
BIJECTIVE PROOFS OF A THEOREM OF FINE AND RELATED
PARTITION IDENTITIES
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Abstract. In this paper, we prove a theorem of Fine bijectively. Stacks with summits and gradual
stacks with summits are also discussed.

1. Introduction

The two main combinatorial methods we can employ in the partition theory are
involutions and bijections, which are two sides of a coin in many cases. Existence of
an involutive proof connotes existence of a bijective proof and vice versa. In 2003,
C. Bessenrodt and I. Pak wrote a very beautiful paper [3], where they discussed the
nature of involutive proofs and proved interesting identities. In this paper, we focus
on bijective proofs of partition identities.

As a corollary of their main theorem [3], Bessenrodt and Pak obtained one of the
partition theorems proposed by Fine in his short note [4]. In Section 2, we will present
a bijective proof of Fine’s theorem and related identities. G. E. Andrews defined
stacks with summits and gradual stacks with summits in [2] studying some identities
from Ramanujan’s Lost Notebook. The generating function for stacks with summits is
related to Fine’s theorem, so we will discuss stacks with summits in Section 2.

The idea of the proofs of the Fine theorem and related identities can be naturally
generalized. In Section 3, we will discuss a generalization, which is a bijective proof of
the main theorem of Bessenrodt and Pak.

Although the identity for the generating function of gradual stacks [2] is not derived
from the generalization in Section 3, it has a nice bijective proof. We will establish the
proof in Section 4. We can generalize the concept of gradual stacks with summits as
much as we do with stacks with summits. We will prove the generating function for
generalized gradual stacks with summits in the last section.

In the sequel, we assume that |q| < 1 and use the customary notation for q-series

(a; q)0 := 1,

(a; q)∞ :=
∞∏

k=0

(1− aqk),

(a; q)n :=
(a; q)∞

(aqn; q)∞
for any n.

For a given partition π of n, we denote the sum of all parts of π by |π|, the largest
part by m(π), the smallest part by s(π), and the number of parts of π by `(π).
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For every pair of partitions, we define their sum and union. The sum λ + µ is the
partition whose parts are (λ1 + µ1, λ2 + µ2, . . .) and λ ∪ µ is the partition with parts
λ1, λ2, . . . , µ1, µ2, . . . arranged in weakly decreasing order.

Throughout this paper, we denote the partition with no parts by ε and let

P = { all partitions π }, D = { all partitions π into distinct parts},
Pn = { partitions π | m(π) = n}, Dn = { partitions π into distinct parts | m(π) = n},
P≤n = { partitions π | m(π) ≤ n}, D≤n = { partitions π into distinct parts | m(π) ≤ n},
P≥n = { partitions π | s(π) ≥ n}, D≥n = { partitions π into distinct parts | s(π) ≥ n},

for any n ≥ 0. Define τ0 = ε and τn = (n, n− 1, . . . , 1), a partition of n(n + 1)/2. Let

∆ = {τn | n = 0, 1, 2, . . .}.

2. Fine’s theorem, stacks with summits, and related identities

In [5], Fine derived the following identity

∞∑
n=0

qn

(bq; q)n(q; q)n

=
1

(bq; q)∞(q; q)∞

∞∑
n=0

(−b)nq(n2+n)/2, (2.1)

which can be used to derive Gauss’s well-known identity

(q2; q2)∞
(q; q2)∞

=
∞∑

n=0

q(n2+n)/2

and Jacobi’s triple product identity

(zq; q)∞(z−1; q)∞ =
1

(q; q)∞

∞∑
n=−∞

(−z)nq(n2+n)/2

for z 6= 0. E. M. Wright [8] gave the first combinatorial proof of Jacobi’s triple product
identity. In this section, we will present a combinatorial proof of (2.1), which is very
similar to Wright’s proof.

To prove (2.1), we need to put it in another form. By multiplying both sides of (2.1)
by (bq; q)∞ and replacing b by −b, we obtain

∞∑
n=0

qn(−bqn+1; q)∞
(q; q)n

=
1

(q; q)∞

∞∑
n=0

bnq(n2+n)/2, (2.2)

which gives the following theorem.

Theorem 2.1. We have
∞⋃

n=0

D≥n+1 × Pn = ∆× P .

Proof. Let (λ, µ) be a pair of partitions in D≥n+1 × Pn for some n. Since

λ1 > λ2 > · · · > λ`(λ) > n,
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we can subtract n − i + 1 from each λi to obtain a partition λ∗ in P≥n. Thus we can
write λ as τn+λ∗, where s(λ∗) ≥ n. We now take λ∗∪µ, which is an ordinary partition.
Thus there is one to one correspondence between (λ, µ) and (τn, λ

∗ ∪ µ). �

We denote by ϕ the map defined in the proof. Figure 1 illustrates ϕ with an example.

d d d t t t t t td d t t t t t td t t t tt t t tt tt tt

d d d tt t t t t td d t t t t t td t t t tt t t tt tt tt
⇐⇒

Figure 1. n = 4, ((9, 8, 5), (4, 2, 2, 1)) ↔ ((3, 2, 1), (6, 6, 4, 4, 2, 2, 1))

In [2], Andrews defined stacks with summits and discussed the generating function.
His definition of a stack with summit of size k can be associated with a pair of partitions
(µ, ν) ∈ S such that |µ|+ |ν| = k, where

S =
∞⋃

n=0

Pn × P≤n.

In this paper, for convenience, we regard stacks with summits as pairs of partitions
(µ, ν) ∈ S. Let σσ(k) be the number of stacks with summits of size k. Then

∞∑
k=0

σσ(k)qk =
∞∑

j=0

qj

(q; q)2
j

. (2.3)

In [2], Andrews gave the formula
∞∑

k=0

σσ(k)qk =
∞∑

j=0

qj

(q; q)2
j

=
1

(q; q)2
∞

∞∑
k=0

(−1)kq(k2+k)/2, (2.4)

which is a special case when b = 1 in (2.1). Thus the left side of (2.1) generates stacks
with summits, where the power of b equals `(ν). Meanwhile, we see from the map ϕ
that on the right side of (2.1),

1

(q; q)∞

∞∑
k=0

(−b)kq(k2+k)/2

generates D≥n+1 × Pn for any n ≥ 0. Thus the right side of (2.1) generates triples of
partitions (λ, µ, ν) ∈ D≥n+1×Pn×P for any n, where the power of b equals `(λ)+`(ν).

Corollary 2.2. We have
∞∑

k=0

σσ(k)qk =
∞∑

n=0

∑
(λ,µ,ν)

(−1)`(λ)q|λ|+|µ|+|ν|,

where (λ, µ, ν) ∈ D≥n+1 × Pn × P.
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Proof. Let

T =
∞⋃

n=0

D≥n+1 × Pn × P .

We define a sign reversing involution φ on T under which a subset equinumerous with
S is invariant.

For a given (λ, µ, ν) ∈ T , let r be the largest number such that νr > m(µ) if any;
otherwise, let r = 0 and define ν0 = ∞. If λ 6= ε and s(λ) ≤ νr, then we move
s(λ) to ν; if λ = ε and r > 0, or if s(λ) > νr, we move νr to λ. This process is
clearly invertible and changes the number of parts of λ, which changes the sign in
the generating function for T . Thus there is cancellation in T so that there remains
(ε, µ, ν), where m(µ) ≥ m(ν). In other words, after cancellation, there remain only
pairs of partitions that give stacks with summits. �

Figure 2 illustrates the process in the proof of Corollary 2.2 with an example.

d d d t t t td d t t t td t t tt tt t
t t t tttt t t t tt ttt

d d d t t t td d t t t tt tt t
t t t t t tt t t td t t tt ttt

⇐⇒

Figure 2. n = 3, ((7, 6, 4), (2, 2), (6, 4, 2, 1, 1)) ↔ n = 2, ((7, 6), (2, 2), (6, 4, 4, 2, 1, 1))

By multiplying both sides of (2.2) by b(q; q)∞, we obtain

∞∑
n=0

bqn(qn+1; q)∞(−bqn+1; q)∞ =
∞∑

n=0

bn+1q(n2+n)/2, (2.5)

from which we can derive
∞∑

n=1

−q2n−1(q2n; q)∞ =
∞∑

n=1

(−1)nqn2

(2.6)

by replacing q, b, and n by q2, −q−1, and n− 1, respectively. Identity (2.6) has a very
nice combinatorial interpretation, which was first mentioned by N. J. Fine in his short
note [4].

Theorem 2.3 (Fine [4]). Let L(n) be the number of partitions of n into distinct parts
with the minimum part being odd. For n ≥ 1, L(n) is odd if and only if n is a square.

Theorem 2.3 can be analytically proved from theorems in the book [5], as indicated
in [4]. However, since equation (2.2) has a nice combinatorial proof, we can devise
a combinatorial proof of (2.5), which leads to a combinatorial proof of (2.6). In [3],
Bessenrodt and Pak combinatorially proved a more general case of (2.6) and obtained
(2.6) as a corollary.
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In (2.1), by replacing q and b by q2 and q−1, respectively, we obtain

∞∑
n=0

q2n

(q; q)2n

=
1

(q; q)∞

∞∑
n=0

(−1)nqn2

. (2.7)

As Fine indicated in [5], the left side of (2.7) generates partitions into an even number
of parts. Thus, we obtain

pE(n) = p(n)− p(n− 12) + p(n− 22)− p(n− 32) + · · · , (2.8)

where pE(n) and p(n) denote the number of partitions into an even number of parts
and the number of partitions, respectively. By observing the proof of (2.1), we can
show (2.8) using the principle of inclusion and exclusion.

3. Bijective Aspect of a result of Bessenrodt and Pak

Bessenrodt and Pak [3] generalized their method for Theorem 2.3. In this section, we
prove their results by generalizing the bijective method we used in the previous section.
We follow the notation defined by Bessenrodt and Pak in [3]. Let A = (a0, a1, a2, . . .)
be an infinite integer sequence, define P (A) to be the set of partitions satisfying

λi − λi+1 ≥ a`−i (3.1)

for all i = 1, . . . , `, where ` = `(λ), and λ`+1 = 0, and define

hk(A) = ak−1 + 2ak−2 + · · ·+ ka0

for any k ≥ 1. For convenience, set s(ε) = ∞, where ε is the partition with no parts.
Given A = (a0, a1, a2, . . .), define T (A) to be the subset of P (A) × P such that

s(λ)−m(µ) ≥ a0 for λ ∈ P (A) and µ ∈ P . Then the generating function for T (A) is∑
(λ,µ)∈T (A)

z`(λ)q|λ|+|µ| =
∞∑

k=0

qk

(q; q)k

∑
ν∈P (A)

(zqk)`(ν)q|ν|, (3.2)

where we obtain the second summation by subtracting k from each part of λ when
m(µ) = k.

Theorem 3.1. Given A = (a0, a1, a2, . . .), we have

∞∑
k=0

qk

(q; q)k

∑
ν∈P (A)

(zqk)`(ν)q|ν| =
1

(q; q)∞

∞∑
k=0

zkqhk(A). (3.3)

Proof. By (3.2), we need only show that (λ, µ) ∈ T (A) is generated by the right hand
side of (3.3). Let αj = a0 +a1 +a2 + · · ·+aj−1 for any j ≥ 1. Given (λ, µ) ∈ T (A) with
k = `(λ), since λ ∈ P (A), by (3.1) we can write λ as α+λ∗, where α = (αk, αk−1, . . . , α1)
and λ∗ is an ordinary partition. Since λ` ≥ a0 + µ1, we see that λ∗1 ≥ µ1. We take
λ∗ ∪ µ, which is an ordinary partition. Since hk(A) = α1 + α2 + · · · + αk, we see that
(α, λ∗ ∪ µ) is generated by the right hand side of (3.3) as desired. �



6 AE JA YEE

When A = (1, 1, 1, . . .), we obtain (2.2). We multiply both sides of (3.3) by (q; q)∞
to obtain

∞∑
k=0

qk(qk+1; q)∞
∑

ν∈P (A)

(zqk)`(ν)q|ν| =
∞∑

k=0

zkqhk(A),

which is equivalent to Theorem 1 in [3].

4. Gradual stacks with summits

Andrews [2] defined gradual stacks with summits of size k, which can be associated
with triples of partitions (λ, π, τn) ∈ G such that |λ|+ |π|+ |τn| = k, where

G =
∞⋃

n=0

P≤n × P≤n × {τn}.

Let gσ(k) be the number of gradual stacks with summits of size k. Then

∞∑
k=0

gσ(k)qk =
∞∑

j=0

qj(j+1)/2

(q; q)2
j

.

In this section, we will show combinatorially that

∞∑
k=0

gσ(k)qk =
1

(q; q)∞

∞∑
n=0

qn(2n+1)

(q2; q2)n

, (4.1)

which was asserted by Ramanujan [2] and proved by Watson [7].
We denote by DE the set of partitions σ into an even number of distinct parts such

that σ2i−1 = σ2i + 1 for i = 1, . . . , `(σ)/2. In the following lemma, we show that the
summation on the right hand side of (4.1) generates partitions in DE .

Lemma 4.1. We have ∑
σ∈DE

q|σ| =
∞∑

n=0

qn(2n+1)

(q2; q2)n

.

Proof. For a σ ∈ DE , let `(σ) = 2n. Since the parts of σ are distinct, we can subtract
2n − i + 1 from each σi to obtain a partition σ∗. Thus we can write σ as τ2n + σ∗.
Since σ2i−1 = σ2i + 1, σ∗2i−1 = σ∗2i, from which it follows that the generating function
of (τ2n, σ

∗) is the right hand side. This completes the proof. �

For a given integer k ≥ 0, the Durfee rectangle of a partition with width minus height
equal to k is defined by the largest rectangle d × (k + d) that fits inside the Ferrers
graph of the partition. We call the Durfee rectangle with width minus height equal to
k the k-Durfee rectangle. The 0-Durfee rectangle becomes the Durfee square(see [1]).

We now prove (4.1) by establishing a bijection between G and P ×DE .

Theorem 4.2. There is a one-to-one correspondence between gradual stacks with sum-
mits of size k and pairs of partitions (µ, σ), where |µ|+ |σ| = k, µ ∈ P and σ ∈ DE.
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Proof. We define a bijection from G to DE . For a given (λ, π, τn) ∈ G, we take the
conjugate π′ of π. If `(π′) < n, we add 0 to π′ as parts so that π′ has n nonnegative
parts. We rearrange the parts of π′ as follows. If an integer k appears an odd number of
times in π′, we take a part of size k from π′. We then list the taken parts in decreasing
order. Let r be the number of the remaining parts. Note that r is even. The remaining
parts in π′ are then inserted in weakly increasing order before the aforementioned
strictly decreasing parts. We call the resulting sequence π∗. For instance, we get
π∗ = (1, 1, 3, 3, 6, 6, 6, 4, 2, 1) from π′ = (6, 6, 6, 4, 3, 3, 2, 1, 1, 1). It is clear that the
algorithm is invertible. We define σ = (r + π∗r , . . . , 1 + π∗1), which is indeed a partition
into distinct parts since π∗r ≥ · · · ≥ π∗1. Furthermore, since π∗2i−1 = π∗2i, we see that σ
is a partition into an even number of parts, where σ2i−1 = σ2i + 1 for j = 1, . . . , r/2,
i.e., σ ∈ DE . We now define µ = (r + 1 + π∗r+1, . . . , n + π∗n). Since the last n− r parts
of π∗ are distinct and strictly decreasing, we see that µi are weakly decreasing. Thus
µ is a partition into parts greater than or equal to n. Since µ ∈ P≥n and λ ∈ P≤n, the
union µ∪ λ is the partition (µ1, . . . , µn−r, λ1, . . . , λ`(λ)) and the r-Durfee rectangle has
size (n− r)× n.

We now show that the mapping from G to P × DE is invertible. Given (ν, σ) with
ν ∈ P and σ ∈ DE , let r be the number of parts of σ. We take the r-Durfee rectangle
of ν, and we let λ be the partition consisting of the parts below the Durfee rectangle
and µ be the partition consisting of the remaining parts. Then we see that λ ∈ P≤n

and µ ∈ P≥n, where n is the width of the r-Durfee rectangle. Since each partition
has a unique r-Durfee rectangle, λ and µ are uniquely determined. Given (µ, σ) with
µ ∈ P≥n and σ ∈ DE , we can return to π∗ and τn by subtracting r + i from each part
µi and r − i + 1 from σ. Thus the whole process is invertible, which proves (4.1). �

We present the process for gradual stacks graphically as follows. With the parts of
τn, we place j dots in row j from right to left for j = 1, 2, . . . , n by forming a triangle.
Then, we place λi dots in a row below the triangle from the left to right and place πi dots
in a column to the right of the triangle. For instance, the first picture in Figure 3 is the
graphical representation of the gradual stack ((4, 3, 3, 1), (5, 5, 4, 4, 4, 1), (5, 4, 3, 2, 1)).
Take the conjugate of (5, 5, 4, 4, 4, 1), which is (6, 5, 5, 5, 2). By putting the first two 5’s
before 6, we obtain (5, 5, 6, 5, 2), which constitutes the dots to the right of the triangle
in the second picture in Figure 3, where the taken parts 5 and 5 are placed in the first
two rows, because we are going to add them to the smallest two parts of the triangle.
Then we separate the first two rows from the other rows, which are in the third picture
in Figure 3.

d t t td d t td d d t td d d dd d d d dt t t tt t tt t tt

t tttt t t tt t tt t t t tt t
d t t td d t td d d t td d d dd d d d dt t t tt t tt t tt

t tt ttt t t tt t t t tt t
d t t td d t td d d t td d d dd d d d dt t t tt t tt t tt

t tt t tt t t tt t t t tt t⇐⇒ ⇐⇒

Figure 3. n = 5, ((4, 3, 3, 1), (5, 5, 4, 4, 4, 1), (5, 4, 3, 2, 1)) ↔ ((9, 9, 7, 4, 3, 3, 1), (7, 6))
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5. A Generalization of gradual stacks with summits

Let B = (b1, b2, b3, . . .) be an infinite nonnegative integer sequence and define

Bn = (b1 + · · ·+ bn, b1 + · · ·+ bn−1, . . . , b1), hn(B) = bn + 2bn−1 + · · ·+ nb1

for any n ≥ 1. We define B-gradual stacks with summits of size k by (λ, π, Bn) ∈
P≤b1+···+bn × P≤n × {Bn}, where |λ|+ |π|+ |Bn| = k. Let

G(B) =
∞⋃

n=0

P≤b1+···+bn × P≤n × {Bn}.

Then the generating function for G(B) is∑
(λ,π,Bn)∈G(B)

q|λ|+|π|+|Bn| =
∞∑

j=0

qhj(B)

(q; q)b1+···+bj
(q; q)j

.

In this section, we show that
∞∑

j=0

qhj(B)

(q; q)b1+···+bj
(q; q)j

=
1

(q; q)∞

∞∑
n=0

qh2n(B)

(q2; q2)n

. (5.1)

Lemma 5.1. Let DE(B) be the set of partitions σ into an even number of parts such
that

σ2i−1 − σ2i = b`(σ)−2i+2,

σ2i − σ2i+1 ≥ b`(σ)−2i+1,

for i = 1, 2, . . . , `(σ)/2, where σ`(σ)+1 = 0. Then the generating function is∑
σ∈DE(B)

q|σ| =
∞∑

n=0

qh2n(B)

(q2; q2)n

.

Proof. For σ ∈ DE(B), let `(σ) = 2n. Since σi − σi+1 ≥ b2n−i+1, we see that

σi ≥ b1 + · · ·+ b2n−i+1.

Thus we can write σ as B2n+σ∗. Since σ2i−1 = σ2i+b2n−2i+2, σ∗2i−1 = σ∗2i, from which it
follows that the generating function of (B2n, σ

∗) is the right hand side. This completes
the proof. �

Theorem 5.2. Given B = (b1, b2, . . .), we have∑
(λ,π,Bn)∈G(B)

q|λ|+|π|+|Bn| =
1

(q; q)∞

∞∑
n=0

qh2n(B)

(q2; q2)n

.

Proof. By Lemma 5.1, it is sufficient to show that there is one-to-one correspondence
between G(B) and P × DE(B). We define a bijection from G(B) to P × DE(B).
The bijection will be almost identical with the bijection defined in Section 4 with τn

replaced by Bn. We omit the details. �

Theorem 5.2 is identical to (4.1) when B = (1, 1, 1, . . .).
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