−1

2−kf = y−kL2−kH. Since the constant terms at all
cusps of h vanish, we have

(g,Rk−1
2−kf)reg = lim

T→∞

∫
FT (1)

g(z)h(z)yk dx dy

y2

= lim
T→∞

∫
FT (1)

g(z)(L2−kH)
dx dy

y2

= lim
T→∞

∫
FT (1)

g(z)(
∂

∂z̄
H) dz dz̄

= − lim
T→∞

∫
FT (1)

(∂̄H) ∧ g(z) dz.

Using the holomorphy of g, we obtain, by Stokes’ theorem, the expression

(g,Rk−1
2−kf)reg = − lim

T→∞

∫
FT (1)

d(H(z)g(z) dz)

= − lim
T→∞

∫
∂FT (1)

H(z)g(z) dz

= lim
T→∞

∫ 1/2

x=−1/2

H(x+ iT )g(x+ iT ) dx.

The integral over x gives the constant term in the expansion of H(x+ iT )g(x+ iT ), and
it can be computed using the Fourier expansion

H(z) = (−1)k
∑

n�−∞

c+f (n)Γ(k − 1, 4πny)e−2πinz + (−1)k(k − 2)!2
∑
n<0

c−f (n)e−2πinz

of H (see the proof of Theorem 7.6) and the expansion of g. To complete the proof, notice

that in the limit T →∞ the only contribution is (−1)kcg(0)c+f (0). �
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Proof of Theorem 7.8. By Theorem 7.9, it follows that if g ∈ Sk(N), then

(g,Rk−1
2−kf)reg = 0.

Therefore, if f ∈ H2−k(N), it follows from Lemma 7.7 and Theorem 7.9 that Dk−1f is
orthogonal to cusp forms.

Conversely, assume that h ∈ M !
k(N) is orthogonal to cusp forms and has vanishing

constant term at every cusp of Γ0(N). By Lemma 3.11 of [63], we may chose f ∈ H2−k(N)
such that the principal parts of Dk−1f and h at the cusps agree up to the constant terms.
Since the constant terms of h and Dk−1f vanish, they trivially agree as well. Consequently,

h−Dk−1f ∈ Sk(N).

In view of Theorem 7.9 and the hypothesis on h, we find that h−Dk−1f is orthogonal to
cusp forms, and so it is zero. �

7.5. Hecke operators. It is natural to investigate the action of the Hecke operators on
harmonic Maass forms. Here we illustrate how to combine facts about Hecke operators
with Lemma 7.4 to obtain weakly holomorphic modular forms from harmonic Maass forms.

First we recall the classical Hecke operators. Suppose that p is prime, and that k ∈ 1
2
Z.

Suppose that

F (z) =
∑

n�−∞

aF (n)qn

is a weight k weakly holomorphic modular form on Γ0(N) with Nebentypus χ. If k ∈ Z,
then the Hecke operator Tk(p) is defined by

(7.13) F | Tk(p) :=
∑

n�−∞

(
aF (pn) + χ(p)pk−1aF (n/p)

)
qn.

If k = λ+ 1
2
∈ 1

2
Z \ Z, then we have that

(7.14)

F | Tk(p) :=
∑

n�−∞

(
aF (p2n) + χ(p)

(
(−1)λn

p

)
pλ−1aF (n) + χ(p2)p2λ−1aF (n/p2)

)
qn.

Remark 20. For the sake of uniformity, we abuse notation in the case of the half-integral
weight Hecke operators. Our operator Tk(p) is traditionally referred to as T (p2) or Tk(p

2).

These operators map modular forms to modular forms, and they define linear transfor-
mations on Mk(N,χ) and Sk(N,χ). Using Lemma 7.2, it is not difficult to see that the
definitions of these Hecke operators extend to harmonic Maass forms and their spaces in
the obvious way. Using Lemmas 7.2 and 7.4, it is then not difficult to obtain the following
useful theorem. As before, here we suppose that 2− k ∈ 1

2
Z with k > 1.

Theorem 7.10. Suppose that f(z) ∈ H2−k(N,χ), and that p - N is a prime for which
ξ2−k(f) ∈ Sk(N,χ) is an eigenform of Tk(p) with eigenvalue λ(p).

(1) If k ∈ 1
2
Z \ Z, then

f | T2−k(p)− p2−2kλ(p)f

is a weakly holomorphic modular form in M !
2−k(N,χ).
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(2) If k ∈ Z, then

f | T2−k(p)− p1−kλ(p)f

is a weakly holomorphic modular form in M !
2−k(N,χ).

8. Examples of harmonic Maass forms

In this section we present further examples of harmonic Maass forms. The interested
reader should consult Zwegers’s works [218, 219] to see those weight 1/2 harmonic Maass
forms whose holomorphic parts are given in terms of Lambert-type series and generating
functions for indefinite binary quadratic forms. Recent work of Bringmann, Folsom, and
the author [49] concerns further properties of these forms, and it also gives related weight
3/2 harmonic Maass forms. All of these harmonic Maass forms f have the property that
ξw(f) is a linear combination of single variable theta functions.

Here we consider further examples of harmonic Maass forms. We recall the classical
Eisenstein series E2(z), Zagier’s weight 3/2 Eisenstein series, certain Maass-Poincaré series,
and a combinatorial power series which plays a central role in the Dyson-Ramanujan theory
of partition congruences.

8.1. The Eisenstein series E2(z). The differential operator D := 1
2πi

d
dz

= q · d
dq

plays

an important role in the theory of modular forms and q-series. Indeed, as an operator on
formal power series we have that

D

(
∞∑

n=h

a(n)qn

)
:=

∞∑
n=h

na(n)qn.

Ramanujan proved [172] that

D(E4) = (E4E2 − E6)/3 and D(E6) = (E6E2 − E8)/2,

where Ek, for every even integer k ≥ 2, is the standard Eisenstein series

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

Here Bk denotes the usual kth Bernoulli number and σk−1(n) :=
∑

d|n d
k−1.

As is well known, for even k ≥ 4 we have that Ek(z) is a weight k modular form on
SL2(Z). However, the Eisenstein series E2(z)

E2(z) = 1− 24
∞∑

n=1

σ1(n)qn

is not modular, and so the derivative of a modular form is not (in general) a modular form.
It is not difficult to pin down the obstruction which prevents E2(z) from being a modular

form. Indeed, it is simple to show (for example, see page 113 of [134]), for z ∈ H, that

(8.1) z−2E2(−1/z) = E2(z) +
6

πiz
.
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Using this fact, it is not difficult to modify E2(z) to obtain a weight 2 harmonic Maass
form. Using (8.1), and the fact that

SL2(Z) =

〈(
1 1
0 1

)
,

(
0 1
−1 0

)〉
,

one finds that

(8.2) E∗
2(z) := − 3

πy
+ E2(z),

where y = Im(z), is a weight 2 harmonic Maass form on SL2(Z) in the more general sense
of Bruinier and Funke. It fails to satisfy Definition 7.1 (3). Obviously, its holomorphic
part is E2(z), and its non-holomorphic part is the simple function − 3

πy
.

Remark 21. Although E∗
2(z) is not a harmonic Maass form in the strict sense of Defini-

tion 7.1, it still behaves well under the differential operator ξ2. One easily checks that
ξ2(E

∗
2(z)) is constant, and so it is a modular form of weight 0. This is in line with

Lemma 7.4.

8.2. Zagier’s Eisenstein series. In their work on the intersection theory of Hilbert mod-
ular surfaces [123, 210], Hirzebruch and Zagier required a non-holomorphic weight 3/2
Eisenstein series G(z) on Γ0(4). The non-holomorphic part of this Eisenstein series is
essentially the “period integral” of the classical Jacobi theta function

Θ0(z) := 1 + 2q + 2q4 + 2q9 + 2q16 + · · · .
This is analogous with the work of Zwegers on Ramanujan’s mock theta functions (see
Theorem 6.1 and the discussion after Lemma 7.4) in that the non-holomorphic parts of his
harmonic Maass forms are also period integrals of single variable theta functions. Unlike
Zwegers’s harmonic Maass forms, where the holomorphic parts turned out to be combi-
natorial q-series such as the mock theta functions of Ramanujan, the holomorphic part of
the Zagier form is the generating function for Hurwitz class numbers. More precisely, we
have (in Zagier’s notation) the following theorem.

Theorem 8.1. If H(0) = ζ(−1) = − 1
12

, and if H(n) denotes the usual Hurwitz class
numbers for discriminants −n, then the function

G(z) =
∞∑

n=0

H(n)qn +
1

16π
√
y

∞∑
n=−∞

β(4πn2y)q−n2

is a weight 3/2 harmonic Maass form on Γ0(4) in the sense of Bruinier and Funke. Here
we have that β(s) :=

∫∞
1
t−3/2e−stdt.

Remark 22. Zagier’s β-function is essentially the incomplete Gamma-function.

As in the case of E∗
2(z), we have that G(z) is a weight 3/2 harmonic Maass form on

Γ0(4) in the more general sense of Bruinier and Funke. Again, the culprit is Definition 7.1
(3). Nevertheless, one sees that ξ 3

2
(G) is a multiple of Θ0(z), which is in line with the

phenomenon in Lemma 7.4. The only difference is that Θ0(z) is not a cusp form.

Remark 23. In recent work, Bringmann and Lovejoy [51] have found a striking identity
relating a certain rank generating function for overpartitions to G(z).
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8.3. Poincaré series. Here we describe certain Maass-Poincaré series. Throughout, we
rely on classical special functions whose properties and definitions may be found in [1, 20].
Such Poincaré series, which were first given by D. Hejhal, are discussed in [56, 62, 65, 117].

Suppose that k ∈ 1
2
Z, and that N is a positive integer (with 4 | N if k ∈ 1

2
Z \ Z). Let

m be an integer, and let ϕm : R+ → C be a function which satisfies ϕm(y) = O(yα), as
y → 0, for some α ∈ R. If e(α) := e2πiα as usual, then let

(8.3) ϕ∗m(z) := ϕm(y)e(mx).

This function is fixed by the group of translations

Γ∞ :=

{
±
(

1 n
0 1

)
: n ∈ Z

}
.

Using the slash operator (7.4), we define the Poincaré series P(m, k,N, ϕm; z) by

P(m, k,N, ϕm; z) :=
∑

A∈Γ∞\Γ0(N)

(ϕ∗m |k A)(z).(8.4)

The Fourier expansions of these series are given in terms of the Kloosterman sums

(8.5) Kk(m,n, c) :=

{∑
v(c)× e

(
mv+nv

c

)
if k ∈ Z,∑

v(c)×

(
c
v

)2k
ε2k

v e
(

mv+nv
c

)
if k ∈ 1

2
Z \ Z.

In the sums above, v runs through the primitive residue classes modulo c, and v denotes
the multiplicative inverse of v modulo c. The following lemma gives the fundamental
properties of such Poincaré series (for example, see Proposition 3.1 of [65] where N = 4).

Lemma 8.2. If k > 2− 2α, then the following are true.

(1) Each Poincaré series P(m, k,N, ϕm; z) is a weight k Γ0(N)-invariant function.
(2) Near the cusp at ∞, the function P(m, k,N, ϕm; z) − ϕ∗m(z) has moderate growth.

Near the other cusps, P(m, k,N, ϕm; z) has moderate growth.
(3) If P(m, k,N, ϕm; z) is twice continuously differentiable, then it has the locally uni-

formly absolutely convergent Fourier expansion

P(m, k,N, ϕm; z) = ϕ∗m(z) +
∑
n∈Z

a(n, y)e(nx),

where

a(n, y) :=
∞∑

c>0
c≡0 (mod N)

c−kKk(m,n, c)

∫ ∞

−∞
z−kϕm

(
y

c2|z|2

)
e

(
− mx

c2|z|2
− nx

)
dx.

We now recall the classical family of Poincaré series (for example, see [125, 167]) which
arises from Lemma 8.2. If 2 ≤ k ∈ 1

2
Z, N is positive, and if m is an integer, then let

(8.6) P (m, k,N ; z) = qm +
∞∑

n=1

a(m, k,N ;n)qn =: P(m, k,N, e(imy); z).

These series are modular, and their Fourier expansions are given in terms of the I-Bessel
and J-Bessel functions, and the Kloosterman sums above.
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Theorem 8.3. If 2 ≤ k ∈ 1
2
Z, and m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z \Z), then the following

are true.

1) We have that P (m, k,N ; z) ∈ Sk(N), and for positive integers n we have

a(m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

Kk(m,n, c)

c
· Jk−1

(
4π
√
mn

c

)
.

2) We have that P (−m, k,N ; z) ∈M !
k(N), and for positive integers n we have

a(−m, k,N ;n) = 2π(−1)
k
2

( n
m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

Kk(−m,n, c)
c

· Ik−1

(
4π
√
|mn|
c

)
.

Now we recall one family of Maass-Poincaré series which have appeared in earlier works
[62, 65, 117, 160]. To define them, again suppose that 2 < k ∈ 1

2
Z, and that N is a positive

integer (with 4 | N if k ∈ 1
2
Z \ Z). To employ Lemma 8.2, we first select an appropriate

function ϕ.
Let Mν, µ(z) be the usual M -Whittaker function which is a solution to the differential

equation
∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0.

For complex s, let

Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

and for positive m let ϕ−m(z) := M1− k
2
(−4πmy). We now let

(8.7) Q(−m, k,N ; z) := P(−m, 2− k,N, ϕ−m; z).

Lemma 8.2 leads to the following theorem (see [54, 56, 62, 117]).

Theorem 8.4. If 2 < k ∈ 1
2
Z and m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z\Z), then Q(−m, k,N ; z)

is in H2−k(N). Moreover, if Ik−1 is the usual I-Bessel function, then

Q(−m, k,N ; z) = (1− k) (Γ(k − 1, 4πmy)− Γ(k − 1)) q−m +
∑
n∈Z

cm(n, y) qn.

1) If n < 0, then

cm(n, y) = 2πik(1− k) Γ(k − 1, 4π|n|y)
∣∣∣ n
m

∣∣∣ 1−k
2

×
∑
c>0

c≡0 (mod N)

K2−k(−m,n, c)
c

· Jk−1

(
4π
√
|mn|
c

)
.

2) If n > 0, then

cm(n, y) = −2πikΓ(k)
( n
m

) 1−k
2

∑
c>0

c≡0 (mod N)

K2−k(−m,n, c)
c

· Ik−1

(
4π
√
|mn|
c

)
.
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3) If n = 0, then

cm(0, y) = −2kπkikmk−1
∑
c>0

c≡0 (mod N)

K2−k(−m, 0, c)
ck

.

These three families of Poincaré series are closely related. The following theorem gives
the explicit relationships between the cusp forms P (m, k,N ; z), the weakly holomorphic
modular forms P (−m, k,N ; z), and the harmonic Maass forms Q(−m, k,N ; z). They are
related by the ξ2−k and Dk−1 differential operators.

Theorem 8.5. Suppose that 2 < k ∈ 1
2
Z, and that m,N ≥ 1 (with 4 | N if k ∈ 1

2
Z \ Z).

Then the following are true.

(1) Under the operator ξ2−k, we have that

ξ2−k(Q(−m, k,N ; z)) = (4π)k−1mk−1(k − 1) · P (m, k,N ; z) ∈ Sk(N).

(2) Under the operator Dk−1, if k is an integer, then we have that

Dk−1Q(−m, k,N ; z) = −mk−1Γ(k) · P (−m, k,N ; z) ∈M !
k(N).

Proof. The claims follow easily from the explicit expansions in Theorems 8.3 and 8.4. �

8.4. A family of weight 1/2 harmonic Maass forms. In his work [218, 219] (also see
Section 6.2), Zwegers describes the holomorphic parts of certain harmonic Maass forms
in an explicit way. These series are presented as reciprocals of theta functions multiplied
with Lambert-type series, and are also given as generating functions for indefinite theta
series.

Here we present an infinite family of Maass forms which arise from the Eulerian series

(8.8) R(w; q) := 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

,

where, as before, we let

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

To place this formal power series in context, we recall that we have already seen two
important specializations in w. Thanks to Theorem 2.2, by setting w = 1 we have that

R(1; q) =
∞∑

n=0

p(n)qn.

By letting w = −1, we obtain the series

R(−1; q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This series is Ramanujan’s third order mock theta function f(q), which by Theorem 6.1 is
essentially the holomorphic part of a weight 1/2 harmonic Maass form. In [55], Bringmann
and the author generalized this fact.
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To make this precise, suppose that 0 < a < c are integers, and let ζc := e2πi/c. If
fc := 2c

gcd(c,6)
, then define the theta function Θ

(
a
c
; τ
)

by

(8.9) Θ
(a
c
; τ
)

:=
∑

m (mod fc)

(−1)m sin

(
aπ(6m+ 1)

c

)
· θ
(
6m+ 1, 6fc;

τ

24

)
,

where

(8.10) θ(α, β; τ) :=
∑

n≡α (mod β)

ne2πiτn2

.

Throughout, let `c := lcm(2c2, 24), and let ˜̀c := `c/24. It is well known that Θ
(

a
c
; `cτ

)
is

a cusp form of weight 3/2 (for example, see [192]).
Using this cuspidal theta function, we define the function S1

(
a
c
; z
)

by the period integral

(8.11) S1

(a
c
; z
)

:=
−i sin

(
πa
c

)
`c

1
2

√
3

∫ i∞

−z̄

Θ
(

a
c
; `cτ

)√
−i(τ + z)

dτ.

Using this notation, define D
(

a
c
; z
)

by

(8.12) D
(a
c
; z
)

:= −S1

(a
c
; z
)

+ q−
`c
24R(ζa

c ; q`c).

Theorem 8.6. If 0 < a < c, where c is odd, then D
(

a
c
; z
)

is a Maass form of weight 1/2

on Γ1(144f 2
c
˜̀
c).

Remark 24. For even c, these Maass forms also satisfy transformation laws with respect
to Γ1 congruence subgroups. Our proof of Theorem 8.6 in [55] is long and complicated.
It is based on a modification of earlier work of Watson [206, 207]. Zagier [213] found a
shorter proof of this result using a clever application of Zwegers’s work on the µ̂-function.
His proof of Theorem 8.6 relies on the fact that

(8.13)
q−1/24R(e(α); q)

e−πiα − eπiα
=
η(3z)3/η(z)

ϑ(3α; 3z)
− q−

1
6 e(−α)µ(3α,−z; 3z) + q−

1
6 e(α)µ(3α, z; 3z).

9. Dyson-Ramanujan theory of partition congruences

As mentioned in the introduction, the partition function has been a “testing ground”
for the theory of modular forms. In number theory we are interested in the divisibility
properties of p(n) and the size of p(n). Here we consider the congruence properties of the
partition function p(n). It will turn out that these harmonic Maass forms have arithmetic
properties which may be studied using the theory of `-adic Galois representations as de-
veloped by Deligne, Serre, and Swinnerton-Dyer [83, 187, 197]. These new congruences
imply new partition congruences.

9.1. Ramanujan’s congruences. Ramanujan proved the striking congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),
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and conjectured generalizations where the moduli are powers of 5, 7 and 11. These con-
jectures have been resolved in works by Atkin and Watson [28, 208].

These congruences are just the tip of the iceberg. In the late 1960s, Atkin [29] proved
further congruences for small prime moduli. More recently, the author proved [162] that
there are infinitely many such congruences for any prime modulus Q ≥ 5. This result was
subsequently generalized by S. Ahlgren and the author [2, 3], and these results imply the
following theorem.

Theorem 9.1. If M is coprime to 6, then there are infinitely many non-nested arithmetic
progressions An+B for which

p(An+B) ≡ 0 (mod M).

Remark 25. By non-nested, we mean that there are infinitely many arithmetic progressions
An+B, with 0 ≤ B < A, with the property that there are no progressions which contain
another progression.

Remark 26. It is believed that there are no such congruences with moduli which are not
coprime to 6 (for example, see [5, 163]).

Example 9.2. Here are the simplest examples of these congruences for the prime moduli
17 ≤M ≤ 31:

p(48037937n+ 1122838) ≡ 0 (mod 17),

p(1977147619n+ 815655) ≡ 0 (mod 19),

p(14375n+ 3474) ≡ 0 (mod 23),

p(348104768909n+ 43819835) ≡ 0 (mod 29),

p(4063467631n+ 30064597) ≡ 0 (mod 31).

9.2. Dyson’s rank. In an effort to provide a combinatorial explanation of Ramanujan’s
congruences modulo 5 and 7, Dyson introduced [90] the so-called “rank” of a partition.
The rank of a partition is defined to be its largest part minus the number of its parts. Let
N(m,n) denote the number of partitions of n with rank m, and for integers 0 ≤ r < t let
N(r, t;n) denote the number of partitions of n with rank congruent to r modulo t. Dyson
noticed that ranks modulo 5 (resp. 7) apppeared to divide the partitions of 5n+ 4 (resp.
7n+ 5) into 5 (resp. 7) groups of equal size, thereby providing an elegant explanation for
these two congruences of Ramanujan.

Atkin and Swinnerton-Dyer [31] confirmed Dyson’s conjecture by proving the following
result.

Theorem 9.3. The following are true:

(1) If 0 ≤ r < 5, then

∞∑
n=0

(
N(r, 5; 5n+ 4)− p(5n+ 4)

5

)
qn = 0.
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(2) If 0 ≤ r < 7, then

∞∑
n=0

(
N(r, 7; 7n+ 5)− p(7n+ 5)

7

)
qn = 0.

Remark 27. Dyson [90] also noted that the rank fails to explain the Ramanujan congruence
with modulus 11. A short calculation reveals that the first failure already occurs with
p(6) = 11. In view of this difficulty, Dyson further postulated the existence of another
statistic, the so-called “crank”, that could be used to provide an explanation for all three
Ramanujan congruences. In 1988, Andrews and Garvan [25] found the crank, and they
confirmed Dyson’s speculation that it explains the three Ramanujan congruences. Recent
work of Mahlburg [151] establishes that the Andrews-Dyson-Garvan crank plays an even
more central role in the theory partition congruences. His work establishes congruences
modulo arbitrary powers of all primes ≥ 5. Other work by Garvan, Kim and Stanton [99]
gives a different “crank” for several other Ramanujan congruences.

9.3. Maass form generating functions for Dyson’s ranks. Although the rank does
not explain Ramanujan’s partition congruence with modulus 11, it turns out that it indeed
plays a central role thanks to the arithmetic properties of certain harmonic Maass forms.
Indeed, it turns out that the generating functions for N(r, t;n) are related to harmonic
Maass forms. To make this connection, one simply generalizes the proof of Theorem 2.2
to obtain the following proposition concerning the power series

R(w; q) := 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

considered earlier in (8.8).

Proposition 9.4. As a formal power series, we have that

R(w; q) := 1 +
∞∑

n=1

∞∑
m=−∞

N(m,n)wmqn.

Thanks to Theorem 8.6, it is not difficult to relate the functions N(r, t;n) to the coeffi-
cients of weight 1/2 harmonic Maass forms. In this direction, Bringmann and the author
proved the following theorem in [55], which also sheds further light on Theorem 9.3.

Theorem 9.5. Assume the notation from Section 8.4. If 0 ≤ r < t are integers, where t
is odd, then

∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q`tn− è

t

is the holomorphic part of a weight 1/2 harmonic Maass form on Γ1

(
144f 2

t
˜̀
t

)
. Moreover,

the non-holomorphic part of this Maass form is

i`
1
2
t

t
√

3

∑
m (mod ft)

∑
n≡6m+1 (mod 6ft)

A(r, t,m) · γ(t, y;n)q−
è
tn2

.
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Here we have that

A(r, t,m) := (−1)m

t−1∑
j=1

ζ−rj
t sin

(
πj

t

)
sin

(
πj(6m+ 1)

t

)
,(9.1)

and we have that

γ(t, y;n) :=
i√
2π˜̀t · Γ

(
1

2
; 4π˜̀tn2y

)
.

Proof. This result follows easily from a standard argument involving the orthogonality of
roots of unity. In particular, observe that

(9.2)
∞∑

n=0

N(r, t;n)qn =
1

t

∞∑
n=0

p(n)qn +
1

t

t−1∑
j=1

ζ−rj
t ·R(ζj

t ; q).

By Theorem 8.6, it then follows that
∞∑

n=0

(
N(r, t;n)− p(n)

t

)
q`tn− `t

24

is the holomorphic part of a Maass form of weight 1/2, one which is given as an appropriate
weighted sum of the Maass forms D

(
a
t
; z
)
.

The result then follows from the explicit description of the non-holomorphic parts of
these forms. For integers 0 < a < t, we have

D
(a
t
; z
)

= q−
`t
24 +

∞∑
n=1

∞∑
m=−∞

N(m,n)ζam
t q`tn− `t

24

+
i sin

(
πa
t

)
`

1
2
t√

3

∑
m (mod ft)

(−1)m sin

(
aπ(6m+ 1)

t

) ∑
n≡6m+1 (mod 6ft)

γ(t, y;n)q−
è
tn2

.

(9.3)

This expansion follows easily from

− S1

(a
t
; z
)

=
i sin

(
πa
t

)
`

1
2
t√

3

∑
m (mod ft)

(−1)m sin

(
aπ(6m+ 1)

t

)

×
∑

n≡6m+1 (mod 6ft)

∫ i∞

−z

ne2πin2 è
tτ√

−i(τ + z)
dτ,

and the identity (recall (7.8))∫ i∞

−z

ne2πin2 è
tτ√

−i(τ + z)
dτ = γ(t, y;n) · q− è

tn2

.

�

Remark 28. It is not difficult to deduce Theorem 9.3 from Theorem 9.5 using Atkin’s
U -operator. In short, one must merely prove that certain harmonic Maass forms, which
turn out to be weakly holomorphic modular forms, are identically 0.
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Using quadratic twists, one can use Theorem 9.5 to obtain weakly holomorphic modular
forms. Theorem 1.4 of [55] asserts the following result.

Theorem 9.6. If 0 ≤ r < t are integers, where t is odd, and P - 6t is prime, then∑
n≥1

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(
N(r, t;n)− p(n)

t

)
q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1

(
144f 2

t
˜̀
tP4
)
.

Proof. The non-holomorphic parts of the Maass forms in Theorem 9.5 have the property

that their coefficients are supported on a fixed square class, numbers of the form −˜̀tn2.
This square class is easily annihilated by taking linear combinations of quadratic twists.
In particular, suppose that P - 6t is prime. For this prime P , let

g :=
P−1∑
v=1

( v
P

)
e

2πiv
P

be the usual Gauss sum with respect to P . Define the function D
(

a
t
; z
)
P by

(9.4) D
(a
t
; z
)
P

:=
g

P

P−1∑
v=1

(
v
P

)
D
(a
t
; z
)
| 1
2

(
1 − v

P
0 1

)
,

where | 1
2

is the usual slash operator (7.4). By construction, D
(

a
t
; z
)
P is the P-quadratic

twist of D
(

a
t
; z
)
. In other words, the nth coefficient in the q-expansion of D

(
a
t
; z
)
P is

(
n
P

)
times the nth coefficient of D

(
a
t
; z
)
. For the non-holomorphic part, this follows from the

fact that the factors γ(t, y;n) appearing in (9.3) are fixed by the transformations in (9.4).
Generalizing classical facts about twists of modular forms, D

(
a
t
; z
)
P is a Maass form of

weight 1/2 on Γ1(144f 2
t
˜̀
tP2). By (9.3), it follows that

(9.5) D
(a
t
; z
)
−

(
−˜̀t
P

)
D
(a
t
; z
)
P

is a Maass form of weight 1/2 on Γ1(144f 2
c
˜̀
tP2) with the property that its non-holomorphic

part is supported on summands of the form ∗q− è
tP2n2

. These terms are annihilated by
taking the P-quadratic twist of this Maass form. Consequently, we obtain a weakly holo-

morphic modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Combining these observations

with (9.2), we obtain the theorem. �

Remark 29. All of the results in this section continue to hold for even t thanks to Theo-
rem 6.3 and (8.13).
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9.4. Implications for partition congruences. Here we apply Theorem 9.6 to shed light
on the congruence properties of Dyson’s functions N(r, t;n). We shall employ a method
first used by the author in [162] in his work on p(n) to show that Dyson’s rank partition
functions themselves uniformly satisfy Ramanujan-type congruences. Bringmann and the
author have proved the following theorem (see Theorem 1.5 of [55], as well as [47]).

Theorem 9.7. Let t be a positive odd integer, and let M be a positive integer coprime to
6. Then there are infinitely many non-nested arithmetic progressions An+B such that for
every 0 ≤ r < t we have

N(r, t;An+B) ≡ 0 (mod M).

Remark 30. Since we have

p(An+B) =
t−1∑
r=0

N(r, t;An+B),

Theorem 9.7 provides a combinatorial decomposition of the partition function congruence

p(An+B) ≡ 0 (mod M).

Sketch of the proof of Theorem 9.7. For simplicity, we suppose that M = Qj, where 5 ≤
Q - t is prime, and j is a positive integer. The proof depends on Theorem 9.6, the obser-
vation that certain “sieved” partition rank generating functions are weakly holomorphic
modular forms. This result then reduces the proof of Theorem 9.7 to the fact that any finite
number of half-integral weight cusp forms with integer coefficients are annihilated, modulo
a fixed prime power, by a positive proportion of half-integral weight Hecke operators.

To be precise, suppose that f1(z), f2(z), . . . , fs(z) are half-integral weight cusp forms
where

fi(z) ∈ Sλi+
1
2
(Γ1(4Ni)) ∩ OK [[q]],

and where OK is the ring of integers of a fixed number field K. If Q is prime and j ≥ 1 is
an integer, then the set of primes L for which

(9.6) fi | Tλi+
1
2
(L) ≡ 0 (mod Qj),

for each 1 ≤ i ≤ s, has positive Frobenius density. As before, here Tλi+
1
2
(L) (see Sec-

tion 7.5) denotes the usual L2 index Hecke operator of weight λi + 1
2
.

Suppose that P - 6tQ is prime. By Theorem 9.6, for every 0 ≤ r < t

(9.7) F (r, t,P ; z) =
∞∑

n=1

a(r, t,P ;n)qn :=
∑

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(
N(r, t;n)− p(n)

t

)
q`tn− `t

24

is a weakly holomorphic modular form of weight 1/2 on Γ1(144f 2
t
˜̀
tP4). Furthermore, by

the work of Ahlgren and the author [3], it follows that

(9.8) P (t,P ; z) =
∞∑

n=1

p(t,P ;n)qn :=
∑

( 24`tn−`t
P )=−

„
−24 è

t
P

« p(n)q`tn− `t
24
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is a weakly holomorphic modular form of weight −1/2 on Γ1(576˜̀tP4). In particular, all

of these forms are modular with respect to Γ1(576f 2
t
˜̀
tP4).

Since Q - 576f 2
t
˜̀
tP4, a result of Treneer (see Theorem 3.1 of [201]), generalizing earlier

observations of Ahlgren and the author [3, 162], implies that there is a sufficiently large
integer m for which ∑

Q-n

a(r, t,P ;Qmn)qn,

for all 0 ≤ r < t, and ∑
Q-n

p(t,P ;Qmn)qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight cusp forms

with algebraic integer coefficients on Γ1(576f 2
t
˜̀
tP4Q2).

The system of simultaneous congruences (9.6), in the case of these forms, guarantees
that a positive proportion of primes L have the property that these forms modulo Qj

are annihilated by the index L2 half-integral weight Hecke operators. Theorem 9.7 now
follows mutatis mutandis as in the proof of Theorem 1 of [162]. One merely interprets this
annihilation, using (7.14), in terms of the N(r, t;n). �

Two remarks.
1) The simultaneous system (9.6) of congruences follows from a straightforward general-
ization of a classical observation of Serre (see Section 6 of [188]).
2) Treneer states her result for weakly holomorphic modular forms on Γ0(4N) with Neben-
typus. We are using a straightforward extension of her result to Γ1(4N).

9.5. Related recent works. Recently there have been many works on the relationship
between Dyson’s rank and the Andrews-Garvan crank [25]. Several years ago, Atkin and
Garvan [30] discovered a striking partial differential equation which related the rank and
crank generating functions. Their work then inspired the recent investigation of Andrews
on Durfee symbols and higher partition statistics [19].

Armed with the new understanding of partition ranks in terms of harmonic Maass
forms, much light has been shed recently on these results from the perspective of modular
forms and Maass forms. In this direction there are papers by Bringmann, Garvan, Love-
joy, Mahlburg, and Osburn [48, 50, 52], in which theorems concerning the automorphic
properties of partition generating functions, asymptotics, and congruences are obtained
for various partition statistics such as those arising in the work of Andrews [19] on rank
moments. In a recent paper, Bringmann and Zwegers [60] investigate further the phenom-
enon of the the Atkin-Garvan “crank-rank” PDE from the perspective of non-holomorphic
Jacobi forms.

In another recent development, M. Monks, an undergraduate at MIT, has discovered a
deep connection between the power series R(±i; q−1), some false theta functions of Rogers,
and the generating function for Dyson’s ranks restricted to partitions into distinct parts.
Her work [156] allows one to determine the behavior of the holomorphic part of the Maass
form D(±1/4; z) in Theorem 8.6 for complex z in the lower half of the complex plane.
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10. Eulerian series as modular forms

Eulerian series are combinatorial formal power series which are constructed from basic
hypergeometric series. As described in Section 2.3, there are famous examples of Eulerian
series which essentially are modular forms. For example, we have the celebrated Rogers-
Ramanujan identities

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn2

(1− q)(1− q2) · · · (1− qn)
,

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
n=1

qn2+n

(1− q)(1− q2) · · · (1− qn)
.

These identities provide series expansions of infinite products which correspond to weight
0 modular forms. As another example, we have Theorem 2.2, which asserts that the
partition number generating function satisfies

∞∏
n=1

1

1− qn
= 1 +

∞∑
n=1

qn2

(1− q)2(1− q2)2 · · · (1− qn)2
.

Since this series is essentially the reciprocal of Dedekind’s weight 1/2 modular form, this
provides another example of an Eulerian series which is a modular form.

The literature on such identities is extensive, and the pursuit of further identities and
their interpretations remains an active area of research largely due to applications in
combinatorics, Lie theory, number theory and physics (for example, see [13], [129], and
[145] to name a few).

Here we illustrate how one may easily obtain modular forms from Eulerian series by
forcing the cancellation of non-holomorphic parts of harmonic Maass forms. To this end,
we again consider Dyson’s generating function R(w; q)

R(w; q) := 1 +
∞∑

n=1

∞∑
m=−∞

N(m,n)wmqn = 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n

,

and the functions N(r, t;n).
By conjugating Ferrers boards, we have the trivial relation

(10.1) N(r, t;n) = N(t− r, t;n).

However, these functions also satisfy [31] some highly non-trivial sporadic identities such
as

(10.2) N(1, 7; 7n+ 1) = N(2, 7; 7n+ 1) = N(3, 7; 7n+ 1).

Atkin and Swinnerton-Dyer [31] proved some surprising further identities such as (see also
(5.19) of [119])

(10.3) −(q; q7)2
∞(q6; q7)2

∞(q7; q7)2
∞

(q; q)∞
=

∞∑
n=0

(N(0, 7; 7n+ 6)−N(1, 7; 7n+ 6)) qn.

This identity expresses a weight 1/2 modular form as a linear combination of Eulerian
series.
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This example is a special case of a much more general phenomenon which gives highly
nontrivial relationships between Dyson’s partition rank functions. Generalizing it, Bring-
mann, Rhoades, and the author [57] used the theory of harmonic Maass forms to obtain
several infinite families of modular forms as Eulerian series. Here we present examples
which arise directly from Theorem 9.5.

Theorem 10.1. Suppose that t ≥ 5 is prime, 0 ≤ r1, r2 < t and 0 ≤ d < t. Then the
following are true:

(1) If
(

1−24d
t

)
= −1, then

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t6).
(2) Suppose that

(
1−24d

t

)
= 1. If r1, r2 6≡ 1

2
(±1 ± α) (mod t), where α is any integer

for which 0 ≤ α < 2t and 1− 24d ≡ α2 (mod 2t), then
∞∑

n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t6).

Remark 31. Example (10.3) is the t = 7 and d = 6 case of Theorem 10.1 (2). In this case,
the only choices of r1 and r2 satisfying the hypotheses are 0, 1, and 6. Since N(1, 7;n) =
N(6, 7;n), (10.3) is the only nontrivial example of Theorem 10.1 (2) in this case. The proof
of the theorem will show, for all other pairs of r1 and r2 (apart from the trivial examples
such as those arising from (10.1)), that

∞∑
n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d)) q24(tn+d)−1

is not a weakly holomorphic modular form. In other words, the corresponding Maass forms
turn out to have non-trivial non-holomorphic parts.

Remark 32. The “Mock theta Conjectures” (see Section 4), which were proved by Hicker-
son, are instances of pairs of harmonic Maass forms which differ by a weakly holomorphic
modular form. Using arguments along the lines of the proofs in this section, A. Folsom
has provided [94] a “Maass form” proof of these conjectures.

Remark 33. In a recent paper, S.-Y. Kang [132] has further developed the relationship
between basic hypergeometric series and non-holomorphic Jacobi forms using the work of
Zwegers. In particular, she gives (see Theorems 1.2 and 1.3 of [132]) two explicit families
of weight 1/2 modular forms, described in terms of theta functions and Dedekind’s eta-
function, which are sums of basic hypergeometric series.

Theorem 10.1 gives modular forms as differences of the generating functions for the
functions N(r, t; tn+d). There are similar theorems where the rank modulus t is indepen-
dent of the modulus of the arithmetic progression of the sizes of the partitions. As before,
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for integers 0 < a < t, let ft := 2t
gcd(t,6)

, `t := lcm(2t2, 24), and let ˜̀t := `t/24. We then

have the following theorem which is contained in [57].

Theorem 10.2. Suppose that t > 1 is an odd integer. If 0 ≤ r1, r2 < t are integers, and
P - 6t is prime, then ∑

n≥1

( 24`tn−`t
P )=−

„
−24 è

t
P

«
(N(r1, t;n)−N(r2, t;n)) q`tn− `t

24

is a weight 1/2 weakly holomorphic modular form on Γ1

(
144f 2

t
˜̀
tP4
)
.

Theorems 10.1 and 10.2 depend on Theorem 9.5. However, one may obtain many further
results of this type by making use of results which are analogous to Theorem 9.5. This is
done in [57], where we obtain several further infinite families of Eulerian modular forms.
These families give rise to further identities such as

2
(q4; q4)5

∞
(q2; q2)4

∞
=
∑
n≥0

qn(n+1)(−q2; q2)n

(q; q2)2
n+1

+
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)2
n+1

.

10.1. Proofs of Theorems 10.1 and 10.2. Theorem 10.2 follows immediately from
Theorem 9.6 since the p(n)/t summands cancel when taking the difference of the relevant
generating functions.

Now we turn to the proof of Theorem 10.1. By Theorem 9.5, for any 0 ≤ r < t we have

∞∑
n=0

(
N(r, t;n)− p(n)

t

)
q24t2n−t2 +

∑
n∈Z

Ã(r, t, n) · γ(t, y;n)q−t2n2

is a weight 1/2 harmonic Maass form on Γ1(576t4). Here Ã(r, t, n) is a complex number
given by

(10.4) Ã(r, t, n) = i
√

8
∑

m (mod 2t)
6m+1≡n (mod 12t)

A(r, t,m),

where γ(t, y;n) and A(r, t;m) are defined in Theorem 9.5. Applying the Atkin U(t2)
operator, we have, by a straightforward generalization of Proposition 1.5 of [192], that

(10.5) R(r, t; z) :=
∞∑

n=0

(
N(r, t;n)− p(n)

t

)
q24n−1 +

∑
n∈Z

Ã(r, t, n) · γ(t, y;n)q−n2

is a weight 1/2 harmonic Maass form on Γ1(576t4).
Now we prove Theorem 10.1 (1). By a straightforward generalization of the classical

argument on twists of modular forms (for example, see Proposition 22 of [134]), the qua-
dratic twist of R(r, t; z) by

( ·
t

)
, say R(r, t; z)t, is a weight 1/2 harmonic Maass form on
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Γ1(576t6). In particular,
(−1

t

)
R(r, t; z)t has an expansion of the form(

−1

t

)
R(r,t; z)t =

∞∑
n=0

(
1− 24n

t

)(
N(r, t;n)− p(n)

t

)
q24n−1 +

∑
n∈Z
t-n

Ã(r, t, n) · γ(t, y;n)q−n2

.

We find that R(r, t; z) −
(−1

t

)
R(r, t; z)t is on Γ1(576t6), and its non-holomorphic part is

supported on terms of the form q−t2n2
. By taking the quadratic twist of this form again

by
( ·

t

)
, to annihilate these non-holomorphic terms, one then finds that

∑
n≥0,

( 1−24n
t )=−1

(
N(r, t;n)− p(n)

t

)
q24n−1

is weight 1/2 weakly holomorphic modular form. Using the orthogonality of Dirichlet
characters modulo t, and facts about twists again, it follows that

∞∑
n=0

(
N(r, t; tn+ d)− p(tn+ d)

t

)
q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form. Theorem 10.1 (1) follows by taking the
difference of these forms when r = r1 and r2. Since taking twists of twists can be viewed
as a single twist by the trivial character, we find that the resulting form is on Γ1(576t6).

Now we turn to the proof of Theorem 10.1 (2). Here we argue directly with (9.1) and
(10.5). Using the theory of twists of Maass forms again, we see that the restriction of
R(r1, t; z) − R(r2, t; z) to forms whose holomorphic parts are supported on exponents of
the form 24(tn+ d)− 1, is a weight 1/2 harmonic Maass form on Γ1(576t6).

It suffices to show that the non-holomorphic part of this form is zero under the given
hypotheses on r1 and r2. By (10.5), one sees that the non-holomorphic part is supported

on terms of the form q−n2
. By construction, these n satisfy n ≡ α (mod 2t), for some

0 ≤ α < 2t with 1− 24d ≡ α2 (mod 2t). Therefore, by (9.1) and (10.5), it suffices to show
that

A(r1, t,m)− A(r2, t,m) = 0,

when 6m+ 1 ≡ α (mod 12t). By (9.1), we have

A(r1, t,m)− A(r2, t,m) = (−1)m

t−1∑
j=1

(
ζ−r1j
t − ζ−r2j

t

)
sin

(
πj

t

)
sin

(
πjα

t

)
.
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Since sin(x) = 1
2i

(eix − e−ix), we have that

t−1∑
j=1

(
e

πij
t

(1−2r1+α) − e
πij
t

(1−2r1−α) − e
πij
t

(−1−2r1+α) + e
πij
t

(−1−2r1−α)

−e
πij
t

(1−2r2+α) + e
πij
t

(1−2r2−α) + e
πij
t

(−1−2r2+α) − e
πij
t

(−1−2r2−α)
)

= 0.

This follows since ±1− 2ri ± α, for i = 1 and 2, are even and coprime to t.

11. Exact formulas

Armed with the theory of harmonic Maass forms, one may obtain exact formulas for the
coefficients of generating functions which turn out to be holomorphic parts of such forms.
By employing the method of Poincaré series as described in Section 8.3, one obtains such
results. Here we first describe the recent resolution of the Andrews-Dragonette Conjecture,
and then we give exact formulas for generic harmonic Maass forms with weight ≤ 1/2.

11.1. The Andrews-Dragonette Conjecture. Rademacher famously employed the mod-
ularity of the generating function for p(n) to perfect the Hardy-Ramanujan asymptotic
formula

(11.1) p(n) ∼ 1

4n
√

3
· eπ
√

2n/3

to obtain his “exact” formula. To state his formula, let Is(x) be the usual I-Bessel function
of order s. Furthermore, if k ≥ 1 and n are integers, then let

(11.2) Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where the sum runs over the residue classes modulo 24k, and where

χ12(x) :=

(
12

x

)
.(11.3)

If n is a positive integer, then Rademacher’s formula reads [168]

(11.4) p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

Here we address the problem of obtaining such exact formulas for Ne(n) (resp. No(n)),
the number of partitions of n with even (resp. odd) rank. To obtain these results, we
begin with the simple observation that
(11.5)

f(q) = R(−1; q) = 1 +
∞∑

n=1

(Ne(n)−No(n))qn = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

In view of (11.4) and (11.5), since

p(n) = Ne(n) +No(n),
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our task is reduced to the problem of deriving exact formulas for the coefficients α(n) of
the mock theta function

f(q) = R(−1; q) = 1 +
∞∑

n=1

α(n)qn.

The problem of estimating the coefficients α(n) has a long history, one which even
precedes Dyson’s definition of partition ranks. Indeed, Ramanujan’s last letter to Hardy
already includes the claim that

α(n) = (−1)n−1
exp

(
π
√

n
6
− 1

144

)
2
√
n− 1

24

+O

exp
(

1
2
π
√

n
6
− 1

144

)
√
n− 1

24

 .

Typical of his writings, Ramanujan offered no proof of this claim. Dragonette proved
this claim in her 1951 Ph.D. thesis [85], and Andrews [7] subsequently improved upon
Dragonette’s work, and he proved16 that

(11.6) α(n) = π(24n−1)−
1
4

[
√

n ]∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

·I 1
2

(
π
√

24n− 1

12k

)
+O(nε).

This result falls short of the problem of obtaining an exact formula for α(n). Andrews
and Dragonette formulated the following conjecture (see page 456 of [7], and Section 5 of
[17]) for the coefficients α(n).

Conjecture. (Andrews-Dragonette)
If n is a positive integer, then

α(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

Bringmann and the author have proved [53] the following theorem.

Theorem 11.1. The Andrews-Dragonette Conjecture is true.

Remark 34. In her Ph.D. thesis (see [97, 98]), S. Garthwaite generalized the proof of
Theorem 11.1, and she obtained exact formulas for the coefficients of Ramanujan’s mock
theta function ω(q). These results will be further generalized in the next subsection.

Sketch of the proof of Theorem 11.1. By Theorem 6.1, we have that D
(

1
2
; z
)

(see (8.12))

is a harmonic weight 1/2 Maass form on Γ0(144) with Nebentypus character χ12 =
(

12
·

)
.

The idea behind the proof is simple. We shall construct a Maass-Poincaré series which we
shall show equals D

(
1
2
; z
)
. The method is analogous to material in Section 8.3. The proof

of the conjecture then follows from the fact that the formulas in the Andrews-Dragonette
Conjecture give the coefficients of this Maass-Poincaré series.

16This is a reformulation of Theorem 5.1 of [7] using the identity I 1
2
(z) =

(
2

πz

) 1
2 · sinh(z).
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Suppose that k ∈ 1
2

+ Z. We define a class of Poincaré series Pk(s; z). For matrices
( a b

c d ) ∈ Γ0(2), with c ≥ 0, define the character χ(·) by

(11.7) χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2
(c+ad+1)e

(
−a+d

24c
− a

4
+ 3dc

8

)
· ω−1

−d,c if c > 0,

where

(11.8) ωd,c := eπis(d,c).

Here s(d, c) denotes the classical Dedekind sum.
Throughout, let z = x+ iy, and for s ∈ C, k ∈ 1

2
+ Z, and y ∈ R \ {0}, and let

(11.9) Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

where Mν,µ(z) again is the M -Whittaker function. Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.

Using this notation, define the Poincaré series Pk(s; z) by

(11.10) Pk(s; z) :=
2√
π

∑
M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).

Here Γ∞ again is the subgroup of translations in SL2(Z).
The defining series is absolutely convergent for Pk

(
1− k

2
; z
)

for k < 1/2, and is con-

ditionally convergent when k = 1/2. We are interested in P 1
2

(
3
4
; z
)
, which we define by

analytically continuing the Fourier expansion. This argument is not straightforward (see
Theorem 3.2 and Corollary 4.2 of [53]). Thanks to the properties of Mν,µ, we find that
P 1

2

(
3
4
; 24z

)
is a Maass form of weight 1/2 for Γ0(144) with Nebentypus χ12.

A long calculation gives the following Fourier expansion

(11.11) P 1
2

(
3

4
; z

)
=

(
1− π−

1
2 · Γ

(
1

2
,
πy

6

))
· q−

1
24 +

0∑
n=−∞

γy(n)qn− 1
24 +

∞∑
n=1

β(n)qn− 1
24 ,

where for positive integers n we have

(11.12) β(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

The Poincaré series P 1
2

(
3
4
; z
)

was defined so that (11.12) coincides with the conjectured

expressions for the coefficients α(n).
For convenience, we let

(11.13) P (z) := P 1
2

(
3

4
; 24z

)
.

Canonically decompose P (z) into a non-holomorphic and a holomorphic part

(11.14) P (z) = P−(z) + P+(z).
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In particular, we have that

P+(z) = q−1 +
∞∑

n=1

β(n)q24n−1.

Since P (z) and D
(

1
2
; z
)

are Maass forms of weight 1/2 for Γ0(144) with Nebentypus χ12,
(11.11) and (11.12) imply that the proof of the conjecture reduces to proving that these
forms are equal. This conclusion is obtained after a lengthy and somewhat complicated
argument. �

11.2. Exact formulas for harmonic Maass forms with weight ≤ 1/2. Generalizing
the results of the previous section, Bringmann and the author have obtained exact formulas
for the coefficients of the holomorphic parts of harmonic Maass forms with weight 2− k ≤
1/2 [59]. Suppose that f is in H2−k(N,χ), the space of weight 2−k harmonic Maass forms
on Γ0(N) with Nebentypus character χ, where we assume that 3

2
≤ k ∈ 1

2
Z. As usual, we

denote its Fourier expansion by

(11.15) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

It is our objective to determine exact formulas for the coefficients c+f (n) of the holomorphic
part of f .

We now define the functions which are required for these exact formulas. Throughout,
we let k ∈ 1

2
Z, and we let χ be a Dirichlet character modulo N , where 4 | N whenever

k ∈ 1
2
Z \ Z. Using this character, for a matrix M = ( a b

c d ) ∈ Γ0(N), we let

(11.16) Ψk(M) :=

{
χ(d) if k ∈ Z,
χ(d)

(
c
d

)
ε2k
d if k ∈ 1

2
Z \ Z,

where εd is defined by (7.2), and where
(

c
d

)
is the usual extended Legendre symbol. In

addition, if T = ( a b
c d ) ∈ SL2(Z), then we let

(11.17) µ(T ; z) := (cz + d)2−k.

Moreover, for pairs of matrices S, T ∈ SL2(Z), we then let

(11.18) σ(T, S) :=
µ(T ;Sz)µ(S; z)

µ(TS; z)
.

Using this notation, we now define certain generic Kloosterman sums which are naturally
associated with cusps of Γ0(N).

Suppose that ρ = aρ

cρ
= L−1∞, (L ∈ SL2(Z)) is a cusp of Γ0(N) with cρ|N and

gcd(aρ, N) = 1. Let tρ and κρ be the cusp width and parameter of ρ with respect to
Γ0(N) (see 11.21). Suppose that c > 0 with cρ|c and N

cρ
- c. Then for integers n and m we
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have the Kloosterman sum
(11.19)

Kc (2− k, ρ, χ,m, n) :=
∑

0<d<c
0<a<ct

aρa≡− c
cρ

(mod N
cρ

)

(ad,c)=1

σ(L−1, S)

Ψk (L−1S)
· exp

(
2πi

c

(
(m+ κρ)a

tρ
+ nd

))
,

where S := ( a b
c d ) ∈ SL2(Z) is the unique matrix defined using the integers a, c, and d.

Using properties of σ and Ψk, one can easily show that (11.19) is well-defined.
For convenience, we let SN be a subset of SL2(Z) with the property that{

S−1∞ : S ∈ SN

}
represents the set of inequivalent cusps of Γ0(N). For M = ( a b

c d ) ∈ SL2(Z), we define

(11.20) fM(z) := (cz + d)k−2f

(
az + b

cz + d

)
,

where
√
z is the principal branch of the holomorphic square root. Using this notation,

we have the Fourier expansion of a form f at a cusp ρ. More precisely, if L ∈ SN with
ρ = L−1∞, then we have

(11.21) fρ(z) =
∑
n∈Z

a+
ρ (n)q

n+κρ
tρ + f−ρ (τ).

We define the principal part of f at ρ by

(11.22) Pf,ρ(z) :=
∑

m+κρ<0

a+
ρ (m)q

m+κρ
tρ .

We shall use the principal parts of a form f to determine our exact formulas. To this
end, we identify, for each cusp ρ, its contribution to the exact formula. To make this
precise, let M = L−1 and µ = L∞. For positive n, we then define

A(N, 2− k, χ, ρ,m, c;n) :=

− ik2π

tµ

∣∣∣∣(−m+ κµ)

tµn

∣∣∣∣ k−1
2 ∑

c>0
cµ|c, N

cµ
-c

Kc (2− k, µ, χ,−m,−n)

c
· Ik−1

(
4π

c

√
n| −m+ κµ|

tµ

)
.

(11.23)

Here tµ and κµ are the cusp parameters for µ as in the notation above.
Using this notation, we define the order N Kloosterman approximation of c+f (n) by

(11.24) C(f,N ;n) :=
∑

L∈SN

∑
m+κρ<0

a+
ρ (m)

N∑
c=1

A(N, 2− k, χ, ρ,m, c;n).

Moreover, we define C(f,∞;n) in the obvious way.

Remark 35. We stress again that L and ρ are related (throughout this section) by the
formula ρ = L−1∞.
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Theorem 11.2. If f ∈ H2−k(N,χ) with 2 ≤ k ∈ 1
2
Z, then for positive n we have

c+f (n) = C(f,∞;n).

Remark 36. Using the asymptotic behavior of I-Bessel functions, an inspection of the
principal parts of f gives a minimal N for which

C(f,N ;n) ∼ c+f (n).

Remark 37. Theorem 11.2 includes the classic results of Rademacher and Zuckerman [169,
170, 216, 217] in the very special case of those f ∈ H2−k(N,χ) for which 2 − k < 0 and
f− = 0. It also recovers some results of Bruinier, Hejhal, and Niebur [62, 117, 160, 161]
for harmonic Maass forms of non-positive weight. Recent work by Bruinier and Strömberg
[69] addresses the problem of efficiently computing coefficients of harmonic Maass forms.

For weight 2 − k = 1
2
, we have a conditional result. To make it precise, we say that a

form f ∈ H 1
2
(N,χ) is good if the Maass-Poincaré series corresponding to nontrivial terms

in the principal parts of f are individually convergent.

Theorem 11.3. If f ∈ H 1
2
(N,χ) is good, then there is a finite set SΘ(f) of complex

numbers such that for positive n we have

c+f (n) = C(f,∞;n) + µ

for some µ ∈ SΘ(f). Moreover, if n 6= dm2 for some d | N and m ∈ Z+, then µ = 0.

Remark 38. We believe that all f ∈ H 1
2
(N,χ) are good. In earlier work we deduced conver-

gence of such Maass-Poincaré series by making using of relationships between Kloosterman
sums and Salié sums (see Section 4 of [53]), and by generalizing work of Goldfeld and Sar-
nak [100] on sums of Kloosterman sums (see [96]). It seems likely that a careful application
of these ideas will prove that each such f is indeed good.

Sketch of the proof of Theorem 11.2 and 11.3. By the general theory of Maass-Poincaré
series, which generalizes Section 8.3, we have an explicit linear combination of Maass-
Poincaré series, say f ∈ H2−k(N,χ), whose principal parts agree with the principal parts
of f up to additive constants. The complex number C(f,∞;n) is the nth coefficient of
the holomorphic part of this linear combination. For the weight 2 − k = 1/2, one must
argue further (for example, using the equidistribution of CM points) to establish that these
formulas are convergent.

There are then three possibilites:

Case 1. We have that f − f is a holomorphic modular form. It can only be nonzero when
2− k = 1

2
, in which case the Serre-Stark Basis Theorem [189] implies that f − f is a linear

combination of theta functions, giving Theorem 11.3.

Case 2. We have that f − f is a weakly holomorphic modular form which is not a
holomorphic modular form. Such a form must have a pole at a cusp. However, this cannot
happen since we constructed f so that the principal parts of f − f are constant.

Case 3. We have that f − f is a harmonic Maass form with a non-trivial non-holomorphic
part. However, Lemma 7.5 shows that all such harmonic Maass forms have at least one
principal part which is nonconstant. Therefore, this possibility never occurs. �
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12. Applications to modular forms

Here we use the theory of harmonic Maass forms to address two classical problems in
the theory of modular forms:

• Linear relations among Poincaré series
• Vanishing of Hecke eigenvalues.

We are able to obtain new results by making use of Lemma 7.4, the fact that

ξ2−k : H2−k(Γ) −→ Sk(Γ).

These classical problems, which pertain to properties of the Fourier coefficients of cusp
forms in Sk(Γ), can be investigated by leveraging information from harmonic Maass forms
in H2−k(Γ).

12.1. Relations among classical Poincaré series. It is well known that the Poincaré
series (see Section 8.3)

{P (m, k,N ; z) : m ≥ 1}
span the space Sk(N). Since the space Sk(N) is finite dimensional, there exist many
relations among these Poincaré series. In his classic text on automorphic forms, Iwaniec
[125] states the following seemingly simple problem.

Problem. Find all the linear relations between P (m, k,N ; z).

Remark 39. Iwaniec states this problem for more general multiplier systems, but the
techniques here also work in that setting.

The next theorem, due to Rhoades (see [178, 179]), follows from the theory of harmonic
Maass forms.

Theorem 12.1. Suppose that 2 ≤ k ∈ 1
2
Z, and suppose that I is a finite set of positive

integers. Then we have that ∑
m∈I

αmP (m, k,N ; z) ≡ 0

if and only if there is a form in M !
2−k(N) whose principal part at ∞ is∑

m∈I

αm

mk−1
· q−m

with trivial principal parts at all other cusps.

Example 12.2. In practice it is not difficult to implement Theorem 12.1. For example,
consider the two dimensional space S24(1). Obviously, there is a linear relation between
the Poincaré series P (1, 24, 1; z), P (2, 24, 1; z) and P (3, 24, 1; z). Using the formulas in
Theorem 8.3, we find that

P (1, 24, 1; z) ∼1.00100852 · q + 132.988977 · q2 + 189296.261 · q3 + · · ·
P (2, 24, 1; z) ∼0.00001585 · q + 2.45743136 · q2 + 114.854805 · q3 + · · ·
P (3, 24, 1; z) ∼0.00000201 · q + 0.01023411 · q2 + 0.88465633 · q3 + · · · .
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From these numerics, we find that

−0.00000207832 · P (1, 24, 1; z) + 0.00427703 · P (2, 24, 1; z) + P (3, 24, 1; z) ∼ 0.

Although it is not possible to make this approximation precise by using explicit Fourier
expansions, Theorem 12.1 reduces this problem to a simple calculation. We find the exact
relation thanks to the existence of the modular form E14/∆

3

E14(z)

∆(z)3
=

1

q3
+

48

q2
− 195660

q
+ · · · .

Therefore, we then find that the two coefficients in the linear combination above are exactly

−195660

323
≈ −0.00000207832 . . . and

48 · 223

323
≈ 0.00427703 . . . .

Theorem 12.1 is a simple consequence of the theory of harmonic Maass forms.

Proof of Theorem 12.1. Assume that
∑

m∈I αmP (m, k,N ; z) ≡ 0. Define a weight 2 − k
harmonic Maass form f by

f =
∑
m∈I

αm

mk−1
·Q(−m, k,N ; z) =

∑
n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

By Lemma 7.4 and Theorem 8.5, we find that

ξ2−k(f) = (4π)k−1(k − 1)
∑
m∈I

αmP (m, k,N ; z) = −(4π)k−1(k − 1)
∑
n≥1

c−f (−n)nk−1qn.

By our assumption on the sum over the Poincaré series, we know that c−f (n) = 0 for all

n < 0, and so f ∈M !
2−k(N). Namely, in terms of the Maass-Poincaré series Q(−m, k,N ; z)

in Section 8.3, we have that∑
m∈I

αm

mk−1
·Q+(−m, k,N ; z) ∈M !

2−k(N)

is the weakly holomorphic form that we desire.
Conversely, assume that f is such a weakly holomorphic modular form. From the

expansion for the coefficients of Q+(−m, k,N ; z) in Theorem 8.4, we find that

f̃ := −f +
1

Γ(k)
·
∑
m∈I

αm

mk−1
·Q(−m, k,N ; z) ∈ H2−k(N)

is a harmonic Maass form with trivial principal parts at every cusp. By Lemma 7.5,

it then follows that f̃ is in M !
2−k(N). Theorem 8.5 then implies that 0 = ξ2−k(f̃) =∑

m∈I αmP (m, k,N ; z). �

12.2. Algebraicity and the vanishing of Hecke eigenvalues. Despite the fact that
we have a fairly complete theory of algebraicity for forms in M !

k(N,χ), thanks to the
q-expansion principle, the theory of Eisenstein series and newforms, the question of alge-
braicity for harmonic Maass forms remains open. As we shall now see, these questions (in
the case of integer weight) are intimately related to the vanishing of eigenvalues of Hecke
operators.
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Remark 40. The algebraicity of the coefficients of half-integral weight harmonic Maass
forms is much more mysterious. For certain weight 1/2 forms, we shall relate algebraicity
to the vanishing of derivatives of quadratic twists of weight 2 modular L-functions (see
Section 15).

To make this precise, we shall restrict our attention to those f ∈ H2−k(N,χ) for which
ξ2−k(f) ∈ Sk(N,χ) is a Hecke eigenform. For reasons which will become apparent, we
shall concentrate on those forms for which

(12.1) ξ2−k(f) =
g

‖g‖2
,

where g is a normalized newform and ‖g‖ denotes its usual Petersson norm.
To illustrate the nature of our result, we consider two examples of Maass-Poincaré

series which are not weakly holomorphic modular forms. The Maass-Poincaré series f :=
1

11!
· Q(−1, 12, 1; z) ∈ H−10(1) satisfies (12.1) for g = ∆(z), the unique normalized weight

12 cusp form on the full modular group. The first few coefficients17 of its holomorphic part
are

1

11!
·Q+(−1, 12, 1; z) ∼ q−1 − 65520

691
− 1842.89472q − 23274.07545q2 − · · · .

There is little reason to believe that these coefficients are rational or algebraic. On the
other hand, we shall prove that the Maass-Poincaré series 1

3!
·Q(−1, 4, 9; z) ∈ H−2(9) has

the property that 1
3!
·Q+(−1, 4, 9; z) has rational coefficients. Its first few terms are

(12.2)
1

3!
·Q+(−1, 4, 9; z) = q−1 − 1

4
q2 +

49

125
q5 − 48

512
q8 − 771

1331
q11 + · · · ,

and f := 1
3!
·Q(−1, 4, 9; z) satisfies (12.1) for the unique normalized newform in S4(9).

Our next theorem explains the distinction between these two cases. To make this precise,
let g ∈ Sk(N,χ) be a normalized newform, and let Fg be the number field obtained by
adjoining the coefficients of g to Q.

Definition 12.3. Assuming the hypotheses above, we say that a harmonic Maass form
f ∈ H2−k(N,χ) is good for g if it satisfies the following properties:

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Remark 41. For every such g, there is an f which is good for g. Moreover, such an f is
unique up to a weakly holomorphic form in M !

2−k(N,χ) with coefficients in Fg. Such f
can be constructed explicitly using Poincaré series.

In joint work with Bruinier and Rhoades [68], the author has obtained the following
result which explains this phenomenon.

Theorem 12.4. Let g ∈ Sk(N,χ) be a normalized newform with complex multiplication
(see (12.6)). If f ∈ H2−k(N,χ) is good for g, then all coefficients of f+ are in Fg(ζM),
where ζM := e2πi/M and M = ND, where D is the discriminant of the field of complex
multiplication.

17This corrects a typographical error for the constant term in [68].
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Remark 42.
i) The rationality of Q+(−1, 4, 9; z) in (12.2) is an example of Theorem 12.4. In this case
Q(−1, 4, 9; z) is good for η(3z)8, the unique CM newform in S4(9).

ii) The field Fg in Theorem 12.4 is explicit, and is determined by Hecke characters.

iii) Let g ∈ Sk(N,χ) and f ∈ H2−k(N,χ) be as in Theorem 12.4. The proof of the theorem
implies that all of the coefficients of f+ belong to Fg(c

+
f (1)). In fact, the proof gives this

conclusion for any newform g, not just those with CM.

iv) In the examples we know, it turns out that the coefficients of f+ are actually contained
in Fg. It is natural to ask whether this is true in general.

The proof of Theorem 12.4 relies on the fact that some Hecke eigenvalues of g vanish.
A simple generalization of the proof of Theorem 12.4 can be used to detect the vanishing
of the Fourier coefficients of a newform.

Theorem 12.5. Suppose that g =
∑∞

n=1 cg(n)qn ∈ Sk(N,χ) is a normalized newform, and
suppose that f ∈ H2−k(N,χ) is good for g. If p - N is a prime for which cg(p) = 0, then
c+f (pn) is algebraic for every positive n coprime to p.

As in Remark 42 iv), it seems possible that the algebraic coefficients of f+ are always
in Fg. We address this in the next example when N = 1.

Example 12.6. Here we consider Lehmer’s Conjecture on the nonvanishing of Ramanu-
jan’s τ -function, where

∆(z) =
∞∑

n=1

τ(n)qn.

This example generalizes easily to all level 1 Hecke eigenforms.
Although Theorem 12.5 relates Lehmer’s Conjecture to the alleged transcendence of the

coefficients, say a∆(n), of 1
11!
· Q+(−1, 12, 1; z), it turns out that more is true. Lehmer’s

Conjecture is implied by the irrationality of these coefficients.
We make use of explicit formulas. Using the classical Eisenstein series E4 and E6, and

the classical j-function j(z), we define polynomials Jm(x) ∈ Z[x] by

(12.3)
∞∑

m=0

Jm(x)qm :=
E4(z)

2E6(z)

∆(z)
· 1

j(z)− x
= 1 + (x− 744)q + · · · .

For each m we then let jm(z) = Jm(j(z)). If p is prime, then define the modular functions

Ap(z) :=
24

B12

(1 + p11) + jp(z)− 264

p∑
m=1

σ9(m)jp−m(z),(12.4)

Bp(z) := −τ(p)
(
−264 +

24

B12

+ j1(z)

)
.(12.5)

Here B12 = − 691
2730

is the 12th Bernoulli number. Using the principal part of Q(−1, 12, 1; z)
combined with the fact that ∆(z) is an eigenform of the Hecke algebra, Theorem 7.10
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implies (also see [166]), for primes p, that
∞∑

n=−p

(
p11a∆(pn)− τ(p)a∆(n) + a∆(n/p)

)
qn =

Ap(z) +Bp(z)

E4(z)E6(z)
.

These weight −10 modular forms have integer coefficients. Now suppose that τ(p) = 0 for
a prime p. Then a∆(np) is rational for every n coprime to p.

Remark 43. Results similar to the example above have also been obtained recently by
Boylan and Guerzhoy [45, 109].

Here we prove Theorem 12.4 by combining facts about ξ2−k, with Hecke theory and the
theory of complex multiplication. We first begin with an important proposition.

Proposition 12.7. Let g =
∑∞

n=1 b(n)qn ∈ Sk(N,χ) be a normalized newform with integer
weight k ≥ 2, and let Fg be the number field obtained by adjoining the coefficients of g to
Q. Then there is a harmonic Maass form f ∈ H2−k(N,χ) which satisfies:

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Proof. Let H2−k,∞(N,χ) be the subspace of those f ∈ H2−k(N,χ) whose principal parts
at the cusps other than ∞ are constant. Note that

H2−k(N,χ) = H2−k,∞(N,χ) +M !
2−k(N,χ).

Arguing as in Section 3 of [63], the restriction of ξ2−k to H2−k,∞(N,χ) defines a surjective
map to Sk(N,χ). One now argues as in the proof of Lemma 7.3 of [67] using the pairing
{g, f} = (g, ξ2−k(f)), where f ∈ H2−k,∞(N,χ) and g ∈ Sk(N,χ). �

Remark 44. The harmonic Maass form f satisfying (i)–(iii) is unique up to the addition
of a weakly holomorphic form in M !

2−k(N,χ) with coefficients in Fg and a pole possibly at
infinity and constant principal part at all other cusps.

For completeness, here we briefly recall the notion of a newform with complex multipli-
cation (for example, see Chapter 12 of [125] or Section 1.2 of [164]). Let D < 0 be the

fundamental discriminant of an imaginary quadratic field K = Q(
√
D). Let OK be the

ring of integers of K, and let χK :=
(

D
•

)
be the usual Kronecker character associated to

K. Let k ≥ 2, and let c be a Hecke character of K with exponent k − 1 and conductor fc,
a non-zero ideal of OK . By definition, this means that

c : I(fc) −→ C×

is a homomorphism, where I(fc) denotes the group of fractional ideals of K prime to fc,
and

c(αOK) = αk−1

for α ∈ K× for which α ≡ 1 mod×fc. To c we naturally associate a Dirichlet character ωc

defined, for every integer n coprime to fc, by

ωc(n) :=
c(nOK)

nk−1
.
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We then let

(12.6) ΦK,c(z) :=
∑

a

c(a)qN(a),

where a varies over the ideals of OK prime to fc, and where N(a) is the usual ideal norm.
It is well known that ΦK,c(z) ∈ Sk(|D| ·N(fc), χK ·ωc) is a normalized newform. These are
newforms with complex multiplication. By construction, if we let

ΦK,c(z) =
∞∑

n=1

b(n)qn,

then

(12.7) b(n) = 0 whenever χK(n) = −1.

This follows since every prime p for which χK(p) = −1 is inert.

Proof of Theorem 12.4. Suppose that f is good for a CM form g =
∑∞

n=1 b(n)qn, and
let D = Dg be the fundamental discriminant of the associated imaginary quadratic field

K = Q(
√
D). By Lemma 7.4, we then have that

ξ2−k(f) = ‖g‖−2g = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Since g has complex multiplication, (12.7) implies that c−f (n) = 0 when χK(−n) = −1.
Because D < 0, this means that

c−f (n) = 0 when χK(n) = 1.(12.8)

Let M = ND. We write χ0 for the trivial character modulo |D|. Since D | N , a simple
generalization of standard facts about twists of modular forms implies that

u := f ⊗ χ0 + f ⊗ χK

is in H2−k(M,χ). The Fourier expansion of u = u+ + u− is given by

u+(z) = 2
∑

n�−∞
χK(n)=1

c+f (n)qn,

u−(z) = 2
∑
n<0

χK(n)=1

c−f (n)Γ(k − 1, 4π|n|y)qn.

The non-holomorphic part u− vanishes, and so u is a weakly holomorphic modular form.
We now claim that for any integer b, f(z + b/D) has principal parts at all cusps in

Fg(ζM)[q−1]. To see this, we let γ ∈ Γ(1) and consider the cusp γ∞. There exists a
γ̃ ∈ Γ(1) and α, β, δ ∈ Z such that(

D b
0 D

)
γ = γ̃

(
α β
0 δ

)
.



64 KEN ONO

Hence, the Fourier expansion of f(z + b/D) at the cusp γ∞ is given by

f | γ̃ |
(
α β
0 δ

)
.

By the assumption of f , it is holomorphic at the cusp ∞, unless γ̃ ∈ Γ0(N), in which case
it is equal to

f |
(
α β
0 δ

)
.

Since δ | D2 |M , the principal part at ∞ of this modular form is contained in Fg(ζM)[q−1],
proving the claim. This implies that the twists f ⊗ χ0, f ⊗ χD, have principal parts at all
cusps in Fg(ζM)[q−1]. Therefore, the same is true for u.

The action of Aut(C/Q(ζN)) commutes with the action of SL2(Z) on modular functions
for Γ(N) (for example, see Theorem 6.6 in Chapter 6.2 and the diagram before Remark
6.7 in Shimura’s book [193]). Using the action of Aut(C/Fg(ζM)) on weakly holomorphic
modular forms, we see that uσ has the same properties for any σ ∈ Aut(C/Fg(ζM)).
Moreover, uσ has the same principal parts as u at all cusps. Hence the difference u−uσ is
a holomorphic modular form which vanishes at the cusp ∞. Since 2− k ≤ 0, this implies
that u = uσ. Consequently, u is defined over Fg(ζM). So for all n ∈ Z with χK(n) = 1, we
have that c+f (n) ∈ Fg(ζM). In particular, c+f (1) ∈ Fg(ζM).

We now use the Hecke action on f and g. By Theorem 7.10, we have that

f |2−k T (m) = m1−kb(m)f + f ′,

where f ′ ∈ M !
2−k(Γ0(N), χ) is a weakly holomorphic form with coefficients in Fg. In view

of the formula for the action of the Hecke operators on the Fourier expansion, we obtain
for any prime p that

c+f (pn) + χ(p)p1−kc+f (n/p) = p1−kb(p)c+f (n) + c+f ′(n),

where c+f ′(n) ∈ Fg. Hence an inductive argument shows that all coefficients c+f (n) are

contained in the extension Fg(c
+
f (1)). This concludes the proof of the theorem since we

have already established that c+f (1) is in Fg(ζM). �

The proof of Theorem 12.5 is similar to the proof of Theorem 12.4, and so we only give
a brief indication of how the proof must be modified.

Sketch proof of Theorem 12.5. If p - N is a prime, then for every positive integer m we
have that

cg(p)cg(p
m) = cg(p

m+1) + χ(p)pk−1cg(p
m−1).

Therefore, if p - N is a prime for which cg(p) = 0, then we have that

cg(p
m+1) = −χ(p)pk−1cg(p

m−1),

which in turn implies that

cg(p
m) =


(
−χ(p)pk−1

)m
2

if m is even,

0 otherwise.
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A standard argument gives a harmonic Maass form whose Fourier coefficients are sup-
ported on terms whose exponents n have the property that p exactly divides n. By the
multiplicativity of the Fourier coefficients of newforms, it then follows by the observation
above that the non-holomorphic part of this form is identically zero. In other words,
this particular harmonic Maass form is a weakly holomorphic modular form with suit-
able principal parts at cusps. The proof now follows mutatis mutandis as in the proof of
Theorem 12.4. �

13. Generating functions for singular moduli

Let j(z) be the usual modular function for SL2(Z)

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · · .

The values of modular functions such as j(z) at imaginary quadratic arguments in H are
known as singular moduli. Singular moduli are algebraic integers which play many roles
in number theory. For example, they generate class fields of imaginary quadratic fields,
and they parameterize isomorphism classes of elliptic curves with complex multiplication.

In an important paper, Zagier [212] proved that the traces of these numbers are Fourier
coefficients of certain weight 3/2 modular forms. To illustrate his results, we begin by
comparing the classical evaluations

j
(
−1+

√
−3

2

)
− 744

3
= −248,

j(i)− 744

2
= 492, j

(
1 +

√
−7

2

)
− 744 = −4119,

with the Fourier coefficients of the modular form

g(z) := −η(z)
2 · E4(4z)

η(2z)η(4z)6
= −q−1 + 2− 248q3 + 492q4 − 4119q7 + 7256q8 − · · · .(13.1)

The appearance of singular moduli as the initial coefficients of the modular form g(z) is
not a coincidence.

We now make this more precise. For integers λ, let M!
λ+ 1

2

(4) be the space of weight

λ + 1
2

weakly holomorphic modular forms on Γ0(4) satisfying the “Kohnen plus-space”
condition. A form satisfies this condition if its q-expansion has the form

(13.2)
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

Throughout let d ≡ 0, 3 (mod 4) be a positive integer, let H(d) be the Hurwitz-
Kronecker class number for the discriminant −d, and let Qd be the set of positive definite
integral binary quadratic forms (note. including imprimitive forms)

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant DQ = −d = b2 − 4ac. For each Q, let τQ be the unique root in H of
Q(x, 1) = 0. The singular modulus f(τQ), for any modular invariant f(z), depends only
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on the equivalence class of Q under the action of Γ := PSL2(Z). If ωQ ∈ {1, 2, 3} is given
by

(13.3) ωQ :=


2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise,

then, for a modular invariant f(z), define the trace Tr(f ; d) by

(13.4) Tr(f ; d) :=
∑

Q∈Qd/Γ

f(τQ)

ωQ

.

Theorems 1 and 5 of Zagier’s paper [212] imply the following theorem.

Theorem 13.1. If f(z) ∈ Z[j(z)] has a Fourier expansion with constant term 0, then
there is a finite principal part Af (z) =

∑
n≤0 af (n)qn for which

Af (z) +
∑

0<d≡0,3 (mod 4)

Tr(f ; d)qd ∈M!
3
2
(4).

Remark 45. The earlier claim in (13.1) is the f(z) = j(z)− 744 case of this theorem.

Remark 46. Zagier’s paper [212] includes many generalizations of this theorem. One of his
results proves that the generating functions of the traces of jm(z) := m (j(z)− 744) |T (m)
are also explicit weight 3/2 weakly holomorphic modular forms. This result is of par-
ticular significance because it reduces the computation of Hilbert class polynomials to a
straightforward calculation.

13.1. Further generating functions for traces of singular moduli. Zagier’s work has
inspired an enormous number of works [54, 58, 64, 65, 77, 78, 87, 88, 89, 95, 127, 128, 154]
by the author, Bringmann, Bruinier, D. Choi, W. Duke, A. Folsom, J. Funke, O. Imamoḡlu,
P. Jenkins, D. Jeon, S.-Y. Kang, C. Kim, R. Masri, A. Miller, A. Pixton, J. Rouse, and
A. Toth. These papers give theorems related to the phenomenon that the coefficients of
modular forms and harmonic Maass forms are often the “traces” of some sort of singular
moduli. For brevity, here we discuss one construction which is based on Maass-Poincaré
series.

For fundamental discriminants D1, let χD1 denote the associated genus character for
positive definite binary quadratic forms whose discriminants are multiples of D1. If λ is an
integer and D2 is a non-zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and (−1)λD1D2 <
0, then define the twisted trace of a modular invariant f(z), say TrD1(f ;D2), by

(13.5) TrD1(f ;D2) :=
∑

Q∈Q|D1D2|/Γ

χD1(Q)f(τQ)

ωQ

.

Many of the works mentioned above prove that such traces are often coefficients of Maass
forms and weakly holomorphic modular forms. Here we give one illustrative example of this
phenomenon using some of the Poincaré series constructed in Section 8.3. For convenience,
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we briefly recall their construction. Let k := λ + 1
2
, where λ is an arbitrary integer, and

let Mν, µ(z) be the usual M -Whittaker function. For s ∈ C and y ∈ R− {0}, we define

Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|).

Suppose that m ≥ 1 is an integer with (−1)λ+1m ≡ 0, 1 (mod 4). As before, let

ϕ−m,s(z) := Ms(−4πmy)e(−mx),

where z = x + iy and e(w) := e2πiw, and let Γ∞ denote the translations in SL2(Z). With
this notation, define the Poincaré series

(13.6) Fλ(−m, s; z) :=
∑

A∈Γ∞\Γ0(4)

(ϕ−m,s |k A)(z)

for Re(s) > 1. Here |k denotes the usual half-integral weight k “slash operator”. If prλ

is Kohnen’s projection operator (see page 250 of [136]) to the weight λ+ 1
2

plus-space for
Γ0(4), then for λ 6∈ {0, 1} define Fλ(−m; z) by

(13.7) Fλ(−m; z) :=

{
3
2
Fλ

(
−m, k

2
; z
)
| prλ if λ ≥ 2,

3
2(1−k)Γ(1−k)

Fλ

(
−m, 1− k

2
; z
)
| prλ if λ ≤ −1.

Remark 47. For λ = 0 or 1 we also have series Fλ(−m; z). Their construction requires
more care due to questions of convergence (see [54, 65]).

Arguing as in Section 8.3, if λ ≥ −6 with λ 6= −5, then Fλ(−m; z) ∈ M!
λ+ 1

2

(4). For

such λ, we denote the corresponding Fourier expansions by

(13.8) Fλ(−m; z) = q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m;n)qn ∈M!
λ+ 1

2
(4).

For other λ, namely λ = −5 or λ ≤ −7, it turns out that the Fλ(−m; z) are Maass forms
in Hλ+ 1

2
(4). We denote their expansions by

(13.9) Fλ(−m; z) = Bλ(−m; z) + q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m;n)qn,

where Bλ(−m; z) is the “non-holomorphic” part of Fλ(−m; z).

Example 13.2. If λ = 1 and −m = −1, then we find the form in (13.1)

−F1(−1; z) = g(z) = −q−1 + 2− 248q3 + 492q4 − 4119q7 + 7256q8 − · · · .

Generalizing Zagier’s results, we have that the coefficients bλ(−m;n) of the Fλ(−m; z)
are traces of singular moduli for functions defined by Niebur [160]. If Is(x) denotes the
usual I-Bessel function, and if λ > 1, then let

(13.10) Fλ(z) := π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Iλ− 1

2
(2πIm(Az))e(−Re(Az)).
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For λ = 1, a similar construction holds. Indeed, Niebur [160] showed that F1(z) = 1
2
(j(z)−

744), where this function is the analytic continuation, as s→ 1+, of

−12 + π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Is− 1

2
(2πIm(Az))e(−Re(Az)).

We then have the following theorem.

Theorem 13.3. (Bringmann and Ono; Theorem 1.2 of [54])
If λ,m ≥ 1 are integers for which (−1)λ+1m is a fundamental discriminant (note. which
includes 1), then for each positive integer n with (−1)λn ≡ 0, 1 (mod 4) we have

bλ(−m;n) =
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· Tr(−1)λ+1m (Fλ;n) .

Remark 48. A version of Theorem 13.3 holds for integers λ ≤ 0. This follows from a
duality (see Theorem 1.1 of [54]) of Fourier expansions. Suppose that λ ≥ 1, and that m
is a positive integer for which (−1)λ+1m ≡ 0, 1 (mod 4). For every positive integer n with
(−1)λn ≡ 0, 1 (mod 4), this duality implies that

bλ(−m;n) = −b1−λ(−n;m).

Example 13.4. For λ = 1, Theorem 13.3 relates b1(−m;n) to traces and twisted traces
of F1(z) = 1

2
(j(z)− 744). These are Theorems 1 and 6 of Zagier’s paper [212].

Theorem 13.3 is obtained by reformulating, as traces of singular moduli, exact expres-
sions for the coefficients bλ(−m;n). The proof follows from the classical fact that certain
half-integral weight Kloosterman sums are essentially Salié sums. To define these sums,
suppose that 0 6= D1 ≡ 0, 1 (mod 4). If λ is an integer, D2 6= 0 is an integer for which
(−1)λD2 ≡ 0, 1 (mod 4), and N is a positive multiple of 4, then define the generalized
Salié sum Sλ(D1, D2, N) by

(13.11) Sλ(D1, D2, N) :=
∑

x (mod N)

x2≡(−1)λD1D2 (mod N)

χD1

(
N

4
, x,

x2 − (−1)λD1D2

N

)
e

(
2x

N

)
,

where χD1(a, b, c), for a binary quadratic form Q = [a, b, c], is given by
(13.12)

χD1(a, b, c) :=

{
0 if (a, b, c,D1) > 1,(

D1

r

)
if (a, b, c,D1) = 1 and Q represents r with (r,D1) = 1.

Remark 49. If D1 = 1, then χD1 is trivial. Therefore, if (−1)λD2 ≡ 0, 1 (mod 4), then

Sλ(1, D2, N) =
∑

x (mod N)

x2≡(−1)λD2 (mod N)

e

(
2x

N

)
.

Half-integral weight Kloosterman sums are essentially equal to such Salié sums, a fact
which plays a fundamental role throughout the theory of half-integral weight modular
forms. The following proposition is due to Kohnen (see Proposition 5 of [136]).
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Proposition 13.5. Suppose that N is a positive multiple of 4. If λ is an integer, and D1

and D2 are non-zero integers for which D1, (−1)λD2 ≡ 0, 1 (mod 4), then

N− 1
2 (1− (−1)λi)(1 + δodd(N/4)) ·Kλ((−1)λD1, D2, N) = Sλ(D1, D2, N).

As a consequence, we may rewrite the formulas for the bλ(−m;n) using Salié sums. The
following proposition describes these Salié sums as Poincaré-type series over CM points.

Proposition 13.6. Suppose that λ is an integer, and that D1 is a fundamental discrimi-
nant. If D2 is a non-zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and (−1)λD1D2 < 0,
then for every positive integer a we have

Sλ(D1, D2, 4a) = 2
∑

Q∈Q|D1D2|/Γ

χD1(Q)

ωQ

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=

√
|D1D2|

2a

e (−Re (AτQ)) .

Proof. For every integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2

of discriminant (−1)λD1D2, let τQ ∈ H be as before. Clearly τQ is equal to

τQ =
−b+ i

√
|D1D2|

2a
,(13.13)

and the coefficient b of Q solves the congruence

(13.14) b2 ≡ (−1)λD1D2 (mod 4a).

Conversely, every solution of (13.14) corresponds to a quadratic form with an associated
CM point thereby providing a one-to-one correspondence between the solutions of

b2 − 4ac = (−1)λD1D2 (a, b, c ∈ Z, a, c > 0)

and the points of the orbits ⋃
Q

{
AτQ : A ∈ SL2(Z)/ΓτQ

}
,

where ΓτQ
denotes the isotropy subgroup of τQ in SL2(Z), and where Q varies over the

representatives of Q|D1D2|/Γ. The group Γ∞ preserves the imaginary part of such a CM
point τQ, and preserves (13.14). However, it does not preserve the middle coefficient
b of the corresponding quadratic forms modulo 4a. It identifies the congruence classes
b, b + 2a (mod 4a) appearing in the definition of Sλ(D1, D2, 4a). Since χD1(Q) is fixed
under the action of Γ∞, the corresponding summands for such pairs of congruence classes
are equal. Proposition 13.6 follows since #ΓτQ

= 2ωQ, and since both ΓτQ
and Γ∞ contain

the negative identity matrix. �
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Sketch of the proof of Theorem 13.3. Here we prove the cases where λ ≥ 2. The argument
when λ = 1 is identical. For λ ≥ 2, the exact formula for bλ(−m;n) is

bλ(−m;n) = (−1)[(λ+1)/2]π
√

2(n/m)
λ
2
− 1

4 (1− (−1)λi)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m,n, c)

c
· Iλ− 1

2

(
4π
√
mn

c

)
.

Using Proposition 13.5, where D1 = (−1)λ+1m and D2 = n, for integers N = c which are
positive multiples of 4, we have

c−
1
2 (1− (−1)λi)(1 + δodd(c/4)) ·Kλ(−m,n, c) = Sλ((−1)λ+1m,n, c).

These identities, combined with the change of variable c = 4a, give

bλ(−m;n) =
(−1)[(λ+1)/2]π√

2
(n/m)

λ
2
− 1

4

∞∑
a=1

Sλ((−1)λ+1m,n, 4a)√
a

· Iλ− 1
2

(
π
√
mn

a

)
.

Using Proposition 13.6, this becomes

bλ(−m;n) =
2(−1)[(λ+1)/2]π√

2
(n/m)

λ
2
− 1

4

∑
Q∈Qnm/Γ

χ(−1)λ+1m(Q)

ωQ

∞∑
a=1

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=
√

mn
2a

Iλ− 1
2
(2πIm(AτQ))
√
a

· e(−Re(AτQ)).

The definition of Fλ(z) in (13.10), combined with the obvious change of variable relating

1/
√
a to Im(AτQ)

1
2 , gives

bλ(−m;n) =
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· π
∑

Q∈Qnm/Γ

χ(−1)λ+1m(Q)

ωQ∑
A∈Γ∞\SL2(Z)

Im(AτQ)
1
2 · Iλ− 1

2
(2πIm(AτQ))e(−Re(AτQ))

=
2(−1)[(λ+1)/2]n

λ
2
− 1

2

m
λ
2

· Tr(−1)λ+1m(Fλ;n).

�

13.2. The “24-Theorem”. Exact formulas for traces of singular moduli can lead to nice
number theoretic consequences. Here we mention one such application which is related to
the classical observation that

(13.15) eπ
√

163 = 262537412640768743.9999999999992 . . .

is nearly an integer. To make this precise, we recall some classical facts. A primitive
positive definite binary quadratic form Q is reduced if |B| ≤ A ≤ C, and B ≥ 0 if either
|B| = A or A = C. If −d < −4 is a fundamental discriminant, then there are H(d) reduced
forms with discriminant −d. The set of such reduced forms, say Qred

d , is a complete set
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of representatives for Qd/SL2(Z). Moreover, each such reduced form has 1 ≤ A ≤
√
d/3

(see page 29 of [82]), and has the property that τQ lies in the usual fundamental domain
for the action of SL2(Z)

(13.16) F =

{
−1

2
≤ Re(z) <

1

2
and |z| > 1

}
∪
{
−1

2
≤ Re(z) ≤ 0 and |z| = 1

}
.

Since J1(z) := j(z)− 744 = q−1 + 196884q + · · · , it follows that if Gred(d) is defined by

(13.17) Gred(d) =
∑

Q=(A,B,C)∈Qred
d

eπBi/A · eπ
√

d/A,

then Tr(d) − Gred(d) is “small”, where Tr(d) := Tr(J1; d). In other words, q−1 provides
a good approximation for J1(z) for most points z. This is illustrated by (13.15) where
H(163) = 1.

It is natural to investigate the “average value”

Tr(d)−Gred(d)

H(d)
,

which for d = 163 is −0.0000000000008 . . . . Armed with the exact formulas for Tr(d), it
turns out that a uniform picture emerges for a slightly perturbed average, one including
some non-reduced quadratic forms. For each positive integer A, let Qold

A,d denote the set

(13.18) Qold
A,d = {Q = (A,B,C) : non-reduced with DQ = −d and |B| ≤ A}.

Define Gold(d) by

(13.19) Gold(d) =
∑

√
d/2≤A≤

√
d/3

Q∈Qold
A,d

eπBi/A · eπ
√

d/A.

The non-reduced forms Q contributing to Gold(d) are those primitive discriminant −d
forms for which τQ is in the bounded region obtained by connecting the two endpoints of
the lower boundary of F with a horizontal line. Since Tr(d) is subexponential in |d| and

H(d) � |d| 12+ε, the following numerics are quite surprising:

Tr(d)−Gred(d)−Gold(d)

H(d)
=


−24.672 . . . if d = 1931,

−24.483 . . . if d = 2028,

−23.458 . . . if d = 2111.

Recently, Duke has proved [87] a result which implies the following theorem.

Theorem 13.7. As −d ranges over negative fundamental discriminants, we have

lim
−d→−∞

Tr(d)−Gred(d)−Gold(d)

H(d)
= −24.

Here we explain the source of −24 in the limit

(13.20) lim
−d→−∞

Tr(d)−Gred(d)−Gold(d)

H(d)
= −24.
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Using Theorem 13.3 and Propositions 13.5 and 13.6, it is not difficult to reformulate the
exact formulas for Tr(d) to read

Tr(d) = −24H(d) +
∑
c>0

c≡0 (4)

S(d, c) sinh(4π
√
d/c),

where S(d, c) is the Salié sum

S(d, c) =
∑

x2≡−d (mod c)

e(2x/c).

As a consequence, the “24 Theorem” is equivalent to the assertion that∑
c>
√

d/3

c≡0 (4)

S(d, c) sinh

(
4π

c

√
d

)
= o (H(d)) .

This follows from the fact the sum over c ≤
√
d/3 is essentially Gred(d)+Gold(d). The sinh

factor contributes the size of q−1 in the Fourier expansion of a singular modulus, and the
summands in the Kloosterman sum provide the corresponding “angles”. The contribution
Gold(d) arises from the fact that the Kloosterman sum cannot distinguish between reduced

and non-reduced forms. In view of Siegel’s theorem that H(d) �ε d
1
2
−ε, (13.20) follows

from a bound for such sums of the form � d
1
2
−γ, for some γ > 0. Such bounds are implicit

in Duke’s proof of this result [87], and more generally in his famous work on bounding
coefficients of half-integral weight cusp forms [86].

14. Borcherds Products

Here we describe work of the author and Bruinier [67] on Borcherds products. To
describe the context of this work, we first recall a famous result of Borcherds on infinite
product expansions of modular forms possessing a Heegner divisor.

14.1. The “classical” Borcherds products. We begin by recalling that ∆(z), the
unique normalized weight 12 cusp form with respect to SL2(Z), has a Fourier expansion
given by the infinite product

(14.1) ∆(z) = q

∞∏
n=1

(1− qn)24.

Most modular forms do not possess simple infinite product expansions. It was widely
believed that such elegant product expansions only belong to the domain of those modular
forms whose divisors are supported at cusps, such as the modular units (for example, see
[139]).

Then in the 1990s, Borcherds [42, 43, 44] provided a striking description for the expo-
nents in the naive infinite product expansions of a much larger class of modular forms,
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those modular forms possessing a Heegner divisor. For example, let c(n) denote the integer
exponents one obtains by expressing E4(z) as an infinite product:

(14.2) E4(z) = 1 + 240
∞∑

n=1

∑
d|n

d3qn = (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n).

Borcherds’s theory implies that there is a weight 1/2 meromorphic modular form

G(z) =
∑
n≥−3

b(n)qn = q−3 + 4− 240q + 26760q4 + · · · − 4096240q9 + . . .

with the property that c(n) = b(n2) for every positive integer n. Notice that the product
in (14.1) also satisfies this phenomenon, where the product exponents are the coefficients
of the weight 1/2 modular form

12Θ0(z) = 12
∑
n∈Z

qn2

= 12 + 24q + 24q4 + 24q9 + · · · .

These two examples illustrate his general result that a modular form on SL2(Z) with a
Heegner divisor has an infinite product expansion where the exponents are coefficients of
certain weight 1/2 weakly holomorphic modular forms.

Remark 50. The work of Borcherds [42, 43, 44] is given in the more general context of
automorphic forms on orthogonal groups.

Remark 51. It is possible to derive explicit formulas for the exponents in the infinite
product expansions of generic modular forms, not just those with a Heegner divisor (for
example, see [66]). However, these formulas are in general quite complicated.

We now briefly recall the most classical case of this work of Borcherds. We shall refer
to a complex number τ ∈ H of the form

τ =
−b+

√
b2 − 4ac

2a

with a, b, c ∈ Z, gcd(a, b, c) = 1, and b2 − 4ac < 0 as a CM point, and we denote its
discriminant by the integer dτ := b2 − 4ac. A meromorphic modular form f(z) on SL2(Z)
is said to have a Heegner divisor if its zeros and poles are supported at the cusp at infinity
and at CM points.

To state Borcherds’s results, we require a special sequence of weight 1/2 modular forms
in M!

1
2

(4). These forms will be distinguished by their q-expansions. For each nonnegative

integer d ≡ 0, 3 (mod 4) let fd(z) ∈ M!
1
2

(4) be the unique modular form with a Fourier

expansion of the form

fd(z) = q−d +
∑
D>0

A(D, d)qD.

That these forms are well defined follows from Lemma 14.2 of [43]. Moreover, they form
a basis of M!

1
2

(4).

The form f0(z) is the classical Jacobi theta-function

(14.3) f0(z) = Θ0(z) = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · ,



74 KEN ONO

and the form f3(z) is given by the expression

f3(z) =
D(Θ0(z))E10(4z)

2∆(4z)
− Θ0(z) (D(E10(z))|V (4))

10∆(4z)
− 152

5
Θ0(z)

= q−3 − 248q + 26752q4 − 85995q5 + · · · ,
(14.4)

where D := q · d
dq

.

Remark 52. It is straightforward to inductively compute the fd(z) using f0(z) and f3(z).
To compute fd(z) for d ≥ 4, one computes fd−4(z)j(4z), and then iteratively subtracts
multiples of those fj(z) with 0 ≤ j ≤ d− 4.

For completeness, we include the initial terms of the first few fd(z) below.

f0(z) = 1 + 2q + 2q4 + 2q9 + · · · ,
f3(z) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9 + · · · ,
f4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 + · · · ,
f7(z) = q−7 − 4119q + 8288256q4 − 52756480q5 + · · · ,
f8(z) = q−8 + 7256q + 26124256q4 + 190356480q5 + · · · .

(14.5)

Using these forms, we may now state Borcherds’s famous theorem on the infinite product
expansion of those meromorphic forms on SL2(Z) possessing a Heegner divisor. Let MH

denote the set of integer weight meromorphic modular forms on SL2(Z) with a Heegner
divisor, integer coefficients, and leading coefficient 1. Obviously, MH is closed under
multiplication.

If H(−n) denotes the usual Hurwitz class number of discriminant −n, then define H̃(z)
by

H̃(z) : = − 1

12
+

∑
1<n≡0,3 (mod 4)

H(−n)qn

= − 1

12
+ q3/3 + q4/2 + q7 + q8 + q11 + 4q12/3 + · · · .

(14.6)

If f(z) =
∑

n≥n0
A(n)qn ∈M!

1
2

(4), then define Ψ(f(z)) by

(14.7) Ψ(f(z)) := q−h

∞∏
n=1

(1− qn)A(n2),

where h is the constant term of f(z)H̃(z). Borcherds [42] proved the following theorem.

Theorem 14.1. The map Ψ satisfies

Ψ : M!
1
2
(4) −→MH .

Furthermore, it is an isomorphism. The weight of Ψ(f) is A(0), and the multiplicity of
the zero of Ψ(f) at a CM point of discriminant D < 0 is∑

n>0

A(Dn2).
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Remark 53. The isomorphism Ψ respects the additive structure of M!
1
2

(4) and the multi-

plicative structure of MH .

Example 14.2. If f(z) = 12f0(z) = 12Θ0(z), then

f(z) =
∞∑

n=0

A(n)qn = 12 + 24q + 24q4 + 24q9 + 24q16 + · · · .

Therefore, it follows that

Ψ(f(z)) = q

∞∏
n=1

(1− qn)24.

Obviously, Ψ(f(z)) is the classical ∆-function. Its weight is A(0) = 12, and its divisor is
supported at the cusp at infinity.

Example 14.3. If f(z) = 3f3(z), then

f(z) =
∞∑

n=−3

A(n)qn = 3q−3− 744q+ 80256q4− 257985q5 + 5121792q8− 12288744q9 + · · · .

By Theorem 14.1, it follows that Ψ(f(z)) is a weight A(0) = 0 meromorphic modular form
whose divisor is supported at the cusp at infinity and a triple zero at ω = e2πi/3. Therefore,
it follows that Ψ(f(z)) must be j(z), and this is confirmed by

Ψ(f(z)) = q−1(1− q)−744(1− q2)80256(1− q3)−12288744 · · ·
= q−1 + 744 + 196884q + 21493760q3 + · · · .

Example 14.4. If f(z) = 4f0(z) + f3(z), then

f(z) =
∞∑

n=−3

A(n)qn = q−3 + 4− 240q + 26760q4 − 85995q5 + · · · − 4096240q9 + · · · .

Theorem 14.1 implies that Ψ(f(z)) is a holomorphic modular form of weight 4 with leading
coefficient 1. Therefore, it must be that Ψ(f(z)) = E4(z). This explains (14.2).

14.2. Harmonic Maass forms and Generalized Borcherds products. Motivated
by questions related to derivatives of modular L-functions, the author and Bruinier [67]
derived Borcherds-type products using harmonic Maass forms. These results are quite
technical, and a thorough treatment would occupy more space than is warranted in this
expository paper. For brevity, we will be content with a brief indication of the flavor of
these results, followed by two illustrative examples.

These results are phrased in terms of vector-valued weight 1/2 harmonic Maass forms.
Let (V,Q) be a non-degenerate rational quadratic space of signature (b+, b−), and let
L ⊂ V be an even lattice with dual L′. The discriminant group L′/L, together with the
Q/Z-valued quadratic form induced by Q, is called the discriminant form of the lattice L.

As usual, we let Mp2(R) denote the metaplectic two-fold cover of SL2(R). The elements
of this group are pairs (M,φ(τ)), where M = ( a b

c d ) ∈ SL2(R) and φ : H → C is a
holomorphic function with φ(τ)2 = cτ + d. The group law is defined by

(M,φ(τ))(M ′, φ′(τ)) = (MM ′, φ(M ′τ)φ′(τ)).
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We denote the integral metaplectic group, the inverse image of Γ := SL2(Z) under the

covering map, by Γ̃ := Mp2(Z). It is well known that Γ̃ is generated by T := (( 1 1
0 1 ) , 1),

and S := (( 0 −1
1 0 ) ,

√
τ). One has the relations S2 = (ST )3 = Z, where Z :=

(( −1 0
0 −1

)
, i
)

is the standard generator of the center of Γ̃. We let Γ̃∞ := 〈T 〉 ⊂ Γ̃.
We now recall the Weil representation associated with the discriminant form L′/L (for

example, see [43], [62]). It is a representation of Γ̃ on the group algebra C[L′/L]. We
denote the standard basis elements of C[L′/L] by eh, h ∈ L′/L, and write 〈·, ·〉 for the
standard scalar product (antilinear in the second entry) such that 〈eh, eh′〉 = δh,h′ . The Weil
representation ρL associated with the discriminant form L′/L is the unitary representation

of Γ̃ on C[L′/L] defined by

ρL(T )(eh) := e(h2/2)eh,(14.8)

ρL(S)(eh) :=
e((b− − b+)/8)√

|L′/L|

∑
h′∈L′/L

e(−(h, h′))eh′ .(14.9)

If f : H → C[L′/L] is a function, we write f =
∑

λ∈L′/L fheh for its decomposition in

components with respect to the standard basis of C[L′/L]. Let k ∈ 1
2
Z, and let M !

k,ρL

denote the space of C[L′/L]-valued weakly holomorphic modular forms of weight k and

type ρL for the group Γ̃.
Now assume that k ≤ 1. A twice continuously differentiable function f : H → C[L′/L]

is called a vector-valued harmonic Maass form of weight k with respect to Γ̃ and ρL if it
satisfies:

(i) f (Mτ) = φ(τ)2kρL(M,φ)f(τ) for all (M,φ) ∈ Γ̃;
(ii) ∆kf = 0;
(iii) We have that

f(τ) = Pf (τ) +O(e−εv),

as v →∞, for some Fourier polynomial

Pf (τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)
−∞�n≤0

c+(n, h)e(nτ)eh

and some ε > 0.

We write Hk,ρL
for the vector space of such harmonic Maass forms.

Generalizing Lemma 7.2, where the modular variable is now τ = u + iv, we have that
any f ∈ Hk,ρL

decomposes as f = f+ + f−, where

f+(τ) =
∑

h∈L′/L

∑
n∈Q

n�−∞

c+(n, h)e(nτ)eh,(14.10a)

f−(τ) =
∑

h∈L′/L

∑
n∈Q
n<0

c−(n, h)W (2πnv)e(nτ)eh,(14.10b)

and W (x) = Wk(x) :=
∫∞
−2x

e−tt−k dt = Γ(1− k, 2|x|) for x < 0.
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In [67], the theory of theta liftings is applied to such harmonic Maass forms to obtain
Borcherds products with twisted Heegner divisors on X0(N). To this end, let N be a
positive integer. We consider the rational quadratic space

V := {X ∈ Mat2(Q) : tr(X) = 0}(14.11)

with the quadratic form Q(X) := −N det(X). We let L be the lattice

L :=

{(
b −a/N
c −b

)
: a, b, c ∈ Z

}
.(14.12)

Then the dual lattice is given by

L′ :=

{(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z

}
.(14.13)

We identify L′/L with Z/2NZ. Here the quadratic form on L′/L is identified with the
quadratic form x 7→ x2 on Z/2NZ.

If D ∈ Z, let LD be the set of vectors X ∈ L′ with Q(X) = D/4N . Notice that LD is
empty unless D is a square modulo 4N . For r ∈ L′/L with r2 ≡ D (mod 4N) we define

LD,r := {X ∈ L′ : Q(X) = D/4N and X ≡ r (mod L)}.

If X =
(

b/2N −a/N
c −b/2N

)
∈ LD,r, then the matrix

(14.14) ψ(X) :=

(
a b/2
b/2 Nc

)
= X

(
0 N
−N 0

)
defines an integral binary quadratic form of discriminant D = b2− 4Nac = 4NQ(X) with
b ≡ r (mod 2N). We have that Γ0(N) acts on LD,r, and the number of orbits of LD,r is
finite if D 6= 0.

Let ∆ ∈ Z be a fundamental discriminant and r ∈ Z such that ∆ ≡ r2 (mod 4N).

Following [107], we define a generalized genus character for λ =
(

b/2N −a/N
c −b/2N

)
∈ L′ by

putting

χ∆(λ) = χ∆([a, b,Nc]) :=


(

∆
n

)
, if ∆ | b2 − 4Nac and (b2 − 4Nac)/∆ is a

square modulo 4N and gcd(a, b, c,∆) = 1,

0, otherwise.

Here [a, b,Nc] is the integral binary quadratic form corresponding to λ, and n is any integer
prime to ∆ represented by one of the quadratic forms [N1a, b,N2c] with N1N2 = N and
N1, N2 > 0.

The cusps of Γ0(N) correspond to Γ0(N)-classes of primitive isotropic vectors in L. Here
we let `, `′ ∈ L be the isotropic vectors

` =

(
0 1/N
0 0

)
, `′ =

(
0 0
1 0

)
.

The 1-dimensional lattice

K = L ∩ `′⊥ ∩ `⊥
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is positive definite. We find that L splits into

L = K ⊕ Z`′ ⊕ Z`,(14.15)

and K ′/K ∼= L′/L. Then we have K = Z ( 1 0
0 −1 ). For λ ∈ K ⊗ R, we write λ > 0 if λ is a

positive multiple of ( 1 0
0 −1 ).

We now define twisted Heegner divisors on the modular curve X0(N). Let ∆ be a
fundamental discriminant and let r ∈ Z such that ∆ ≡ r2 (mod 4N). For any vector
λ ∈ L′ of negative norm, the orthogonal complement λ⊥ ⊂ V (R) defines a point H(λ)
in Gr(V ) ∼= H. For h ∈ L′/L and a negative rational number m ∈ Z + sgn(∆)Q(h), we
consider the twisted Heegner divisor

H∆,r(m,h) :=
∑

λ∈Ld∆,hr/Γ0(N)

χ∆(λ)

w(λ)
H(λ) ∈ Div(X0(N))Q,(14.16)

where d := 4Nm sgn(∆) ∈ Z. Note that d is a discriminant which is congruent to a square
modulo 4N and which has the opposite sign as ∆. Here w(λ) is the order of the stabilizer
of λ in Γ0(N). We also require the degree zero divisor

y∆,r(m,h) := H∆,r(m,h)− deg(H∆,r(m,h)) · ∞.(14.17)

We have y∆,r(f) = H∆,r(f) when ∆ 6= 1. By the theory of complex multiplication, the

divisor H∆,r(m,h) is defined over Q(
√

∆).
Recall that ρ̃L = ρL for ∆ > 0, and ρ̃L = ρ̄L for ∆ < 0. Suppose that f ∈ H1/2,ρ̃L

is a harmonic weak Maass form of weight 1/2 with representation ρ̃L. We denote the
coefficients of f = f+ + f− by c±(m,h) as in (14.10). Using the Fourier coefficients of the
principal part of f , we finally define the twisted Heegner divisor associated to f by

H∆,r(f) :=
∑

h∈L′/L

∑
m<0

c+(m,h)H∆,r(m,h) ∈ Div(X0(N))R,(14.18)

y∆,r(f) :=
∑

h∈L′/L

∑
m<0

c+(m,h)y∆,r(m,h) ∈ Div(X0(N))R.(14.19)

Notice that y∆,r(f) = H∆,r(f) when ∆ 6= 1.

Theorem 14.5. Assume the notation and hypotheses above. Let f ∈ H1/2,ρ̃L
be a harmonic

Maass form with real coefficients c+(m,h) for all m ∈ Q and h ∈ L′/L. Moreover, assume
that c+(n, h) ∈ Z for all n ≤ 0. Then infinite product

Ψ∆,r(z, f) = e((ρf,`, z))
∏

λ∈K′
λ>0

∏
b (∆)

[1− e((λ, z) + b/∆)](
∆
b )c+(|∆|λ2/2,rλ) ,

where ρf,` is a certain Weyl vector (see (4.8) of [67]), converges for y sufficiently large and
has a meromorphic continuation to all of H with the following properties.

(i) It is a meromorphic modular form for Γ0(N) with a unitary character σ which may
have infinite order.

(ii) The weight of Ψ∆,r(z, f) is c+(0, 0) when ∆ = 1, and is 0 when ∆ 6= 1.
(iii) The divisor of Ψ∆,r(z, f) on X0(N) is given by H∆,r(f) + C∆,r(f), where C∆,r(f)

is supported at cusps.
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(iv) The “regularized theta integral” of f defined in (5.5) of [67], satisfies

Φ∆,r(z, f) =

{
−c+(0, 0)(log(4πN) + Γ′(1))− 4 log |Ψ∆,r(z, f)yc+(0,0)/2|, if ∆ = 1,

2
√

∆c(0, 0)L(1, χ∆)− 4 log |Ψ∆,r(z, f)|, if ∆ 6= 1.

Unlike the results in [43], such generalized Borcherds products typically transform with
a multiplier system of infinite order under Γ0(N). The following criterion is obtained which
determines when the multiplier system has finite order.

Theorem 14.6. Suppose that ∆ 6= 1. Let f ∈ H1/2,ρ̃L
be a harmonic Maass form with real

coefficients c+(m,h) for all m ∈ Q and h ∈ L′/L. Moreover, assume that c+(n, h) ∈ Z for
all n ≤ 0. The following are equivalent.

(i) The character σ of the function Ψ∆,r(z, f) defined in Theorem 14.5 is of finite
order.

(ii) The coefficients c+(|∆|λ2/2, rλ) are rational for all λ ∈ K ′.

Remark 54. Theorem 14.6 is particularly simple to implement for weakly holomorphic
modular forms f (for example, see Lemma 6.5 of [67]). In this case the rationality of all
the coefficients is implied by the rationality of the principal part, and so Theorem 14.6
implies that the σ for the corresponding generalized Borcherds product has finite order.

Example 14.7 (Twisted modular polynomials). Here we use Theorems 14.5 and 14.6 to
deduce the infinite product expansion of twisted modular polynomials found by Zagier
(see Section 7 of [212]).

The weight 1/2 harmonic Maass forms in question are the same weakly holomorphc
modular forms fd(z) which appear in (14.5). Theorems 14.5 and 14.6 then give a mero-
morphic modular form Ψ∆(z, fd) := Ψ∆,r(z, fd) of weight 0 for the group Γ = SL2(Z)
whose divisor on X(1) is given by

H∆(d) := H∆,r(d/4, d/2) =
∑

λ∈L∆d/Γ

χ∆(λ)

w(λ)
·H(λ).

Classically, the quotient L∆d/Γ corresponds to the Γ-classes of integral binary quadratic
forms of discriminant ∆d. Moreover, for sufficiently large Im(z), we have the product
expansion

Ψ∆(z, fd) =
∞∏

n=1

∏
b (∆)

[1− e(nz + b/∆)](
∆
b )cd(∆n2).(14.20)

From these properties it follows that

Ψ∆(z, fd) =
∏

λ∈L∆d/Γ

(
j(z)− j(H(λ))

)χ∆(λ)
.(14.21)

As an example, let ∆ := 5 and d := −3. There are two classes of binary quadratic
forms of discriminant −15, represented by [1, 1, 4] and [2, 1, 2], and their corresponding

CM points are −1+
√
−15

2
and −1+

√
−15

4
. It is well known that the singular moduli of j(τ)
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of these points are −191025
2

− 85995
2

√
5, and −191025

2
+ 85995

2

√
5. The function f−3 has the

Fourier expansion

f−3 = q−3 − 248 q + 26752 q4 − 85995 q5 + 1707264 q8 − 4096248 q9 + . . . .

Multiplying out the product over b in (14.20), we obtain the infinite product expansion

Ψ5(z, f−3) =
j(z) + 191025

2
+ 85995

2

√
5

j(z) + 191025
2

− 85995
2

√
5

=
∞∏

n=1

(
1 + 1−

√
5

2
qn + q2n

1 + 1+
√

5
2
qn + q2n

)c−3(5n2)

.

Example 14.8 (A generalized Borcherds product for Ramanujan’s ω(q)). Here we give an
example of a generalized Borcherds product arising from Ramanujan’s mock theta function

ω(q) :=
∞∑

n=0

q2n2+2n

(q; q2)2
n+1

=
1

(1− q)2
+

q4

(1− q)2(1− q3)2
+

q12

(1− q)2(1− q3)2(1− q5)2
+ · · · .

(14.22)

Zwegers’s work (see Theorem 6.1) completes this q-series in a way which allows him to
produce a vector valued harmonic Maass form.

Define integers a(n) by

−2q1/3
(
ω(q1/2) + ω(−q1/2)

)
=:

∑
n∈Z+1/3

a(n)qn = −4 q1/3 − 12 q4/3 − 24 q7/3 − 40 q10/3 − . . . .

If we let

P (X) :=
1 +

√
−2X −X2

1−
√
−2X −X2

,

then Theorems 14.5 and 14.6 imply that

Ψ(z) =
∞∏

n=1

P (qn)(
n
3 )a(n2/3)(14.23)

is a modular function on Γ0(6).
Here we work out an expression for Ψ(z). We use the Hauptmodul for Γ∗0(6), the

extension of Γ0(6) by all Atkin-Lehner involutions, which is

j∗6(z) =

(
η(z)η(2z)

η(3z)η(6z)

)4

+ 4 + 34

(
η(3z)η(6z)

η(z)η(2z)

)4

= q−1 + 79 q + 352 q2 + 1431 q3 + . . . .

Let α1 and α2 be the Heegner points

α1 :=
−2 +

√
−2

6
and α2 :=

2 +
√
−2

6
.

We have j∗6(α1) = j∗6(α2) = −10. Hence j∗6(z) + 10 is a rational function on X0(6) whose
divisor consists of the 4 cusps with multiplicity −1 and the points α1, α2 with multiplicity
2. The unique normalized cusp form of weight 4 for Γ∗0(6) is

δ(z) := η(z)2η(2z)2η(3z)2η(6z)2 = q − 2 q2 − 3 q3 + 4 q4 + 6 q5 + 6 q6 − 16 q7 − 8 q8 + . . . .

Using these functions, we find that

φ(z) := Ψ(z) · (j∗6(z) + 10)δ(z)
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is a holomorphic modular form of weight 4 for Γ0(6) with divisor 4(α1). Using the classical
Eisenstein series, it turns out that

450φ(z) = (3360− 1920
√
−2)δ(z) + (1− 7

√
−2)E4(z) + (4− 28

√
−2)E4(2z)

+ (89 + 7
√
−2)E4(3z) + (356 + 28

√
−2)E4(6z).

Putting this all together, (14.23) becomes

∞∏
n=1

(
1 +

√
−2qn − q2n

1−
√
−2qn − q2n

)(n
3 )a(n2/3)

=
φ(z)

(j∗6(z) + 10)δ(z)

= 1− 8
√
−2q − (64− 24

√
−2)q2 + (384 + 168

√
−2)q3 + (64− 1768

√
−2)q4 + · · · .

15. Derivatives and values of modular L-functions

Harmonic Maass forms are very useful for investigating the central values and derivatives
of weight 2 modular L-functions. Recent works by the author, Bruinier, and Yang involve
the interplay between generalized Borcherds products, harmonic Maass forms, and earlier
celebrated theorems of Gross and Zagier, Kohnen and Zagier, and Waldspurger.

To explain these results, we first recall some standard definitions. Let

f(z) =
∞∑

n=1

a(n)qn ∈ Snew
2k (M)

be a newform of even integral weight 2k on Γ0(M). For Re(s) � 0, let

(15.1) L(f, s) =
∞∑

n=1

a(n)

ns

be its L-function. Let D denote the fundamental discriminant of a quadratic field, and let
χD =

(
D
•

)
denote the Kronecker character for the field Q(

√
D). The D-quadratic twist of

f(z), denoted fD(z), is given by

fD(z) =
∞∑

n=1

χD(n)a(n)qn,

and for Re(s) � 0 its L-function is given by

L(f, χD, s) =
∞∑

n=1

χD(n)a(n)

ns
.

These L-functions have analytic continuations to C and satisfy well known functional
equations. If we define Λ(f, s) by

Λ(f, s) := (2π)−sΓ(s)M s/2L(f, s),

then there is an ε ∈ {±1} for which

Λ(f, s) = ε · Λ(f, 2k − s).

Furthermore, if D is a fundamental discriminant which is coprime to M , then

Λ(fD, s) = ε · χD(−M)Λ(fD, 2k − s).
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Remark 55. The number ε above is referred to as the sign of the functional equation of
L(f, s). If f(z) ∈ Snew

2k (M) is a newform, then

ε = (−1)kλM ,

where λM is the eigenvalue of f(z) under the Fricke involution W (M). In other words, we
have

(f |2k W (M)) (z) = λMf(z).

The values L(f, χD, k) are the central critical values of the L-functions L(f, χD, s).

Our motivating problem is to describe the behavior of the values L(f, χD, k), as D
varies. Notice that if χD(−M)ε = −1, then L(f, χD, k) = 0. Therefore at least half of
these L(f, χD, k) are trivially zero. As we shall see, the “nontrivial zeros” are much more
mysterious.

Much of the interest in central critical values of modular L-functions follows from their
connection to the Birch and Swinnerton-Dyer. Here we briefly recall important facts and
results.

Suppose that E/Q is an elliptic curve of conductor N(E) (see [194] for background on
elliptic curves), and let, for Re(s) � 0,

(15.2) L(E, s) =
∞∑

n=1

aE(n)

ns

be its Hasse-Weil L-function. In particular, if p - N(E) is prime, then we have

NE(p) = p+ 1− aE(p),

where NE(p) denotes the number of points on the reduction of E modulo p.
By the work of Breuil, Conrad, Diamond, Taylor, and Wiles [46, 81, 198, 209], we have

the following deep result which confirmed the Shimura-Taniyama Conjecture.

Theorem 15.1. If E/Q is an elliptic curve of conductor N(E), then there is a newform
fE(z) ∈ Snew

2 (N(E)) for which

L(E, s) = L(fE, s).

For elliptic curves E/Q, Theorem 15.1 implies that L(E, s) has an analytic continuation
to C, and so the analytic behavior of L(E, s) at s = 1 is well defined. The Birch and
Swinnerton-Dyer Conjecture (see Appendix C of [194]) gives arithmetic significance to
this behavior.

Conjecture. If E/Q is an elliptic curve, and if rk(E) is the Mordell-Weil rank of E over
Q, then

ords=1(L(E, s)) = rk(E).

Remark 56. This is the “weak” form of the Birch and Swinnerton-Dyer Conjecture. The
strong conjecture gives an arithmetic formula for

lim
s→1

(
(s− 1)−rk(E) · L(E, s)

)
in terms of arithmetic invariants associated to E.
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Although this conjecture remains open, we have the following strong result which follows
from the work of Kolyvagin, Gross, and Zagier [108, 138]18.

Theorem 15.2. If E/Q is an elliptic curve for which ords=1(L(E, s)) ∈ {0, 1}, then

ords=1(L(E, s)) = rk(E).

Now we consider quadratic twists of elliptic curves and modular forms. Let E/Q be an
elliptic curve given by the Weierstrass equation

(15.3) E : y2 = x3 + ax2 + bx+ c,

where a, b and c are integers. If D is a square-free integer, then let E(D) denote the
D−quadratic twist of E given by

(15.4) E(D) : y2 = x3 + aDx2 + bD2x+ cD3.

The curves E and E(D) are isomorphic over Q(
√
D).

Suppose that E/Q is an elliptic curve, and that

fE(z) =
∞∑

n=1

aE(n)qn ∈ Snew
2 (N(E))

is the weight two newform associated to E by Theorem 15.1. Similarly, if D is a funda-
mental discriminant, then let

fE(D)(z) =
∞∑

n=1

aE(D)(n)qn

be the newform associated to E(D). If p - DN(E) is prime, then it is simple to check that

aE(D)(p) =

(
D

p

)
aE(p).

Consequently, the newform fE(D)(z) is the unique newform whose Hecke eigenvalues, for
primes p - DN(E), equal those of the quadratic twist fE by χD.

In view of the Birch and Swinnerton-Dyer Conjecture, and Theorem 15.2, we are com-
pelled to study central values and derivatives of weight 2 modular L-functions. In this
direction we have the celebrated works of Kohnen, Zagier and Waldspurger, and also the
work of Gross and Zagier [108].

It turns out that the Fourier coefficients of half-integral weight cusp forms often inter-
polate the “square-roots” of the central critical values of the L-functions of the quadratic
twists of even weight newforms.

Here we make this precise. First suppose that N is odd and square-free, and suppose
further that

(15.5) g(z) =
∞∑

n=1

b(n)qn ∈ Snew
k+ 1

2
(4N)

18Coates and Wiles [79] earlier proved that L(E, 1) 6= 0 =⇒ rk(E) = 0 for elliptic curves E/Q with
complex multiplication.
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is a Kohnen newform19. There is a unique newform, say f(z) ∈ Snew
2k (N), associated

to g(z) under Shimura’s correspondence. The coefficients of g(z) determine the central
critical values of many of the quadratic twists L(f, χD, s). Let ν(N) denote the number
of distinct prime divisors of N , and let 〈f, f〉 (resp. 〈g, g〉) denote the Petersson inner
product on S2k(N) (resp. Sk+ 1

2
(4N)). Generalizing a result in [137], Kohnen proved the

following important theorem in [136].

Theorem 15.3. Assume the notation in the preceding discussion. If ` | N is prime, then
let λ` ∈ {±1} be the eigenvalue of the Atkin-Lehner involution

(f |2k W (Q`)) (z) = λ`f(z).

If (−1)kD > 0 and D has the property that
(

D
`

)
= λ` for each prime ` | N , then

L(f, χD, k) =
〈f, f〉 · πk

2ν(N)(k − 1)!|D|k− 1
2 〈g, g〉

· |b(|D|)|2.

For all other fundamental discriminants D with (−1)kD > 0 we have b(|D|) = 0.

Example 15.4. If f(z) = ∆(z) ∈ S12, then it turns out that the associated Kohnen
newform in Snew

13/2(4) is

g(z) =
∞∑

n=1

b(n)qn =
E4(4z) ·D(Θ0(z))

2
− D(E4(4z)) ·Θ0(z)

16

= q − 56q4 + 120q5 − . . . .

Again, here D denotes the differential operator D := q d
dq

. For positive fundamental

discriminants D, we then have that

L(∆, χD, 6) =
〈∆,∆〉 · π6

120D
11
2 〈g, g〉

· b(D)2.

Waldspurger proved a similar theorem which holds in greater generality. For every
fundamental discriminant D, define D0 by

(15.6) D0 :=

{
|D| if D is odd,

|D|/4 if D is even.

The following is a convenient reformulation of Waldspurger’s theorem [205].

Theorem 15.5. If f(z) =
∑∞

n=1 a(n)qn ∈ Snew
2k (M) is an even weight newform and δ ∈

{±1} is the sign of the functional equation of L(f, s), then there is a positive integer N
with M | N , a Dirichlet character χ modulo 4N , a nonzero complex number Ωf , and a
nonzero half-integral weight Hecke eigenform

gf (z) =
∞∑

n=1

bf (n)qn ∈ Sk+ 1
2
(4N,χ)

19These are the half-integral weight cuspidal Hecke eigenforms in Kohnen’s paper [136].
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with the property that there are arithmetic progressions of fundamental discriminants D
coprime to 4N for which δD > 0 and

L(f, χD, k) = εD ·
bf (D0)

2

D
k− 1

2
0

· Ωf ,

where εD is algebraic. For all other D with δD > 0, we have bf (D0) = 0. Moreover, the
coefficients a(n), bf (n) and the values of χ are in OK, the ring of integers of some fixed
number field K.

15.1. Extension of the Kohnen-Waldspurger Theorem. The author and Bruinier
[67] have generalized this theorem of Waldspurger and Kohnen to prove that the Fourier
coefficients of weight 1/2 harmonic Maass forms encode the vanishing and nonvanishing of
both the central values and derivatives of quadratic twists of weight 2 modular L-functions.

Here we describe a special case of the main result of [67].

Theorem 15.6. Suppose that

G(z) =
∞∑

n=1

BG(n)qn ∈ S2(p)

is a weight 2 newform with prime level p. In addition, suppose that the sign of the functional
equation of L(G, s) is ε(G) = −1. Then there is a weight 1/2 harmonic Maass form f(z)
on Γ0(4p), say

f(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2; 4π|n|y)qn,

which satisfies the following:

(1) If ∆ < 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then

L(G,χ∆, 1) = αG ·
√
|∆| · c−g (∆)2,

where αG is an explicit non-zero constant.

(2) If ∆ > 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then L′(G,χ∆, 1) = 0

if and only if c+g (∆) is algebraic.

Remark 57. Theorem 15.6 is a special case of the general result which holds for all levels,
and any arbitrary sign. Notice that the result concerns all weight 2 newforms, not just
those which correspond to modular elliptic curves.

Remark 58. The Maass form f(z) in Theorem 15.6 is unique up to the addition of a weight
1/2 weakly holomorphic modular form with coefficients in FG, the number field obtained
by adjoining the coefficients of G(z) to Q. In view of this ambiguity, it would be very
interesting to pin down a choice of f(z) which in turn gives a precise formula relating
L′(G,χ∆, 1) to c+g (∆) in Theorem 15.6 (2).

Theorem 15.6 is obtained by combining the Gross-Zagier formula with Borcherds prod-
ucts arising from harmonic Maass forms and general transcendence theorems for canonical
differentials of the third kind on modular curves. Here we give a brief sketch of the proof
of this theorem.
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Sketch of the proof of Theorem 15.6. By Kohnen’s theory, there is a half-integral weight
newform

(15.7) g(z) =
∞∑

n=1

bg(n)qn ∈ S+
3
2

(4p),

unique up to a multiplicative constant, which lifts to G under the Shimura correspondence.
We can (and do) choose g so that its coefficients are in FG, the totally real number field
obtained by adjoining the Fourier coefficients of G to Q. We prove that there is a weight
1/2 harmonic Maass form on Γ0(4p) in the plus space, say

(15.8) fg(z) =
∑

n�−∞

c+g (n)qn +
∑
n<0

c−g (n)Γ(1/2, 4π|n|y)qn,

whose principal part Pfg has coefficients in FG, which also enjoys the property that ξ 1
2
(fg) =

‖g‖−2g, where ‖g‖ denotes the usual Petersson norm.
By Lemma 7.4, if n > 0, then

(15.9) bg(n) = −4
√
πn‖g‖2 · c−g (−n).

Theorem 15.6 (1) now follows from Theorem 15.3.
The proof of Theorem 15.6 (2) is more difficult, and it involves a detailed study of

Heegner divisors. We establish that the algebraicity of the coefficients c+g (∆) is dictated
by the vanishing of certain twisted Heegner divisors in the Jacobian of X0(p), which when
combined with the work of Gross and Zagier [108] and Scholl and Waldschmidt, then
implies Theorem 15.6 (2).

To make this precise, let d < 0 and ∆ > 0 be fundamental discriminants which are both
squares modulo p. LetQd,p be the set of discriminant d = b2−4ac integral binary quadratic
forms aX2 + bXY + cY 2 with the property that p | a. For these pairs of discriminants, we
define the twisted Heegner divisor H∆(d) by

(15.10) H∆(d) :=
∑

Q∈Q∆d,p/Γ0(p)

χ∆(Q) · τQ
wQ

,

where χ∆ denotes the generalized genus character corresponding to the decomposition ∆·d
as in [107], τQ is the unique root of Q(x, 1) in H as before, and wQ denotes the order of

the stabilizer of Q in Γ0(p). Then H∆(d) is a divisor on X0(p) defined over Q(
√

∆). We
use these twisted Heegner divisors to define the degree 0 divisor

(15.11) y∆(d) := H∆(d)− deg(H∆(d)) · ∞.

Finally, we associate a divisor to fg by letting

(15.12) y∆(fg) :=
∑
n<0

c+g (n)y∆(n) ∈ Div0(X0(p))⊗ FG.

Let J be the Jacobian of X0(p), and let J(F ) denote the points of J over a number
field F . The Hecke algebra acts on J(F ) ⊗ C, which by the Mordell-Weil Theorem is
a finite dimensional vector space. We show that the point corresponding to y∆(fg) in

J(Q(
√

∆))⊗C is in its G-isotypical component. Moreover, we show that the following are
equivalent:
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(i) The Heegner divisor y∆(fg) vanishes in J(Q(
√

∆))⊗ C.
(ii) The coefficient c+g (∆) is algebraic.
(iii) The coefficient c+g (∆) is contained in FG.

To obtain these results, we explicitly construct modular functions with prescribed Heegner
divisors using results related to Theorems 14.5 and 14.6. By work of Scholl and Wald-
schmidt, the vanishing of the points corresponding to these divisors is equivalent to the
algebraicity of the Fourier expansions of these modular functions. Using the Hecke algebra
and the explicit formulas provided by the generalized Borcherds product, we then find that
this algebraicity is dictated by single coefficients of the form c+g (∆).

We then obtain the following generalization of the well known Gross-Kohnen-Zagier
theorem [107]. Namely, we show that∑

n>0

yG
∆(−n)qn = g(τ)⊗ y∆(fg) ∈ S+

3
2

(4p)⊗ J(Q(
√

∆)),

where yG
∆(−n) denotes the projection of y∆(−n) onto its G-isotypical component. This

result, when combined with the Gross-Zagier theorem [108], gives the conclusion that the

Heegner divisor y∆(fg) vanishes in J(Q(
√

∆))⊗C if and only if L′(G,χ∆, 1) = 0, thereby
proving Theorem 15.6 (2).

�

15.2. Recent work of Bruinier and Yang. Building on the results of the last subsec-
tion, it is natural to seek exact formulas for derivatives of L-functions using techniques
arising from the theory of harmonic Maass forms. Theorem 15.6 makes the connection
between derivatives and coefficients of harmonic Maass forms, but it does not give exact
formulas. This problem remains open. Nevertheless, the question of fundamental interest
really should be: Can one directly obtain exact arithmetic formulas (perhaps in terms of
heights) for certain derivatives of L-functions?

To this end, Bruinier and Yang [70] have recently proven some striking theorems about
Faltings heights of CM cycles and derivatives of L-functions. In some important cases
they are able to explicitly evaluate derivatives of certain Rankin-type L-functions in terms
of Faltings heights. Their work depends critically on Borcherds lifts and the theory of
harmonic Maass forms.

It is impossible to survey their work in any detail here. Instead, we give the flavor of
their exciting program. Loosely speaking, they use the principal parts of suitable harmonic
Maass forms f to construct Heegner divisors on certain Shimura varieties. This depends
on earlier work of Kudla, recent work on Greens functions, and Borcherds lifts. For the
cusp forms ξ(f), they investigate a certain “Rankin-type” L-function, and they conjecture
an exact formula relating its derivative at s = 0 to the Faltings height pairing of a Heegner
divisor with a CM cycle. The conjectured formula is of the form

〈Ẑ(f),Z(U)〉Fal = κ · L′(ξ(f), U, 0),(15.13)

where κ is explicit.
They have obtained several deep results in the direction of this conjecture. Here we

highlight one implication of their work in the classical setting of the original formula of
Gross and Zagier. Suppose that G is a normalized newform of weight 2 for Γ0(N) whose



88 KEN ONO

Hecke L-function L(G, s) satisfies an odd functional equation. Then there is a weight 3/2
cusp form g, which corresponds to G under the Shimura correspondence, and it turns
out that the “Rankin-type” L-function is proportional to L(G, s + 1). Their conjecture
therefore then implies a Faltings height pairing formula for L′(G, 1).

As in the work of the author and Bruinier [67] (see Theorem 5.1), there is a weight
1/2 harmonic Maass form f with vanishing constant term such that ξ(f) = ‖g‖−2g, with
the additional property that the coefficients of its principal part are in the number field
generated by the eigenvalues of G. In this case the Heegner divisor Z(f) defines an explicit
point in the Jacobian of X0(N), which lies in the G isotypical component (see the sketch
of the proof of Theorem 15.6). In this setting, they prove the following comprehensive
theorem.

Theorem 15.7 (Bruinier and Yang [70]). Assuming the notation and hypotheses above,
we have that the Neron-Tate height of Z(f) is given by

〈Z(f), Z(f)〉NT =
2
√
N

π‖g‖2
L′
(
G, 1).

This beautiful theorem directly gives an arithmetic formula for the central derivative of
weight 2 modular L-functions with odd sign. It is natural to ask how Theorem 15.7 relates
to the classical Gross-Zagier formula. The short answer is that it implies it.

To see this, suppose that E is an elliptic curve over Q. Assume that its L-function
L(E, s) has an odd functional equation so that the central critical value L(E, 1) vanishes.
Let N = N(E) be the conductor of E, and let X0(N) be the moduli space of cyclic
isogenies of degree N of generalized elliptic curves. Let K be an imaginary quadratic field
such that N is the norm of an integral ideal of K, and write D for the discriminant of
K. We may consider the divisor Z(D) on X0(N) given by elliptic curves with complex
multiplication by the maximal order of K. By the theory of complex multiplication, this
divisor is defined over K, and its degree h is given by the class number of K. Hence
the divisor y(D) = trK/Q(Z(D) − h · (∞)) has degree zero and is defined over Q. By
the modularity of elliptic curves, we obtain a rational point yE(D) on E using a modular
parametrization X0(N) → E. Arguing a little further (so as to produce L(E, χD, 1)), one
can show that Theorem 15.7 then implies the Gross-Zagier theorem as stated below.

Theorem 15.8 (Gross-Zagier [108]). Assume the notation and hypotheses above. Then
the canonical height of yE(D), denoted 〈yE(D), yE(D)〉NT , satisfies

〈yE(D), yE(D)〉NT = C
√
|D|L′(E, 1)L(E, χD, 1).

Here C is an explicit non-zero constant which is independent of K, and χD is the Kronecker
character for K/Q.

To place Theorem 15.7 in proper context, we stress that the work of Gross and Zagier
has inspired an enormous body of further research on height pairings of algebraic cycles
on Shimura varieties. For instance, Zhang considered heights of Heegner type cycles on
Kuga-Sato fiber varieties over modular curves in [214], and the heights of Heegner points
on compact Shimura curves over totally real fields in [215]. Gross and Keating discovered
a connection between arithmetic intersection numbers of Hecke correspondences on the
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product of two copies of the modular curveX(1) over Z and the coefficients of the derivative
of the Siegel-Eisenstein series of genus three and weight two [106]. This has inspired
the extensive program of Kudla, Rapoport and Yang which relates Arakelov intersection
numbers on Shimura varieties of orthogonal type to derivatives of Siegel-Eisenstein series
and modular L-functions (for example, see [140], [141], [142]).

In all of these works, the connection between a height pairing and the derivative of an
automorphic L-function arises in an indirect way. The idea has been to identify the local
height pairings in the Fourier coefficients of a suitable integral kernel function (often given
by an Eisenstein series), which takes an automorphic form φ to the special value of the
derivative of an L-function associated to φ.

This recent work of Bruinier and Yang gives a new approach for obtaining identities
between certain height pairings on Shimura varieties of orthogonal type and derivatives of
automorphic L-functions. As described above, it is based on the Borcherds lift [44] and
its generalization in [62, 63, 67]. Their approach directly gives formulas for the Faltings
height pairing of arithmetic Heegner divisors and CM cycles.

16. Epilogue

Although the mock theta functions are humble in origin, they have earned a distin-
guished role in the legend of Ramanujan. Andrews and Berndt confirm this in their article
“Your hit parade: the top ten most fascinating formulas in Ramanujan’s lost notebook”
[22]. In their amusing informal poll, Ramanujan’s work on Dyson’s ranks20 and the mock
theta functions rank first and second! Based on the mathematics born out of these works,
as described here, it is a safe bet that ranks and mock theta functions will continue to
hold these top spots into the foreseeable future. They certainly have the author’s vote!

It is appropriate to end this paper with a few words about the title: “Unearthing the
visions of a master: harmonic Maass forms and number theory”. Although Ramanujan’s
last works provided the first examples of such forms, his untimely death and the enigmatic
nature of his writings resulted in a great mystery. We will never know how he came up with
the mock theta functions. We certainly cannot pretend to know what he fully intended
to do with them. However, it is clear that he understood that the mock theta functions
would go on to play important roles in number theory, his “visions”. The author likes to
think that this paper contains some of these visions.
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