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1 Introduction

This paper is concerned with the following three mock theta functions of order 3 defined by
Ramanujan,

f(q) =

∞∑

n=0

qn2

(−q; q)2n
, (1.1)

φ(q) =
∞∑

n=0

qn2

(−q2; q2)n
, (1.2)

ψ(q) =
∞∑

n=1

qn2

(q; q2)n
. (1.3)

Mock theta functions have been extensively studied, see, for example, Andrews [8], Fine
[17, Chapters 2-3], Gordon and McIntosh [18], and Ono [19]. These functions not only have
remarkable analytic properties, but also are closely connected to the theory of partitions, see,
for example, Agarwal [1], Andrews [4, 9], Andrews and Garvan [7], Andrews, Eriksson, Petrov,
and Romik [10], and Choi and Kim [14].

In this paper, we find two involutions on partitions that imply two partition identities for
Ramanujan’s third order mock theta functions φ(−q) and ψ(−q). We also give an involution for
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Fine’s partition theorem on the mock theta function f(q). These three partition identities lead
to the following two identities (1.4) and (1.5) of Ramanujan

φ(−q) − 2ψ(−q) = f(q), (1.4)

φ(−q) + 2ψ(−q) =
(q; q)∞

(−q; q)2∞
, (1.5)

where we have adopted the standard notation

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), (1.6)

(a; q)∞ =
∞∏

n=0

(1 − aqn), |q| < 1. (1.7)

The first proofs of (1.4) and (1.5) were given by Watson [20]. Fine [17, p. 60] found another
proof by using transformation formulas.

Andrews [3] defined the following functions as generalizations of Ramanujan’s mock theta
functions and he later found that these generalizations were already in Ramanujan’s “lost”
notebook [6],

f(α; q) =
∞∑

n=0

qn2−nαn

(−q; q)n(−α; q)n
, (1.8)

φ(α; q) =

∞∑

n=0

qn2

(−αq; q2)n
, (1.9)

ψ(α; q) =
∞∑

n=1

qn2

(α; q2)n
. (1.10)

When α = q, the above functions reduce to Ramanujan’s mock theta functions. Furthermore,
Andrews showed these three functions turn out to be mock theta functions for α = qr, where r is
any positive integer. More importantly, Ramanujan’s identities (1.4) and (1.5) can be extended
to the functions f(α; q), φ(α; q) and ψ(α; q),

φ(−α;−q) − (1 + αq−1)ψ(−α;−q) = f(α; q), (1.11)

φ(−α;−q) + (1 + αq−1)ψ(−α;−q) =
(q; q)∞

(−q; q)∞(−α; q)∞
, (1.12)

see Andrews [3, p. 78, Eqs. (3a)–(3b)]. Clearly, the above identities (1.11) and (1.12) specialize
to (1.4) and (1.5) by setting α = q.

The connection between Ramanujan’s third order mock theta function and the theory of
partitions was first explored by Fine. In [17, p. 55, Chapter 3], he derived the following identity
from his transformation formula:

f(q) = 1 +
∑

k≥1

(−1)k−1qk

(−q; q)k
= 1 +

1

(−q; q)∞

∑

k≥1

(−1)k−1qk(−qk+1; q)∞. (1.13)

In fact, (1.13) can be easily established from the combinatorial definition (2.21) of f(q). The
following partition identity for f(q) can be deduced from (1.13).
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Theorem 1.1 (Fine) Let pdo(n) denote the number of partitions of n into distinct parts with

the smallest part being odd. Then

(−q; q)∞f(q) = 1 + 2
∑

n≥1

pdo(n)qn. (1.14)

We obtain the following two partition identities from our involutions.

Theorem 1.2 We have

(−q; q)φ(−q) = 1 +

∞∑

n=1

pdo(n)qn +

∞∑

k=1

(−1)kqk2

. (1.15)

Theorem 1.3 We have

2(−q; q)ψ(−q) = −
∞∑

n=1

pdo(n)qn +

∞∑

k=1

(−1)kqk2

. (1.16)

Since the generating function for pdo(n) is easy to compute, it would be interesting to establish
the above relations as q-series identities without resort to partitions.

It can be seen that the above partition identities lead to Ramanujan’s identities (1.4) and
(1.5). It follows from (1.15) and (1.16) that

(−q; q)∞φ(−q) − 2(−q; q)∞ψ(−q)

= 1 +

∞∑

n=1

pdo(n)qn +

∞∑

k=1

(−1)kqk2

+

∞∑

n=1

pdo(n)qn −
∞∑

k=1

(−1)kqk2

= 1 + 2
∑

n≥1

pdo(n)qn

= (−q; q)∞f(q),

where the last equality is a consequence of (1.14). So we obtain the identity (1.4) by dividing
both sides by (−q; q)∞.

In view of (1.15) and (1.16), we find

(−q; q)∞φ(−q) + 2(−q; q)∞ψ(−q)

= 1 +
∞∑

n=1

pdo(n)qn +
∞∑

k=1

(−1)kqk2

−
∞∑

n=1

pdo(n)qn +
∞∑

k=1

(−1)kqk2

= 1 + 2
∑

k≥1

(−1)kqk2

=
(q; q)∞

(−q; q)∞
,
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where the last equality follows from Gauss’ identity

∞∑

k=−∞

(−1)kqk2

=
(q; q)∞

(−q; q)∞
. (1.17)

This yields Ramanujan’s identity (1.5) after dividing both sides by (−q; q)∞.

In fact, we can deduce two partition identities for φ(−q) and ψ(−q) analogous to Fine’s
identity for f(q) by employing the following partition theorem of Bessenrodt and Pak [12] which
extends a theorem of Fine in [16, Theorem 5]. It is worth mentioning that there are other
involutions which also imply this partition theorem, see, Berndt, Kim and Yee [11], Chen and
Liu [13], and Yee [21, 22].

Theorem 1.4 (Bessenrodt and Pak) Let pe
do(n) (po

do(n)) denote the number of partitions of

n into even (odd ) distinct parts with the smallest part being odd. Then

∞∑

n=1

[pe
do(n) − po

do(n)]qn =

∞∑

k=1

(−1)kqk2

. (1.18)

In light of Theorem 1.4, we can restate Theorems 1.2 and 1.3 as follows.

Theorem 1.5 We have

(−q; q)∞φ(−q) = 1 + 2
∑

n≥1

pe
do(n)qn. (1.19)

Theorem 1.6 We have

(−q; q)∞ψ(−q) = −
∑

n≥1

po
do(n)qn. (1.20)

This paper is organized as follows. In Section 2, we provide an involution for Fine’s theorem
1.1. In Sections 3 and 4, we give two involutions that lead to partition identities (1.15) and
(1.16) for φ(−q) and ψ(−q). Section 5 is devoted to partition identities for f(αq; q), φ(−αq;−q),
and ψ(−αq;−q) based on our involutions, which imply Andrews’ identities (1.11) and (1.12).

2 An involution for Fine’s theorem

In this section we give an involution for Fine’s partition theorem. Let P denote the set of
partitions, and let D denote the set of partitions with distinct parts. The rank of a partition
λ, denoted by r(λ), is defined as the largest part minus the number of parts, as introduced
by Dyson [15]. The empty partition is assumed to have rank zero. A pair of partitions (λ, µ)
is called a bipartition of n if |λ| + |µ| = n. Fine [17, p.49] found the following combinatorial
interpretation for f(q):

f(q) = 1 +
∑

λ∈P

(−1)r(λ)q|λ|, (2.21)

from which we can construct an involution to prove Theorem 1.1.

4



Proof of Theorem 1.1. For a bipartition (λ, µ) ∈ P ×D , let s(µ) denote the smallest part of µ,
m(λ) denote the number of occurrences of the largest part of λ and l(λ) denote the number of
(positive) parts of λ. Let U be the set of two classes of bipartitions (∅, µ) and bipartitions (λ, µ),
where λ = (1, 1, . . . , 1) and s(µ) > l(λ), and let V be the set of bipartitions (λ, µ) ∈ P ×D of
n except for bipartitions in U . We shall construct an involution Υ on the set V . The following
two cases are considered.

(1) If s(µ) ≤ m(λ), then delete the smallest part in µ and add 1 to each of the first s(µ) parts
λ1, λ2, . . . , λs(µ) of λ.

(2) If s(µ) > m(λ), then subtract 1 from each of the first m(λ) parts λ1, λ2, . . . , λm(λ) of λ
and add a part of size m(λ) to µ.

It is easy to check that the above mapping is an involution. Moreover, Υ changes the parity
of the rank of λ in V .

Let (λ, µ) be a bipartition in U . It is easily seen that if l(λ) is even, then r(λ) is odd. In this
case, we obtain a bipartition (∅, ν) with s(ν) being even by moving all the parts of λ to µ as a
single part which cancels with (λ, µ). In the case that l(λ) is odd, we see that r(λ) is even. Thus
we get bipartition (∅, ν) with s(ν) being odd by moving all the parts of λ to µ as a single part.
Now, we are left with two types of bipartitions (∅, ν) such that s(ν) is odd, which correspond to
the right side of (1.14). This completes the proof.

Here is an example. There are eight bipartitions (λ, µ) ∈ P ×D of 4 with the rank of λ being
even,

((3), (1)), ((2, 1), (1)), ((1, 1, 1), (1)), ((1), (2, 1)), ((2, 2), ∅), ((1), (3)), (∅, (3, 1)), (∅, (4)).

Meanwhile, there are six bipartitions (λ, µ) ∈ P ×D of 4 with the rank of λ being odd,

((4), ∅), ((3, 1), ∅), ((2, 1, 1), ∅), ((2), (2)), ((1, 1), (2)), ((1, 1, 1, 1), ∅),

and there is only one partition of 4 into distinct parts with the smallest part being odd, i.e.,
(3, 1).

The involution Υ gives the following correspondence:

((3), (1)) ↔ ((4), ∅), ((2, 1), (1)) ↔ ((3, 1), ∅), ((1, 1, 1), (1)) ↔ ((2, 1, 1), ∅),

((1), (2, 1)) ↔ ((2), (2)), ((2, 2), ∅) ↔ ((1, 1), (2)).

For the remaining four bipartitions ((1), (3)), (∅, (3, 1)), (∅, (4)), and ((1, 1, 1, 1), ∅), we can
transform ((1), (3)) to (∅, (3, 1)) and transform (∅, (4)) to ((1, 1, 1, 1), ∅).

3 A partition identity for φ(−q)

In this section, we shall prove the partition identity for φ(−q) as stated in Theorem 1.2. Let
us begin with an interpretation of φ(−q) given by Fine [17, p.49]. Let DO denote the set of
partitions with distinct odd parts. Fine showed that

φ(−q) = 1 +
∑

λ∈DO

(−1)
λ1+1

2 q|λ|. (3.22)
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Note that Choi and Kim found another interpretation of φ(q) in terms of n-color partitions [14,
Theorem 3.1].

Hence we have

(−q; q)∞φ(−q) =
∑

µ∈D

q|µ| +
∑

(λ,µ)∈DO×D

(−1)
λ1+1

2 q|λ|+|µ|. (3.23)

In order to deal with the sum
∑

k≥1(−1)kqk2

on the right hand side of (1.15), special attention

has to be paid to certain bipartitions Qk = (2k − 1, 2k − 3, . . . , 1), which is a partition of k2.

Let so(µ) (se(µ)) denote the smallest odd (even) part of µ, and let W denote the set of
bipartitions (λ, µ) of n in DO ×D except for those of the form (Qk, ∅) and those bipartitions
(λ, µ) = ((1), µ) with so(µ) + 1 < se(µ). Obviously, there is a cancellation between the set of
bipartitions (λ, µ) = ((1), µ) with so(µ) + 1 < se(µ) and the set of partitions into distinct part
with the smallest part being even in the first summand of (3.23). Consequently, the remaining
partitions for the first summand in (3.23) give the sum

∑∞
n=1 pdo(n)qn in (1.15).

Finally, to prove Theorem 1.2, we are required to construct an involution on W , denoted by
Φ, which changes the parity of (λ1 + 1)/2.

The involution Φ. For a partition λ ∈ DO, let c(λ) denote the maximum number of consecutive
odd parts of λ starting with the first part. For example, let λ = (11, 9, 7, 3), then c(λ) = 3. The
involution Φ consists of two parts.

Part I of Φ. If 2c(λ) ≥ se(µ), then remove the smallest even part from µ, and add 2 to each of
the first se(µ)/2 parts λ1, λ2, · · · , λse(µ)/2 of λ.

If 2c(λ) < se(µ) and λc(λ) > 1, then subtract 2 from each of the first c(λ) parts λ1, λ2, . . . , λc(λ)

of λ, and add a part of size 2c(λ) to µ.

It is easy to see the above process is well defined and bipartitions which can not be paired
by the involution are those bipartitions (Qk, µ) where se(µ) > 2k. This is the task of the second
part of the involution.

Part II of Φ. If se(µ) > so(µ) + (2k − 1), then delete the smallest odd part of µ and delete the
part 2k − 1 from Qk. Then add an even part of size so(µ) + (2k − 1) to µ.

If se(µ) ≤ so(µ) + (2k − 1), then split the smallest even part of µ into two parts, one is of
size 2k + 1 and the other is of size se(µ) − (2k + 1). Observe that se(µ) − (2k + 1) is smaller
than so(µ). Then add a part of size 2k + 1 to Qk and add a part of size se(µ) − (2k + 1) to µ.

So we have obtained an involution Φ. It is readily seen that this involution changes the
parity of (λ1 + 1)/2.

For example, when n = 7, there are 6 bipartitions (λ, µ) ∈ DO ×D with λ1 ≡ 1 mod 4,

((5), (2)), ((5, 1), (1)), ((1), (6)), ((1), (4, 2)), ((1), (3, 2, 1)), ((1), (5, 1)).

On the other hand, there are 5 bipartitions (λ, µ) ∈ DO ×D with λ1 ≡ 3 mod 4, that is,

((7), ∅), ((3, 1), (2, 1)), ((3, 1), (3)), ((3), (4)), ((3), (3, 1)),

and there is only one partition of 7 into distinct parts with the smallest part being even, namely,
(5, 2).
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The involution Φ gives the following pairs of bipartitions:

((5), (2)) ↔ ((7), ∅), ((5, 1), (1)) ↔ ((3, 1), (2, 1)), ((1), (6)) ↔ ((3, 1), (3)),

((1), (4, 2)) ↔ ((3), (4)), ((1), (3, 2, 1)) ↔ ((3), (3, 1)).

For the remaining bipartition ((1), (5, 1)), we can construct a partition into distinct part with
smallest part being even, that is, (5, 2).

4 A partition identity for ψ(−q)

The aim of this section is to prove the partition identity (1.16) for ψ(−q). There is also a
combinatorial interpretation of ψ(−q) given by Fine [17, p.49]. Let OC denote the set of
partitions of n into odd parts without gaps. Fine [17, p.49] showed that

ψ(−q) =
∑

λ∈OC

(−1)l(λ)q|λ|. (4.24)

Note that Agarwal [1, 2] found two combinatorial interpretations for ψ(q) by using q-difference
equations.

Let D0 denote the set of partitions with distinct parts where the zero part is allowed. So the
number of partitions of n in the set D0 is twice the number of partitions of n in the set D. Let
R denote the set of bipartitions (λ, µ) ∈ OC×D0 except for those of the form (Qk, ∅) and those
bipartitions (λ, µ) = ((1), µ) with se(µ) + 1 < so(µ). It is clear that these excluded bipartitions
correspond to the right hand side of (1.16). In order to prove (1.16), it suffices to construct an
involution Ψ on the set R.

The involution Ψ. Let rp(λ) be the largest part of λ which occurs at least twice in λ, where we
let rp(λ) = ∞ if λ has no repeated parts. The involution Ψ consists of three parts.

Part I of Ψ. If so(µ) > rp(λ), then delete one part of size rp(λ) from λ and add it as a part to
µ. On the other hand, if so(µ) ≤ rp(λ), then move a part of size so(µ) from µ to λ.

The above process is well defined and the bipartitions not covered by this case are those
bipartitions (Qk, µ) for which so(µ) > 2k − 1. We continue to describe the second part of Ψ.

Part II of Ψ. Assume that (Qk, µ) is a bipartition such that so(µ) > 2k − 1. If µ has a zero
part, then we get a bipartition (Qk−1, µ

∗) where µ∗ is obtained from µ by adding a part of size
2k − 1 and deleting the zero part.

If µ has no zero part and so(µ) = 2k + 1, then we get a bipartition (Qk+1, µ
∗) where µ∗ is

obtained from µ by removing a part of size 2k + 1 and adding a zero part.

It can be seen that the above mapping is well defined except for those bipartitions (Qk, µ)
such that µ has no zero part and so(µ) > 2k + 1. Indeed, it is the object of the third part of Ψ
to deal with these remaining bipartitions.

Part III of Ψ. If so(µ) > se(µ) + (2k− 1), then delete the smallest even part of µ and delete the
part 2k − 1 from Qk, and add an odd part of size se(µ) + (2k − 1) to µ.

If so(µ) ≤ se(µ) + (2k − 1), then split the smallest odd part of µ into two parts, one is of
size 2k + 1 and the other is of size so(µ) − (2k + 1), which is less than se(µ), add a part of size
2k + 1 to Qk and add a part of size so(µ) − (2k + 1) to µ.
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It is routine to check that the map Ψ is an involution and it changes the parity of the length
of λ.

For example, when n = 4 there are six bipartitions (λ, µ) ∈ OC ×D0 such that l(λ) is odd,

((1), (3)), ((1, 1, 1), (1)), ((1, 1, 1), (1, 0)), ((1), (2, 1)), ((1), (2, 1, 0)), ((1), (3, 0)).

In the other case, there are five bipartitions (λ, µ) ∈ OC ×D0 such that l(λ) is even,

((3, 1), (0)), ((1, 1, 1, 1), ∅), ((1, 1, 1, 1), (0)), ((1, 1), (2)), ((1, 1), (2, 0)),

and there is one partition of 4 with distinct parts such that the smallest part is odd, i.e., (3, 1).

The involution Ψ is illustrated below:

((1), (3)) ↔ ((3, 1), (0)), ((1, 1, 1), (1)) ↔ ((1, 1, 1, 1), ∅), ((1), (2, 1)) ↔ ((1, 1), (2))

((1), (2, 1, 0)) ↔ ((1, 1), (2, 0)), ((1, 1, 1), (1, 0)) ↔ ((1, 1, 1, 1), (0)).

For the remaining bipartition ((1), (3, 0)), we can form a partition into distinct parts with small-
est part being odd, that is, (3, 1).

As another example, the involution Ψ also gives the following correspondence:

((9, 7, 5, 3, 1), (16, 15, 8, 6, 2)) ↔ ((7, 5, 3, 1), (16, 15, 11, 8, 6)).

5 Andrews’ generalizations

This section is devoted to proofs of Andrews’ identities (1.11) and (1.12). First, we give com-
binatorial interpretations for f(αq; q), φ(−αq;−q), and ψ(−αq;−q) by extending the arguments
of Fine. More precisely, we have the following partition theoretic interpretations.

Theorem 5.1 We have

f(αq; q) = 1 +
∑

λ∈P

(−1)r(λ)αλ1q|λ|, (5.25)

φ(−αq;−q) = 1 +
∑

λ∈DO

(−1)
λ1+1

2 α
λ1+1

2
−l(λ)q|λ|, (5.26)

ψ(−αq;−q) =
∑

λ∈OC

(−1)l(λ)αl(λ)−
λ1+1

2 q|λ|. (5.27)

Proof. Recall that

f(αq; q) =

∞∑

n=0

qn2

αn

(−q; q)n(−αq; q)n
,

it is easy to check that (5.25) follows from the Durfee square dissection of a partition λ ∈ P , see
Figure 1.

From the definition of φ(α; q), we see that

φ(−αq;−q) =
∞∑

n=0

(−1)nqn2

(−αq2; q2)n
.
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αnqn2

α αα· · · −α · · · −α −α

−1

−1

−1
··
·

1/(−αq; q)n

1
(−q;q)n

Figure 1: The Durfee square dissection.

The term (−1)nqn2

corresponds to a partition π of the form Qn = (2n − 1, 2n − 3, . . . , 3, 1),
which has weight (−1)(π1+1)/2. Moreover, 1/(−αq2; q2)n is the generating function for partitions
σ with at most n even parts and with no odd parts. The weight of such a partition is endowed
with weight (−α)σ1/2.

Define λ = π+σ = (π1 +σ1, π2 +σ2, . . .). We see that λ ∈ DO, namely, λ is a partition into
distinct odd parts. Now, the weight of λ equals (−1)(λ1+1)/2α(λ1+1)/2−l(λ). So (5.26) has been
verified.

For the combinatorial interpretation for ψ(−αq;−q), we note that

ψ(−αq;−q) =

∞∑

n=1

(−1)nqn2

(−αq; q2)n
.

The summand can be expanded as follows

(−1)nqn2

(−αq; q2)n
=

−q

1 + αq

−q3

1 + αq3
· · ·

−q2n−1

1 + αq2n−1

= (−q + αq1+1 − α2q1+1+1 · · · )(−q3 + αq3+3 − α2q3+3+3 + · · · )

· · · (−q2n−1 + αq2(2n−1) − α2q3(2n−1) · · · ).

It follows that the summand (−1)nqn2

/(−αq; q2)n is the generating function of partitions λ in
OC with the largest part not exceeding 2n − 1 and with weight (−1)l(λ)αl(λ)−(λ1+1)/2. This
proves (5.27).

We can extend Fine’s partition theorem to Andrews’ function f(αq; q). It can be seen that
the involution Υ in Section 2 preserves the quantity λ1 + l(µ). Therefore, from (5.25) we deduce
the following partition theorem.

Theorem 5.2 Let Pdo denote the set of partitions into distinct parts with the smallest part being

odd. Then

(−αq; q)∞f(αq; q) = 1 + 2
∑

ν∈Pdo

αl(ν)q|ν|. (5.28)
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Next, we give a generalization of Theorem 1.2 to φ(−αq;−q). By the combinatorial inter-
pretation (5.26), we find that

(−αq; q)∞φ(−αq;−q) = (−αq; q)∞ +
∑

(λ,µ)∈DO×D

(−1)
λ1+1

2 α
λ1+1

2
−l(λ)+l(µ)q|λ|+|µ|. (5.29)

Moreover, we observe that the involution Φ in Section 3 preserves the quantity of

l(µ) − l(λ) +
λ1 + 1

2
.

Hence we have

∑

(λ,µ)∈DO×D

(−1)
λ1+1

2 α
λ1+1

2
−l(λ)+l(µ)q|λ|+|µ| = −

∑

ν∈Pde

αl(ν)q|ν| +
∞∑

k=1

(−1)kqk2

, (5.30)

where Pde denotes the set of partitions into distinct parts with the smallest part being even. On
the other hand,

(−αq; q)∞ = 1 +
∑

ν∈Pde

αl(ν)q|ν| +
∑

ν∈Pdo

αl(ν)q|ν|, (5.31)

Therefore, from (5.30) and (5.31) we deduce the following partition identity for φ(−αq;−q).

Theorem 5.3 We have

(−αq; q)∞φ(−αq;−q) = 1 +
∑

ν∈Pdo

αl(ν)q|ν| +

∞∑

k=1

(−1)kqk2

. (5.32)

We now proceed to give a generalization of Theorem 1.3 to ψ(−αq;−q). By the combinatorial
interpretation (5.27), we obtain that

(−α; q)∞ψ(−αq;−q) =
∑

(λ,µ)∈DO×D0

(−1)l(λ)αl(λ)−
λ1+1

2
+l(µ)q|λ|+|µ|. (5.33)

It can be verified that the involution Ψ in Section 4 preserves the quantity of

l(λ) −
λ1 + 1

2
+ l(µ)

and it changes the parity of l(λ). So we get the following partition theorem.

Theorem 5.4 We have

(−α; q)∞ψ(−αq;−q) = −
∑

ν∈Pdo

αl(ν)q|ν| +

∞∑

k=1

(−1)kqk2

. (5.34)
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Based on the above partition theorems for f(αq; q), φ(−αq;−q) and ψ(−αq;−q), we can
deduce Andrews’ generalizations of Ramanujan’s identities. More precisely, it follows from
(5.32) and (5.34) that

(−αq; q)∞φ(−αq;−q) − (−α; q)∞ψ(−αq;−q)

= 1 +
∑

ν∈Pdo

αl(ν)q|ν| +

∞∑

k=1

(−1)kqk2

+
∑

ν∈Pdo

αl(ν)q|ν| −
∞∑

k=1

(−1)kqk2

= 1 + 2
∑

ν∈Pdo

αl(ν)q|ν|

= (−αq; q)∞f(αq; q),

where the last equality is a consequence of identity (5.28). Dividing both sides by (−αq; q)∞
yields

φ(−αq;−q) − (1 + α)ψ(−αq;−q) = f(αq; q).

Hence we deduce the identity (1.11) by replacing αq by α.

According to (5.32) and (5.34), we have

(−αq; q)∞φ(αq;−q) + (−α; q)∞ψ(αq;−q)

= 1 +
∑

ν∈Pdo

αl(ν)q|ν| +

∞∑

k=1

(−1)kqk2

−
∑

ν∈Pdo

αl(ν)q|ν| +

∞∑

k=1

(−1)kqk2

= 1 + 2
∞∑

k=1

(−1)kqk2

=
(q; q)∞

(−q; q)∞
,

where the last equality follows from Gauss’ identity (1.17). Dividing both sides by (−αq; q)∞,
we obtain

φ(−αq;−q) + (1 + α)ψ(−αq;−q) =
(q; q)∞

(−q; q)∞(−αq; q)∞
,

we arrive at the identity (1.12) by replacing αq by α.

To conclude, we note that our approach can be viewed as combinatorial proofs of Andrews’
identities in the forms multiplied by the factor (−αq; q)∞.
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