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Abstract. Let e be the entries in the classical Euler’s difference table. We consider the
array dt = ek /k! for 0 < k < n, where d* can be interpreted as the number of k-fixed-
points-permutations of [n]. We show that the sequence {d* }o<x<, is 2-log-concave and
reverse ultra log-concave for any given n.
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1 Introduction

Euler introduced the difference table (e*)o<z<, defined by e = n! and

er Tl =el —ely, (1.1)

for 1 < k < n; see [5]. The combinatorial interpretation of the numbers e was found by

Dumont and Randrianarivony [6]. Clarke, Han and Zeng [5] further gave a combinatorial
interpretation of the g-analogue of Euler’s difference table, and this interpretation has
been extended by Faliharimalala and Zeng [8, 9] to the wreath product Cy S, of the
cyclic group with the symmetric group.

It is easily seen from the recurrence (1.1) that k! divides e®. Thus we can define
the integers d* = e /k!. Rakotondrajao [14] has shown that d* counts the number of
k-fixed-points-permutations of [n], where a permutation m € &,, is called k-fixed-points-
permutation if there are no fixed points in the last n — k positions and the first &£ elements
are in different cycles. Based on this combinatorial interpretation, Rakotondrajao [15]
has found bijective proofs for the following two recurrence relations for 0 < k <n —1,

" = (n=10d*_ +(n—k-1d"_,, (1.2)
¢ = ndt_ —d"7L (1.3)

Notice that df = 1. Recently, Eriksen, Freij and Wistlund [7] have generalized these
formulas to fixed point A-colored permutations. Employing (1.2) and (1.3), we can easily
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derive the following recurrence relation for 0 < k <n —1,

df =di=1+ (n—k)dk_,. (1.4)

n

Using the above recurrence relations (1.2) (1.3) and (1.4), we shall prove that the sequence
{d*}o<x<n has higher order log-concave properties. To be more specific, we shall show
that this sequence is 2-log-concave and reverse ultra log-concave for any n > 1.

2 2-log-concavity

In this section, we shall show that the sequence {d* }o<j<, is 2-log-concave for any n > 1.
Recall that a sequence {ay }r>o of real numbers is said to be log-concave if a} > aj a1
for all k > 1; see Stanley [16] and Brenti [2]. From the recurrence relation (1.4), it is easy
to prove by induction that the sequence {d*}o<j<, is log-concave.

Theorem 2.1 For1l < k <n, we have
(dk)2 > dk—ldk-i-l
that is, the sequence {d~}o<r<n is log-concave.

The notion of high order log-concavity was introduced by Moll [13]; see also, [10].
Given a sequence {ay }x>0, define the operator £ as £{ay} = {bx}, where

2
by = Qp — Ap—10k41-

The log-concavity of {a,} becomes the positivity of £{ax}. If the sequence £{ax} is not
only positive but also log-concave, then we say that {a} is 2-log-concave. In general, we
say that {az} is [-log-concave if £{a;} is positive, and that {a;} is infinite log-concave
if £a;} is positive for any [ > 1. From numerical evidence, we pose the following
conjecture.

Conjecture 2.2 The sequence {d* }o<j<n is infinitely log-concave.

Recently, Briandén [1] and Cardon [3] have independently proved that if a polynomial
has only real and nonpositive zeros, then its Taylor coefficients form an infinite log-
concave sequence. However, this is not the case of the polynomials 5 d*2*. For example,
for n = 2, the polynomial 2% 4+ + 1 does not have real roots. Nevertheless, we shall show
that the sequence {d*} is 2-log concave in support of the general conjecture.

Theorem 2.3 The sequence {dX}o<p<n is 2-log-concave. In other words, for n > 4 and
2<k<n-—2, we have

((dh)? = di=tdlm)? — ((dE1)? — di=2dh) ((d5H)? — dhdb+?) > 0. (2.1)



The idea to prove Theorem 2.3 may be described as follows. As the first step, we

dk

by
applying the recurrence relations (1.2), (1.3), (1.4) and the recurrence relation presented
in the following Lemma 2.4. Then Theorem 2.3 is equivalent to the assertion that f > 0

on the interval

reformulate the left hand side of the above inequality (2.1) a cubic function f on

n—k n—k n-—k

I =
[n+ ,m+ - + . 1,

since it can be verified that forn >4 and 2 <k <n — 2,

n—k _df, n—k n-—k
< <n+ + )

= Tk 2
n dr n n

(2.2)

Moreover, when f(z) is considered as a continuous function on z, we will be able to show

that f'(z) <0 for z € I and
f<n+n;k+"_k> > 0.

n2

Hence we deduce that f > 0 on the interval I so that Theorem 2.3 is immediate.

As mentioned above, the following recurrence relation will be needed in the proof of
Theorem 2.3.

Lemma 2.4 For1l < k <n, we have
A"t = (k+1)(n—k)d"™ — (n — 2k + 1)d". (2.3)
Proof. First, it is easy to establish the following recurrence relation for 1 < k <n,
dFt = kdt — kL (2.4)
By (1.2) and (1.4), we have
it = df o —(n—k+1)dE
= (n+D)dt —dl —(n—k+1)d:
= kd, — d,73,
as claimed. By (1.4), (2.4), for 1 <k < n, we find
&= (k+1)dE —db

1 1
_ k+1 k k—1
n n—kn n—k n n
= (k4 1)d"+! — L

n—k" n—-kF"
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Consequently,
A"t = (k+1)(n—k)d™ — (n — 2k + 1)d",
as desired. |

In order to prove (2.2), we first give a lower bound for d%_, /d~.

Lemma 2.5 Forn>1and 1 <k <n—1, we have

d* —k
el zn+"n . (2.5)

n

Proof. We proceed by induction on n. It is clear that (2.5) holds for n = 1 and n = 2.
We now assume that (2.5) holds for positive integers less than n. By the recurrence (1.2),
we have

di B ndt + (n —k)d:_,

n

dy, dy,
di_
=n+(n—k) dkl
k
=n+(n—k) s

dr_,
(n—l)—i—(n—k—l)dZ <n
n—1
So it suffices to check that
Iy > k—1
n — —
dy_y
Since n > 3, by the inductive hypothesis, we have
n— > _ 2
dy_y TR
] k
= n—1-—
n—2
> n—k—1
as required. |

Next we give an upper bound for d¥ ., /d~.



Lemma 2.6 Forn >4 and 2 < k <n — 2, we have

d —k n—k
ntl oy MR TR (2.6)

k 2
dr n n

Proof. 1t follows from the recurrence (1.2) that

t dt_
d;f:l =n+(n—k) dfll
dk
=n+(n—k) n-l

(n—1)dy_y + (n—k—1)d;_,

Thus (2.6) can be rewritten as

d" n?
—1 —k—1)22>
=D+ k=G> L
that is,
dy_y
o <(n+1)(n—k-1). (2.7)
n—2
By recurrence (1.3) for 2 < k < n — 2, we see that
k
dﬁlgn—L
dn—2
which implies (2.7). This completes the proof. |

We are now ready to give the proof of Theorem 2.3.

Proof. 1t is easy to check that that the theorem holds for n = 4,5,6 and 2 < k <n — 2.
So we may assume that n > 7.
We claim that the left hand side of (2.1) can be expressed as a cubic function f on

k
dn+l

i+ By the recurrences (1.2), (1.3), (1.4) and (2.3), we can derive the following relations,

2= (n—k+1)(n—k+3)d — (n— 2k +3)d" .
dy ' =dyyy — (n—k+1)dy,

1

a;" = (k+1)(n— k)

(dnsr = kdly)

k+2 _ 1 o vk . b
o S DR k=D =k (772 D+ (4 )




It follows that (2.1) can be rewritten as
A-(Ca(n. ) (dhy)" + Colns ) (i) (d5) + Culm, ) (i) () + Coln, B) (d8)") > 0,

where
_ dy
n (k+12n—k2(k+2)(n—k—1)

Cs(n, k) = —n? — 5n + 6k + 6,

Cy(n, k) = n® + n’k + 5n* + 3nk — 10k*> + n — 16k — 6,

Ci(n, k) = n® — 2n + 14k + 14k* + n® + 10nk® — 10n*k — n’k — 3nk,
Co(n, k) = — 12Kk% — 12k* + 10nk + 18nk? — In’k + n?k* — n’k.

Since df are positive integers, it suffices to show that

&\’ dr N\ dr
C’g(ﬂ,k‘)( ;;1) +02(n,k:)< ;; ) +Cl(n,k:)< ;+ ) + Co(n, k) > 0. (2.8)

n

We now consider the function
f(z) = Cs(n, k)z® 4+ Co(n, k)z* + Cy(n, k)x + Cy(n, k),

with
f'(x) = 3C5(n, k)z* + 2C5(n, k)x + Cy(n, k). (2.9)

We are going to show that f'(z) < 0, for 2 < x < n — 1. As will be seen, the quadratic
function f'(z) has a zero in the interval [—1, k] and a zero in the interval [k, n]. At the
point x = 1, we have

f'(=1) = —(k + 1)(n® + 12n* — 10nk + 19n — 34k — 30).
Since for n > 7 and 2 < k < n — 2, we find

n® +12n* — 10nk + 19n — 34k — 30
>nd +12n(k + 2) + 19n — 30 — 10nk — 34k
> (n® — 30) + 2nk + (43n — 34k) > 0.

This yields that f'(—1) < 0. Similarly, for z = k, we obtain that

(k)= (k+1)(n—k)(n*+n+2k—2)>0.



Moreover, for x = n, we have
f'(n) = —(n — k)(n® 4 4n* — 10nk + 14k — 21n + 14). (2.10)
To prove f'(n) < 0, it is sufficient to show that for 2 < k <n — 2,
n® +4n® — 10nk + 14k — 21n + 14 > 0.
We have two cases for the ranges of k. For 2 < k < n — 3, we have
n® +4n® — 10nk + 14k — 2In+ 14 = n ((n — 3)> + 10(n — k — 3)) + 14k + 14 > 0,
Meanwhile, for k =n — 2,
n® 4+ 4n®* — 10nk + 14k — 21n+ 14 = n(n — 3)> +4n — 14 > 0.

Thus f'(n) < 0 is valid for 2 < k < n — 2. Then we reach the conclusion that f’(x) has a
zero in the interval [—1, k] and a zero in the intervallk, n].

We continue to demonstrate that f'(z) < 0 in the interval /. By Lemma 2.5, for £ > 2

we have "

n—=k
R L B
dk n

which means that f’(x) has no zero on the interval I. Since n > k + 2, it is easily seen
that

Cs(n, k) = —(n* + 5n — 6k — 6)
< —((k+2)*+5(k+2) — 6k — 6)
< —(K*+3k+8) <0.

Since f'(n) < 0, we see that f’(x) < 0 in the interval I, as expected. In other words, f(z)
is strictly decreasing on this interval.

Up to now, we have shown that f(x) is strictly decreasing on the interval I = [n +
n=k 4+ 2=k 4 2=E] 0 So it remains to prove that

f(n+n;k+n_k) > 0.

n2

Since

kh
/N
3
+
S
|
ol
+
S
|
o
N——
I
>
=
=
|
=
[\

where
h(k) = (—10n* — 26n® — 28n% — 18n — 6)k? + (—n® + 20n° + 27n* + 19n® — Tn — 6)k
+ (0" — 10n° — 4n° — 4n* + 9n® + Tn? + 6n).



Clearly, the proof will be complete as long as we can show that h(k) > 0 for n > 7 and
2<k<n-2

Regard h(x) as a continuous function on z, that is,
h(x) = (—=10n* — 26n* — 28n? — 18n — 6)2* + (—n°® + 20n° + 27n* + 19n* — Tn — 6)x
+ (n" — 10n° — 4n® — 4n* 4+ 9n® + Tn? + 6n).

Since the leading coefficient —10n* — 26n® — 28n? — 18n — 6 of h(x) is negative, we only
need to prove that h(2) > 0 and h(n — 1) > 0. For n > 7, we have

h(n —1) = n(n® — 3n* +2n® + 2n? + 2n + 1)
=n(n’(n—1)(n—2)+2n"+2n+1) >0,
and
h(2) =n" — 12n° + 36n° + 10n* — 57n* — 105n* — 80n — 36
=n’(n —5)(n—7)+n*(n—6)+16n*(n — 7) + 55n*(n — 7)
+ 80n(n — 1) + 200n* — 36 > 0.

In summary, we have confirmed that h(k) > 0 for n > 7 and 2 < k < n — 2. This
completes the proof. |

3 The reverse ultra log-concavity

This section is concerned with the reverse ultra log-concavity of d*. Recall that sequence
{ar}o<k<n is called ultra log-concave if {a;/(})} is log-concave; see Liggett [12]. This
condition can be restated as

k(n —k)a; — (n —k +1)(k + 1)aj_1a+1 > 0. (3.1)

It is well known that if a polynomial has only real zeros, then its coefficients form an
ultra log-concave sequence. As noticed by Liggett [12], if a sequence {aj}o<k<n is ultra
log-concave, then the sequence {klay}o<k<n is log-concave.

In comparison with ultra log-concavity, a sequence is said to be reverse ultra log-
concave if it satisfies the reverse relation of (3.1), that is,

k(n —k)az — (n—k+1)(k+ ap_1az41 < 0. (3.2)

Chen and Gu [4] have shown the Boros-Moll polynomials have this reverse ultra log-
concave property. We shall show that the sequence {d* }o<<, also possesses this property.
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Theorem 3.1 For1l <k <n—1, we have

g1 gkt (dk )2
Ty 2 |y |

Go) o Gr) A\ G)

(n—k+1)(k + 1) dE > k(n — k) (d8)”. (3.3)

or equivalently,

Proof. According to the recurrence relations (1.4) and (2.3), we find that (3.3) can be
reformulated as

k k

(n—k+1) (dg—gl)z —(n—k+1(n+1) (dggl) + k(2n — 2k +1) > 0. (3.4)

The discriminant of the quadratic polynomial of the left side of (3.4) in d¥ ., /dF equals
A=(n—k+1)(n+1))>—4k(n —k+1)(2n — 2k +1).
We claim that A >0for 1 <k <n-—1. Put
f(k) = A =8k* — (n® 4+ 10n + 5)k + (n* + 3n® + 3n + 1).
Since n > k + 1, we have
f'(k) =16k — (n* + 10n + 5)
= — (n* +10n — 16k + 5)
< — ((k+1)*+10(k+1) — 16k +5)
=—(k—2)*-12<0,
which implies that f(k) is monotone decreasing for 1 < k < n — 1. Furthermore,
fln—1)=2((n—2)*+3) > 0.

Thus, A > 0 for 1 < k < n — 1. Consequently, the quadratic function has two distinct
real zeros. If we can show that for 1 < k <n—1, d% ,/d¥ is larger than the maximal
zero, then (3.4) holds since n — k + 1 > 0. Thus we still have to show that

dﬁ+1>(n—k+1)(n+1)+ﬂ_n+1 VA
dk 2(n —k +1) 2 2(n —k+1)

(3.5)

In view of (2.5), we see that (3.5) can be deduced from the following inequality

n—k>n+1jL VA |
) 2(n—k+1)

n +



which is equivalent to
(n—k+1)(n*+n —2k) > nVA,

Since both sides are positive, we can transform the above relation into the following form

((n—k+1)(n® +n — 2k))* > nA.

Evidently,
((n—k+1)(n>+n—2k))* —n?A
=(n—k+1)(4n°k@2n —2k+1) —4dk(n —k+ 1)(n* + n — k))
=4k(n—k+1)(n—k)n*—-n+k—1)>0,

for 1 < k <n — 1. This completes the proof. [ |
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