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Abstract

We show that Han’s bijection when restricted to permutations can be carried
out in terms of the major code and inversion code. In other words, it maps a
permutation π with a major code (s1, s2, . . . , sn) to a permutation σ with an in-
version code (s1, s2, . . . , sn). We also show that the fixed points of Han’s map can
be characterized by the strong fixed points of Foata’s second fundamental trans-
formation. The notion of strong fixed points is related to the partial Foata maps
introduced by Björner and Wachs. We further give a construction of a class of
Mahonian statistics on permutations in terms of the major code.

Keywords: Foata’s bijection, Mahonian statistics, major code, inversion code

AMS Subject Classifications: 05A05, 05A15, 05A19

1 Introduction

In his combinatorial proof of the fact that the Z-statistic introduced by Zeilberger and
Bressoud [15] is Mahonian, Han [8] constructed a Foata-style bijection on words. Let
H denote Han’s bijection when restricted to permutations. Throughout this paper, by
Han’s bijection we always mean the map H. We shall show that the map H can be carried
out exactly by the major code and inversion code. The major code of a permutation can
be described in terms of cyclic intervals, a notion also introduced by Han [9] in his study
of the joint distribution of the excedance number and Denert’s statistics. Note that the
major code in the context of this paper is different from the major index table defined
by Skandera [14], which is also called the major code by Dzhumadil’daev [4] and called
Mc-code by Hivert, Novelli, and Thibon [11], see also Han [10].

Using the code representation, we show that the fixed points of Han’s map can be
characterized by the strong fixed points of Foata’s second fundamental transformation.
The notion of strong fixed points is related to the partial Foata maps introduced by
Björner and Wachs [1]. Based on the major code, we construct a class of 2n−1 Mahonian
statistics on permutations on [n] = {1, 2, . . . , n}.

Let us give an overview of the background and definitions. Let X = {1m1 , 2m2, · · · , kmk}
be a multiset with mi i’s and m1 + m2 + · · ·+ mk = n. The set of rearrangements of X
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is denoted by R(X). When m1 = m2 = · · · = mk = 1, R(X) reduces to the set Sn of
permutations on [n]. For a word w = w1w2 · · ·wn ∈ R(X), the descent set Des(w), the
descent number des(w), the major index maj(w), the inversion number inv(w) and the

Z-statistic Z(w) are defined by

Des(w) = {i|1 ≤ i ≤ n − 1, wi > wi+1},

des(w) = # Des(w),

maj(w) =
∑

i∈Des(w)

i,

inv(w) = #{(i, j)|1 ≤ i < j ≤ n, wi > wj},

Z(w) =
∑

i<j

maj(wij),

where wij is obtained from w by deleting all elements except i and j. For example, let
w = 211324314 ∈ R(13, 22, 32, 42). We have Des(w) = {1, 4, 6, 7}, des(w) = 4, maj(w) =
18, inv(w) = 9, and Z(w) equals

maj(21121) + maj(11331) + maj(11414) + maj(2323) + maj(2244) + maj(3434) = 16.

A statistic is said to be Mahonian on R(X) if it has the same distribution as the
major index on R(X). MacMahon [12, 13] introduced the major index and proved
that the major index is equidistributed with the inversion number for R(X). Foata [5]
found a combinatorial proof of this classical result by constructing a bijection Φ, called
the second fundamental transformation, which maps the major index to the inversion
number, namely,

maj(w) = inv(Φ(w)) for any w ∈ R(X).

For completeness, we give a brief description of Foata’s bijection [5], see also Haglund
[7]. Let w = w1w2 · · ·wn be a word on a multiset X as defined above. Let x be an element
in X. If wn ≤ x, the x-factorization of w is defined as w = v1b1 · · · vpbp, where each bi

is less than or equal to x, and every element in vi is greater than x. Note that vi is
allowed to be empty. Similarly, when wn > x, the x-factorization of w is defined as
w = v1b1 · · · vpbp, where each bi is greater than x, and every element in vi is less than or
equal to x. In each case, let γx(w) = b1v1 · · · bpvp, and let w′ = w1w2 · · ·wn−1. Then the
second fundamental transformation Φ can be defined recursively by setting Φ(a) = a for
each a ∈ X and setting

Φ(w) = γwn
(Φ(w′)) · wn

if w contains more than one element.
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To extend the theorem of MacMohan, Björner and Wachs [1] considered the problem
of finding subsets U of Sn for which the major index and inversion number are equidis-
tributed. They introduced the k-th partial Foata bijection φk : Sn −→ Sn for 1 ≤ k ≤ n
as follows. Let σ = σ1σ2 · · ·σn ∈ Sn. Define φ1(σ) = σ and for k > 1 define

φk(σ) = γσk
(σ1σ2 · · ·σk−1) · σkσk+1 · · ·σn.

It is easily seen that
Φ = φn ◦ φn−1 · · · ◦ φ1.

A subset U of Sn is said to be a strong Foata class if φk(U) = U for 1 ≤ k ≤ n.
A permutation σ is said to be a strong fixed point of Foata’s map if φk(σ) = σ for
1 ≤ k ≤ n. As will be seen, the strong fixed points of Foata’s map is closely related to
the fixed points of Han’s map.

The paper is organized as follows. In Section 2, we recall the construction of Han’s
map, and give a description of the major code. Then we give a reformulation of Han’s
map in terms of the major code and inversion code. In Section 3, we show that a
permutation is fixed by H if and only if it is a strong fixed points of Foata’s map Φ.
Section 4 is devoted to the construction of a class of Mahonian statistics based on the
major code.

2 Han’s bijection via permutation codes

In this section, we are concerned with a reformulation of Han’s bijection for permutations
in terms of the major code and the inversion code. For completeness, let us give an
overview of the map H.

Let x ∈ [n] and σ = σ1σ2 · · ·σn−1 be a permutation on {1, 2, · · · , x− 1, x+1, · · · , n}.
Define Cx(σ) as τ1τ2 · · · τn−1, where τi = σi − x(mod n), i.e.,

τi =

{

σi − x + n, if σi < x;

σi − x, if σi > x,

and define Cx(w) as the standardization of σ, i.e., Cx(w) = ν1ν2 · · · νn−1 ∈ Sn−1 with

νi =

{

σi, if σi < x;

σi − 1, if σi > x.

Evidently, both Cx and Cx are bijections between permutations on {1, 2, · · · , x − 1, x +
1, · · · , n} and Sn−1. So (Cx)−1 and (Cx)

−1 are well defined. Han’s bijection H can be
defined by H(1) = 1 and

H(σ) = C−1
σn

(H(Cσn(σ′))) · σn,
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where σ ∈ Sn with n > 1 and σ
′

= σ1σ2 · · ·σn−1.

We proceed to give the definition of cyclic intervals. Let X = {1m1 , 2m2 , . . . , kmk} be
a multiset. For x, y ∈ X, the cyclic interval Kx, yK is defined by Han [9] as

Kx, yK =

{

{z|z ∈ [k], x < z ≤ y}, if x ≤ y;

{z|z ∈ [k], z > x or z ≤ y}, otherwise.

Set Kx,∞K = {z|z ∈ [k], z > x}.

For any word w = w1w2 · · ·wn on X and 1 ≤ i ≤ n, define

ti(w) = #{j|1 ≤ j ≤ i − 1, wj ∈Kwi,∞K},

and

si(w) = #{j|1 ≤ j ≤ i − 1, wj ∈Kwi, wi+1K},

where wn+1 = ∞. For example, if w = 312432143, then

(t1(w), t2(w), · · · , t9(w)) = (0, 1, 1, 0, 1, 3, 5, 0, 2),

and
(s1(w), s2(w), · · · , s9(w)) = (0, 0, 1, 3, 3, 4, 5, 6, 2).

The notion of cyclic intervals plays an important role in the proof of the fact that
the bi-statistic (exc, Den) is equidistributed with (des, maj) on R(X), where exc is the
excedance number and Den is the Denert’s statistic, see Denert [3], Foata and Zeilberger
[6], and Han [9].

We continue to give the definition of the major code in terms of cyclic intervals.
Meanwhile, the inversion code can also be described this way. Let

En = {(a1, a2, · · · , an) ∈ Zn|0 ≤ ai ≤ i − 1, i = 1, 2, · · · , n}.

Keep in mind that the above definitions of ti(σ) and si(σ) apply to permutations. It is
well known that the map I : Sn −→ En defined by

σ 7−→ (t1(σ), t2(σ), · · · , tn(σ))

is a bijection known as the Lehmer code or the inversion code such that

n
∑

i=1

ti(σ) = inv(σ).

On the other hand, it is easy to see that the map M : Sn −→ En defined by

σ 7−→ (s1(σ), s2(σ), · · · , sn(σ))
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is also a bijection. We call M(σ) the major code of σ. To recover σ from its major code
(s1, s2, . . . , sn), first let σn = n − sn. Suppose that σk+1, . . . , σn have been determined
by sk+1, . . . , sn. Then delete the elements in the sequence

σk+1, σk+1 − 1, . . . , 1, n, (n − 1), . . . , (σk+1) + 1

that are equal to σj for some j ≥ k + 1 and set σk to be the (sk + 1)-st element in the
resulting sequence. It has been shown by Han [9] that

n
∑

i=1

si(σ) = maj(σ).

For example, I(38516427) = (0, 0, 1, 3, 1, 3, 5, 1) and M(38516427) = (0, 1, 1, 2, 3, 4, 4, 1).

The following theorem states that Han’s bijection H can be carried out in terms of
the major code and inversion code.

Theorem 2.1 For each n ≥ 1, we have

H = I−1 ◦ M.

In other words, H is a bijection on Sn such that

M(σ) = I(H(σ)).

Proof. We proceed by induction on n. For n = 1, the theorem is obvious. Suppose
n > 1 and let σ = σ1σ2 · · ·σn ∈ Sn with M(σ) = (s1(σ), s2(σ), · · · , sn(σ)). By definition,
sn(σ) = #{σn + 1, σn + 2, · · · , n} = n − σn. By the construction of H, we have

H(σ) = C−1
σn

[H(Cσn(σ′)] · σn,

which implies tn(H(σ)) = n − σn. Since the standardization of a permutation preserves
the relative order, we find that

I(Cσn
(σ1σ2 · · ·σn−1)) = (t1(σ), t2(σ), · · · , tn−1(σ)).

By induction, it suffices to show that

M(Cσn(σ1σ2 · · ·σn−1)) = (s1(σ), s2(σ), · · · , sn−1(σ)). (2.1)

Suppose Cσn(σ1σ2 · · ·σn−1) = τ1τ2 · · · τn−1. Let τn = ∞. For 1 ≤ i ≤ n − 1 and
1 ≤ k ≤ i− 1, we claim that σk ∈Kσi, σi+1K if and only if τk ∈Kτi, τi+1K. If it is true, then
(2.1) follows immediately. This claim can be verified as follows.

(1) If i 6= n − 1, there are two cases each of which has three subcases, namely,

(1a) σn < σi < σi+1;

5



(1b) σi < σn < σi+1;

(1c) σi < σi+1 < σn;

(2a) σn > σi > σi+1;

(2b) σi > σn > σi+1;

(2c) σi > σi+1 > σn.

We only give the proof of case (1b), the other cases can be proved in the same manner.
Let us assume that σi < σn < σi+1. By definition, τi = n + σi − σn, τi+1 = σi+1 − σn, so
we have τi+1 < τi. Suppose σk ∈Kσi, σi+1K. Then we see that σi < σk < σi+1 and

τk =

{

σk − σn + n, if σk < σn < σi+1;

σk − σn, if σi < σn < σk.

If σk < σn < σi+1, then τk = σk −σn +n > σi −σn +n = τi, it follows that τk ∈Kτi, τi+1K;
if σi < σn < σk, then τk = σk − σn < σi+1 − σn = τi+1, which implies τk ∈Kτi, τi+1K.
Conversely, if τk ∈Kτi, τi+1K, then we deduce that τk > τi or τk < τi+1. Assume that
σk /∈Kσi, σi+1K, then σk < σi or σk > σi+1. Consequently,

τk =

{

σk − σn + n, if σk < σi < σn;

σk − σn, if σk > σi+1 > σn.

If σk < σi, then τk = σk−σn+n < σi−σn+n = τi. However, τk = σk+n−σn > σi+1−σn =
τi+1, which is a contradiction. If σk > σi+1, then τk = σk − σn > σi+1 − σn = τi+1, but
now τk = σk − σn < σi − σn + n = τi, a contradiction too. So we reach the conclusion
that σk ∈Kσi, σi+1K.

(2) If i = n − 1, there are two cases, namely σn−1 > σn or σn−1 < σn. For the first
case, by definition we have τn−1 = σn−1 − σn. It follows that

σk ∈Kσn−1, σnK ⇒ σk > σn−1 or σk < σn

⇒ τk =

{

σk − σn, if σk > σn−1;

σk − σn + n, if σk < σn.

⇒ τk > τn−1

⇒ τk ∈Kτn−1,∞K.

Conversely, assume that τk ∈Kτn−1,∞K, i.e., τk > τn−1 = σn−1 − σn. Suppose that
σk /∈Kσn−1, σnK, namely, σn < σk < σn−1. Then we have

τk = σk − σn < σn−1 − σn = τn−1,

a contradiction. So we have σk ∈Kσn−1, σnK. Similarly, one can verify the case σn−1 < σn.
This completes the proof.
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The following corollary provides an alternative way to compute the major index,
which will be useful for the construction of Mahonian statistics.

Corollary 2.2 For any permutation σ = σ1σ2 · · ·σn ∈ Sn, define

C (σ) = Cσn(σ1σ2 · · ·σn−1)

and define L(σ) = σn. Then we have

si(σ) = i − L(C n−i(σ)),

for 1 ≤ i ≤ n, where C
0(σ) = σ and C

k(σ) = C (C k−1(σ)).

Proof. It is clear that C n−i(σ) ∈ Si. By the definition of sn(σ), we have

sn(σ) = #{σn + 1, · · · , n} = n − σn = n − L(σ) = n − L(C 0(σ)).

By the proof of Theorem 1.1, we see that

M(C n−i(σ)) = (s1(σ), · · · , si(σ)),

which implies that si(σ) = i − L(C n−i(σ)) for i = 1, 2, · · · , n.

The sequence
L(C n(σ)), L(C n−1(σ)), . . . , L(C 0(σ))

gives an alternative way to compute the major code. It also facilitates the computation
of H(σ). For example, let σ = 392648517. We have

M(σ) = (0, 0, 1, 3, 1, 4, 3, 5, 2), H(σ) = 496182537,

see Table 1.

The following corollary shows that Han’s bijection H commutes with the comple-
mentation operator c. For a permutation σ ∈ Sn, we define cσ as τ1τ2 · · · τn, where
τi = n + 1 − σi. For a code a = (a1, a2, . . . , an) ∈ En, we define ca = (b1, b2, . . . , bn),
where bi = i − 1 − ai.

Corollary 2.3 For σ ∈ Sn and s = (s1, s2, · · · , sn) ∈ En. We have

H(cσ) = cH(σ).

The above corolalry can be easily verified by induction on n. It also follows from
Theorem 2.1 and the relations

M(cσ) = c(M(σ)),

I(cσ) = c(I(σ)).
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σ = 392648517 I(H(σ)) = (0, 0, 1, 3, 1, 4, 3, 5, 2)

↓ ⇑

C 0(σ) = 392648517 C−1
7 (48617253) · 7 = 496182537

↓ ↑

C 1(σ) = 52486173 C−1
3 (3751624) · 3 = 48617253

↓ ↑

C
2(σ) = 2715364 C−1

4 (364152) · 4 = 3751624

↓ ↑

C 3(σ) = 534162 C−1
2 (25314) · 2 = 364152

↓ ↑

C 4(σ) = 31254 C−1
4 (2431) · 4 = 25314

↓ ↑

C 5(σ) = 4231 C−1
1 (132) · 1 = 2431

↓ ↑

C 6(σ) = 312 C−1
2 (12) · 2 = 132

↓ ↑

C
7(σ) = 12 C−1

2 (1) · 2 = 12

↓ ↑

C 8(σ) = 1 C−1
1 (∅) · 1 = 1

↓ ↑

(1,2,2,1,4,2,4,3,7) ∅

⇓

M(σ)=(0,0,1,3,1,4,3,5,2) the construction of H(σ)

Table 1: The procedures to compute H(σ) and M(σ)

8



3 A characterization of fixed points

In this section, we give a characterization of the fixed points of Han’s map H. As will
be seen, the fixed points of Han’s map are related to the strong fixed points of Foata’s
second fundamental transformation which are easier to describe.

The notion of strong fixed points of Foata’s map is related to the strong Foata classes
introduced by Björner and Wachs [1]. A labeling w of a poset P is called recursive if every
principal order ideal of P is labeled by a set of consecutive numbers. In particular, if P
is a chain with n elements and w : P −→ [n] is a labeling of P . Reading the labels from
bottom to top, the labels form a permutation σ = σ1σ2 · · ·σn ∈ Sn. It is easily seen that
w is a recursive labeling of P if and only if for each i ∈ [n], {σ1, σ2, · · · , σi} forms a set of
consecutive numbers. By the Theorem 4.2 in [1], we deduce that a permutation σ ∈ Sn

is a strong fixed point of Foata’s map if and only if for each i ∈ [n], {σ1, σ2, · · · , σi}
forms a set of consecutive numbers. For example, σ = 45367281 ∈ S8 is a strong fixed
point of Foata’s map, while π = 34125678 is not, since {π1, π2, π3} = {1, 3, 4} is not a
set of consecutive numbers.

Theorem 3.1 For each σ ∈ Sn, σ is a fixed point of H, i.e. H(σ) = σ, if and only if σ
is a strong fixed point of Foata’s map.

Proof. Suppose that H(σ) = σ. By Theorem 2.1, we see that I(σ) = M(σ). In
particular, we have sn−1(σ) = tn−1(σ). If σn−1 > σn, by Corollary 2.2 we have

sn−1(σ) = n − 1 − L(C (σ)) = n − 1 − (σn−1 − σn) = n − 1 + σn − σn−1,

and by definition tn−1(σ) = n − σn−1. It follows that σn = 1. If σn−1 < σn, then
sn−1(σ) = σn − σn−1 − 1 and tn−1(σ) = n − σn−1 − 1. Hence σn = n. Using the relation
(2.1), we get

M(C (σ)) = (s1(σ), s2(σ), · · · , sn−1(σ)). (3.2)

Moreover, when σn = 1 or σn = n, we have

C (σ) = Cσn
(σ1 · · ·σn−1). (3.3)

Combining (3.2), (3.3) and the fact that I(Cσn
(σ1 · · ·σn−1)) = (t1(σ), t2(σ), · · · , tn−1(σ)),

we obtain
M(C (σ)) = I(C (σ)).

By induction on n, we deduce that C (σ) is a strong fixed point of Foata’s map. Conse-
quently, by relation (3.3)

{σ1, σ2, · · · , σi} =

{

{(C (σ))1 + 1, (C (σ))2 + 1, · · · , (C (σ))i + 1}, if σn = 1;

{(C (σ))1, (C (σ))2, · · · , (C (σ))i}, if σn = n,

which is a set of consecutive integers. Thus σ is a strong fixed point of Foata’s map.
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Conversely, suppose that σ ∈ Sn is a strong fixed point of Foata’s map. So {σ1, · · · , σn−1}
is a set of consecutive integers with n − 1 numbers in [n]. This implies that σn = 1 or
σn = n. Hence

Cσn(σ′) = Cσn
(σ′) =

{

(σ1 − 1) · · · (σn−1 − 1), if σn = 1;

σ1 · · ·σn−1, if σn = n,

where σ′ = σ1σ2 · · ·σn−1. It follows that Cσn(σ′) is a strong fixed point of Foata’s map.
By induction on n we deduce that

H(Cσn(σ′)) = Cσn(σ′).

Consequently,

H(σ) = C−1
σn

(H(Cσn(σ′))) · σn

= C−1
σn

(Cσn(σ′)) · σn

= C−1
σn

(Cσn
(σ′)) · σn = σ′ · σn = σ,

as desired. This completes the proof.

The following corollary gives another characterization of the fixed points of H in
terms of codes.

Corollary 3.2 Let σ ∈ Sn. The following statements are equivalent:

(1) M(σ) = I(σ), that is, σ is a fixed point of H.

(2) I(σ) = (t1(σ), t2(σ), · · · , tn(σ)) such that ti(σ) = 0 or i − 1 for each i ∈ [n].

Proof. It is easy to check that σ satisfies the Condition (2) if σ is a strong fixed point
of Foata’s map. Conversely, suppose that I(σ) = (t1(σ), t2(σ), · · · , tn(σ)) such that
ti(σ) = 0 or i − 1 for each i ∈ [n]. We proceed by induction on n to show that σ is a
strong fixed point of Foata’s map. The statement is obvious for n = 1. Now we may
assume that the claim holds for any permutation of length n − 1 satisfying Condition
(2). It is clear that

I(Cσn
(σ′)) = (t1(σ), . . . , tn−1(σ)).

The inductive hypothesis implies that I(Cσn
(σ′)) is a strong fixed point of length n− 1.

Since tn = 0 or tn = n − 1, we have σn = 1 or σn = n, and hence

Cσn
(σ′) =

{

(σ1 − 1) · · · (σn−1 − 1), if σn = 1;

σ1 · · ·σn−1, if σn = n.

It follows that σ is also a strong fixed point of Foata’s map. Now the corollary is a
consequence of Theorem 3.1.
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Corollary 3.3 For any n ≥ 1, Han’s map H has 2n−1 fixed points.

By Theorem 3.1, we see that each fixed point of H is a fixed point of Φ, but the
converse is not true. For example, let σ = 14235 ∈ S5, we have Φ(σ) = σ. But it is not
a fixed point of H.

4 A construction of Mahonian statistics

In this section, we give a construction of Mahonian statistics on permutations by using
the major code. It should be mentioned that Clarke [2] gave the following construction of
a class of Mahonian statistics on words based Foata’s second fundamental transformation.

Theorem 4.1 Let X = {1m1, 2m2 , · · · , kmk} be a multiset with m1 +m2 + · · ·+mk = n.
Let e = (e1, e2, · · · , en) ∈ {0, 1}n, w ∈ R(X). For any 1 ≤ i ≤ n, let

ui(w) =

{

si(w), if ei = 0;

ti(w), if ei = 1.

Then the statistic

inmaje(w) =
n

∑

i=1

ui(w)

is Mahonian on R(X).

Since u1(w) = 0 and un(w) = tn(w) = sn(w), Clarke in fact constructed 2n−2 Maho-
nian statistics on R(X), where

inmaj(0,0,...,0)(w) = maj(w),

inmaj(1,1,...,1)(w) = inv(w).

We proceed to construct a class of Mahonian statistics {Me|e ∈ {0, 1}n} for permu-
tations. The statistics Me satisfy the following properties

M(0,0,...,0)(σ) = r1(σ) + · · ·+ rn(σ) = maj(H(σ)), (4.4)

M(1,1,...,1)(σ) = s1(σ) + · · ·+ sn(σ) = maj(σ). (4.5)

Definition 4.2 Let σ ∈ Sn with M(σ) = (s1(σ), s2(σ), · · · , sn(σ)). For any 2 ≤ i ≤ n,
define

ri(σ) =

{

i − 1, if si−1(σ) < si(σ);

0, otherwise.

11



and set r1(σ) = s1(σ) = 0. For any vector e = (e1, e2, · · · , en) ∈ {0, 1}n, the statistic Me

on Sn is defined by

Me(σ) =

n
∑

i=1

ui(σ),

where

ui(σ) =

{

si(σ), if ei = 1;

ri(σ), if ei = 0.
(4.6)

Theorem 4.3 For any e = (e1, e2, · · · , en) ∈ {0, 1}n the statistic Me is Mahonian on
Sn.

The following lemma shows that Theorem 4.3 holds for any e ∈ {0, 1}n if it is true
for vectors e with en = 1.

Lemma 4.4 For 1 ≤ k ≤ n, there exists a bijection Hk : Sn −→ Sn such that

M(Hk(σ)) = (s1(σ), · · · , sn−k−1(σ), sn−k(Hk(σ)), · · · , sn(Hk(σ))) (4.7)

and

n
∑

j=n−k

sj(Hk(σ)) = sn−k(σ) + rn−k+1(σ) + · · · + rn(σ). (4.8)

In particular, Me′ and Me′′ are equidistributed on Sn for e′ = (e1, · · · , en−k−1, 1, 0, · · · , 0)
and e′′ = (e1, · · · , en−k−1, 1, 1, · · · , 1).

Proof. Let σ ∈ Sn and M(σ) = (s1(σ), s2(σ), · · · , sn(σ)). For n − k + 1 ≤ i ≤ n, set
s′i = i − si(σ) = L(C n−i(σ)), the last letter of C n−i(σ). Define Hk : Sn −→ Sn by

Hk(σ) = C−1
s′n

(· · · [C−1
s′
n−k+1

(C k(σ)) · s′n−k+1] · · · ) · s
′

n, (4.9)

where C n(σ) = ∅. We first show that Hk is a bijection. Suppose that Hk(σ) = Hk(π).
From the definition (4.9) we see that

s′j(σ) = s′j(π) for j ≥ n − k + 1,

and so C k(σ) = C k(π). From the definition of C and Corollary 2.2, we obtain

C
k−1(σ) = (Cs′

n−k+1)−1(C k(σ)),

hence we deduce that C j(σ) = C j(π) for j = 0, 1, · · · , k. In particular, we have σ = π.
Thus Hk is a bijection.
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We proceed to use induction to demonstrate that the bijection Hk satisfies the prop-
erties (4.7) and (4.8). For k = 1, we have

H1(σ) = C−1
s′n

(C (σ)) · s′n.

Since C−1
s′n

preserves the relative order, equation (4.7) is true for H1, namely,

M(H1(σ)) = (s1(σ), · · · , sn−2(σ), sn−1(H1(σ)), sn(H1(σ))).

Since s′n−1 is defined as the last element of C (σ), we find

(H1(σ))n−1 =

{

s′n−1, if s′n−1 < s′n;

s′n−1 + 1, if s′n−1 ≥ s′n.

Again, by the definition of s′i, we see that s′n−1 < s′n if and only if sn−1(σ) ≥ sn(σ).
Therefore, from Corollary 2.2 it follows that

sn−1(H1(σ)) =

{

(n − 1) − (s′n−1 − s′n + n), if s′n−1 < s′n;

(n − 1) − (s′n−1 + 1 − s′n), if s′n−1 ≥ s′n.

=

{

sn−1(σ) − sn(σ), if sn−1(σ) ≥ sn(σ);

sn−1(σ) − sn(σ) + n − 1, if sn−1(σ) < sn(σ).

So we deduce that

sn−1(H1(σ)) + sn(H1(σ)) = sn−1(H1(σ)) + sn(σ)

=

{

sn−1(σ), if sn−1(σ) ≥ sn(σ);

sn−1(σ) + n − 1, if sn−1(σ) < sn(σ).

= sn−1(σ) + rn(σ).

Thus the equation (4.8) holds for H1. Assume that the relations (4.7) and (4.8) hold for
Hj with j ≤ k − 1. We shall prove that Hk also satisfies the equations (4.7) and (4.8).
By (4.9), we have

Hk(σ) = C−1
s′n

(Hk−1(C (σ))) · s′n

and by the inductive hypothesis, the major code of Hk−1(C (σ)) satisfies the relations

si(Hk−1(C (σ))) = si(C (σ)) = si(σ) for 1 ≤ i ≤ n − k − 1

and

n−1
∑

i=n−k

si(Hk−1(C (σ))) = sn−k(C (σ)) + rn−k+1(C (σ)) + · · · + rn−1(C (σ))
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= sn−k(σ) + rn−k+1(σ) + · · · + rn−1(σ).

It is evident that the last element of Hk−1(C (σ)) is equal to s′n−1(σ). The same argument
as in the proof for the case k = 1 shows that

si(Hk(σ)) = si(Hk−1(C (σ))) for i ≤ n − 2,

and
sn−1(Hk(σ)) + sn(Hk(σ)) = sn−1(σ) + rn(σ).

Consequently,
si(Hk(σ)) = si(σ) for 1 ≤ i ≤ n − k − 1.

That is to say, the relation (4.7) holds for Hk. By Corollary 2.2, sn−1(Hk−1(C (σ))) =
n − 1 − L(Hk−1(C (σ))) = sn−1(σ), hence

sn−k(Hk(σ)) + · · ·+ sn−2(Hk(σ)) + sn−1(Hk(σ)) + sn(Hk(σ))

= sn−k(Hk−1(C (σ))) + · · · + sn−2(Hk−1(C (σ))) + sn−1(σ) + rn(σ)

= sn−k(Hk−1(C (σ))) + · · · + sn−2(Hk−1(C (σ))) + sn−1(Hk−1(C (σ))) + rn(σ)

= sn−k(σ) + rn−k+1(σ) + · · ·+ rn−1(σ) + rn(σ).

So the relation (4.8) holds for Hk. This completes the proof.

In view of the above lemma, we are now ready to present the proof of Theorem 4.3.

Proof of Theorem 4.3. We shall justify Theorem 4.3 by showing that for each e ∈ {0, 1}n,
there exists a bijection Ψe on Sn satisfying Me(σ) = maj(Ψe(σ)) for any σ ∈ Sn. The
argument is by induction on n. For n = 1, define Ψ(0) = Ψ(1) as the identity map on S1.
Suppose for each j ≤ n − 1 and e ∈ {0, 1}j, we have constructed a bijection Ψe on Sj

such that Me(σ) = maj(Ψe(σ)).

For any e ∈ {0, 1}n, by Lemma 4.4, we may assume the rightmost zero in e is at the
position n − k − 1, i.e., e = (e1, · · · , en−k−2, 0, 1, · · · , 1) with k ≥ 0. For any σ ∈ Sn, we
have C k+1(σ) ∈ Sn−k−1 and

M(C k+1(σ)) = (s1(σ), s2(σ), · · · , sn−k−1(σ)).

Let ē = (e1, · · · , en−k−1). By the inductive hypothesis, there exists a bijection Ψē on
Sn−k−1 such that Mē(C

k+1(σ)) = maj(Ψē(C
k+1(σ))). Now define

Ψe(σ) = (Cs′n)−1

[

· · ·
(

(Cs′
n−k)−1

[

Ψē(C
k+1(σ))

]

· s′n−k

)

· · ·

]

· s′n,

where, for n − k ≤ i ≤ n, s′i = i − si(σ) is the last element of C n−i(σ).

By the definition of Ψe and Corollary 2.2, we see that

(sn−k(Ψe(σ)), · · · , sn(Ψe(σ))) = (sn−k(σ), · · · , sn(σ)).

14



Moreover,

s1(Ψe(σ)) + · · ·+ sn−k−1(Ψe(σ)) = maj(Ψē(C
k+1(σ)))

= Mē(C
k+1(σ))

= u1(σ) + · · ·+ un−k−1(σ).

Therefore,

Me(σ) = u1(σ) + · · ·+ un−k−2(σ) + un−k−1(σ) + sn−k(σ) + · · ·+ sn(σ)

= Mē(C
k+1(σ)) + sn−k(Ψe(σ)) + · · ·+ sn(Ψe(σ))

= s1(Ψe(σ)) + · · ·+ sn−k−1(Ψe(σ)) + sn−k(Ψe(σ)) + · · · + sn(Ψe(σ))

= maj(Ψe(σ)),

where ui is given by (4.6) for the vector e. This completes the proof.

Take the same permutation σ = 392648517 as in the previous example in Table 1.
The calculation of H4(σ) in Lemma 4.4 can be illustrated as follows. First we have

(s1(σ), · · · , sn(σ)) = (0, 0, 1, 3, 1, 4, 3, 5, 2),

(s′1, s
′

2, · · · , s′n) = (1, 2, 2, 1, 4, 2, 4, 3, 7).

Then we compute

H4(σ) = C−1
7 {C−1

3 [C−1
4 (C−1

2 (31254) · 2) · 4] · 3} · 7

= C−1
7 {C−1

3 [C−1
4 (413652) · 4] · 3} · 7

= C−1
7 {C−1

3 (5137624) · 3} · 7

= C−1
7 {61487253} · 7

= 614982537,

where 31254 = C
4(σ), M(614982537) = (0, 0, 1, 3, 2, 1, 5, 3, 2). Now one sees that Lemma

4.4 holds.

To conclude this paper, we remark that the statistic Me coincides with the major
index for the fixed points of Han’s map H. To be precise, let σ be a fixed point of H.
By Corollary 3.1, si(σ) = i − 1 or 0 for each i. Consequently, si−1 < si if and only
if si = i − 1, and si−1 ≥ si if and only if si = 0. Hence we have si(σ) = ri(σ) and
Me(σ) = maj(σ) for each e ∈ {0, 1}n.
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