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Abstract

We show that Han’s bijection when restricted to permutations can be carried
out in terms of the major code and inversion code. In other words, it maps a
permutation 7 with a major code (si,s2,...,s,) to a permutation o with an in-
version code (s1, S2,...,5,). We also show that the fixed points of Han’s map can
be characterized by the strong fixed points of Foata’s second fundamental trans-
formation. The notion of strong fixed points is related to the partial Foata maps
introduced by Bjorner and Wachs. We further give a construction of a class of
Mahonian statistics on permutations in terms of the major code.
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1 Introduction

In his combinatorial proof of the fact that the Z-statistic introduced by Zeilberger and
Bressoud [15] is Mahonian, Han [8] constructed a Foata-style bijection on words. Let
H denote Han’s bijection when restricted to permutations. Throughout this paper, by
Han'’s bijection we always mean the map H. We shall show that the map H can be carried
out exactly by the major code and inversion code. The major code of a permutation can
be described in terms of cyclic intervals, a notion also introduced by Han [9] in his study
of the joint distribution of the excedance number and Denert’s statistics. Note that the
major code in the context of this paper is different from the major index table defined
by Skandera [14], which is also called the major code by Dzhumadil’daev [4] and called
Mec-code by Hivert, Novelli, and Thibon [11], see also Han [10].

Using the code representation, we show that the fixed points of Han’s map can be
characterized by the strong fixed points of Foata’s second fundamental transformation.
The notion of strong fixed points is related to the partial Foata maps introduced by
Bjorner and Wachs [1]. Based on the major code, we construct a class of 2”1 Mahonian
statistics on permutations on [n] = {1,2,...,n}.

Let us give an overview of the background and definitions. Let X = {1™,2™2 ... f™k}
be a multiset with m; i’s and my + mo + - - - + my = n. The set of rearrangements of X



is denoted by R(X). When m; = my = --- = my, = 1, R(X) reduces to the set S,, of
permutations on [n]. For a word w = wyws -+ -w, € R(X), the descent set Des(w), the
descent number des(w), the major index maj(w), the inversion number inv(w) and the
7Z-statistic Z(w) are defined by

Des(w) = {i|ll <i<n—1,w; > w1},

des(w) = # Des(w),

maj(w) = > i,

i€Des(w)

inv(w) = #{(6, J)[1 <7 < j <n,wi > w;},

Z(w) = maj(w),

1<j

where w;; is obtained from w by deleting all elements except ¢ and j. For example, let
w = 211324314 € R(13,2% 3% 4?). We have Des(w) = {1,4,6,7},des(w) = 4, maj(w) =
18,inv(w) =9, and Z(w) equals

maj(21121) + maj(11331) + maj(11414) + maj(2323) + maj(2244) + maj(3434) = 16.

A statistic is said to be Mahonian on R(X) if it has the same distribution as the
major index on R(X). MacMahon [12, 13] introduced the major index and proved
that the major index is equidistributed with the inversion number for R(X). Foata [5]
found a combinatorial proof of this classical result by constructing a bijection ®, called
the second fundamental transformation, which maps the major index to the inversion
number, namely,

maj(w) = inv(®(w)) for any w € R(X).

For completeness, we give a brief description of Foata’s bijection [5], see also Haglund
[7]. Let w = wyws - - - w,, be a word on a multiset X as defined above. Let x be an element
in X. If w, <z, the z-factorization of w is defined as w = v;b; - - - v,b,, Where each b;
is less than or equal to xz, and every element in v; is greater than x. Note that v; is
allowed to be empty. Similarly, when w, > x, the z-factorization of w is defined as
w = v1by - - - vpb,, where each b; is greater than z, and every element in v; is less than or
equal to . In each case, let v, (w) = byvy - - - byv,, and let w' = wywsy - - - w,_;. Then the
second fundamental transformation ® can be defined recursively by setting ®(a) = a for
each a € X and setting

O(w) = Y, (B(w)) - wr

if w contains more than one element.



To extend the theorem of MacMohan, Bjorner and Wachs [1] considered the problem
of finding subsets U of S,, for which the major index and inversion number are equidis-
tributed. They introduced the k-th partial Foata bijection ¢: S, — 5, for 1 <k <n
as follows. Let 0 = 0109 ---0, € S,. Define ¢;(0) = o and for k > 1 define

Or(0) = Vo, (0102 + - O—1) - OkOky1 -+ + O

It is easily seen that
®:¢no¢n—1"'o¢l-

A subset U of S, is said to be a strong Foata class if ¢, (U) = U for 1 < k < n.
A permutation o is said to be a strong fixed point of Foata’s map if ¢x(c) = o for
1 <k < n. As will be seen, the strong fixed points of Foata’s map is closely related to
the fixed points of Han’s map.

The paper is organized as follows. In Section 2, we recall the construction of Han’s
map, and give a description of the major code. Then we give a reformulation of Han’s
map in terms of the major code and inversion code. In Section 3, we show that a
permutation is fixed by H if and only if it is a strong fixed points of Foata’s map ®.
Section 4 is devoted to the construction of a class of Mahonian statistics based on the
major code.

2 Han’s bijection via permutation codes

In this section, we are concerned with a reformulation of Han’s bijection for permutations
in terms of the major code and the inversion code. For completeness, let us give an
overview of the map H.

Let z € [n] and 0 = 0109 - - - 0,1 be a permutation on {1,2,--- ,x—1,z+1,--- ,n}.
Define C*(0) as 17y - -+ Ty—1, where 7; = 0; — z(mod n), i.e.,

o, —x+n, ifo; <ux;
T; —

o;, — X, if o; > x,

and define C,(w) as the standardization of o, i.e., Cp(w) = 11vy - v,_1 € S,_1 with
0, if o; < ;
V; = .
o, — 1, if o; > x.

Evidently, both C* and C, are bijections between permutations on {1,2,--- z — 1,2 +
1,---,n} and S,_;. So (C*)~! and (C,)~! are well defined. Han’s bijection H can be
defined by H(1) =1 and

H(o) = C, [(H(C™(0))) - on,



where 0 € S, withn > 1 and 0 = 0109+ 0p_1.

We proceed to give the definition of cyclic intervals. Let X = {1™,2™2 ... k™ } be
a multiset. For x,y € X, the cyclic interval |z, y] is defined by Han [9] as

I.] {z|z € [k],x < z <y}, if x <uy;
z,y] =
Y {z|z € [k],z>a or z<y}, otherwise.

Set [z, 00] = {z]z € [k], z > z}.
For any word w = wiwsy---w, on X and 1 < i < n, define
ti(w) =#{j|11 <j <i—-1w; €|w;, ]},
and
si(w) = #{j|1 < j <i— 1, w; €]wi, wia]},
where w11 = co. For example, if w = 312432143, then
(t1(w), to(w), - -, to(w)) = (0,1,1,0,1,3,5,0,2),

and
(81(11)), 52(w)7 T 789(w)) = (07 O? 17 37 3747 57 67 2)

The notion of cyclic intervals plays an important role in the proof of the fact that
the bi-statistic (exc, Den) is equidistributed with (des, maj) on R(X), where exc is the
excedance number and Den is the Denert’s statistic, see Denert [3], Foata and Zeilberger
[6], and Han [9].

We continue to give the definition of the major code in terms of cyclic intervals.
Meanwhile, the inversion code can also be described this way. Let

E,={(a1,a9, - ,a,) €Z"0<0a; <i—1,i=1,2,--- ,n}.

Keep in mind that the above definitions of t;(¢) and s;(¢) apply to permutations. It is
well known that the map I: S,, — F,, defined by

0+ (t1(0),2(0), -+, ta(0))

is a bijection known as the Lehmer code or the inversion code such that
Zti(a) = inv (o).
i=1

On the other hand, it is easy to see that the map M : S,, — E,, defined by
0+ (51(0),52(0), - -+, 50(0))
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is also a bijection. We call M (o) the major code of o. To recover o from its major code

(81,82, ..,8n), first let 0, = n — s,. Suppose that oy,1,...,0, have been determined
by Sgi1,-..,Sn. Then delete the elements in the sequence
Ok+1, Ok+1 — ]-7- R 17”7 (n_ 1)a SRR (0k+1) +1

that are equal to o; for some j > k+ 1 and set o to be the (s, + 1)-st element in the
resulting sequence. It has been shown by Han [9] that

n

> si(0) = mai(o).

=1
For example, 1(38516427) = (0,0,1,3,1,3,5,1) and M(38516427) = (0,1,1,2,3,4,4,1).

The following theorem states that Han’s bijection H can be carried out in terms of
the major code and inversion code.

Theorem 2.1 For each n > 1, we have
H=I"'oM.

In other words, H is a bijection on S, such that

Proof. We proceed by induction on n. For n = 1, the theorem is obvious. Suppose
n>1landlet o =o0y09---0, € S, with M(c) = (s1(0), s2(0),- -+, sp(0)). By definition,
sp(0) =#{o,+ 1,0, +2,--- ,n} =n — o,. By the construction of H, we have

H(o) = CZ[H(C™ ()] - 0,

On

which implies ¢, (H (o)) = n — 0,,. Since the standardization of a permutation preserves
the relative order, we find that

I(C, (0102 -+ 0p—1)) = (t1(0), t2(0), -+ tn-1(0))-
By induction, it suffices to show that
M(C’C’”(m@ N 'Jn—l)) = (51(0'), Sg(O'), s ,Sn_l(O')). (21)

Suppose C7 (0109 0p_1) = TiTo** Tp_1. Let 7, = co. For 1 < i < n — 1 and
1 <k <i-—1, we claim that o €]o;,0;+1] if and only if 7, €]7;, 7;41]. If it is true, then
(2.1) follows immediately. This claim can be verified as follows.

(1) If i # n — 1, there are two cases each of which has three subcases, namely,

(la) o, < 0y < 04415

Y



(1b) 0; < 0y < Oy41;
(le) 0 < 041 < Oy
(2a) op, > 07 > 0i11;
(2b) o; > 0y > 0441;
(

2¢) ;> 0401 > 0y

We only give the proof of case (1b), the other cases can be proved in the same manner.
Let us assume that o; < 0, < 0;41. By definition, 7, = n + 0; — 0,,, Ti41 = G441 — Op, SO
we have 7,11 < 7;. Suppose oy, €]0;, 0;11]. Then we see that o; < o), < 0,41 and

or — 0p, +1n, ifO'k<O'n<O'i+1;
Tk — .
Ok — Op, if 0; < 0, < O}

If o, < 0, < 0441, then 7, = 0 — 0, + 1 > 0; — 0, + 1 = 73, it follows that 7, €]7;, Ti11];
if o; < 0, < oy, then 7, = oy — 0, < 0441 — 0 = Ti41, which implies 7, €]7;, Ti11]-
Conversely, if 7, €]7;,7i11], then we deduce that 7, > 7; or 7, < 7;41. Assume that
ox &|loi, 0i11], then oy < o; or o > 0;41. Consequently,

o —0on+n, if o, <o <oy
Tk — .
Ok — Op, if oy > 0541 > 0.

If oy, < 0y, then 7, = op—0,+n < 0;—0,+n = 7;. However, 17, = op+n—o, > 0;41—0, =
Tiv1, which is a contradiction. If oy > 0,41, then 7, = o — 0, > 0,41 — 0, = Ti11, but
now 7, = 0, — 0, < 0; — 0, +n = T;, a contradiction too. So we reach the conclusion
that oy €]o;, 0i41].

(2) If i = n — 1, there are two cases, namely 0,1 > 0, or 0,1 < 0,. For the first
case, by definition we have 7,,_1 = 0,,_1 — 0,. It follows that

o €Ellon-1,04] = o > 0p_1 or o} <0,

O — On, if o, > 01
= T = .
or—op+n, if o, <o,

= Tk > Tp—1
= T €]Tn_1, 0]

Conversely, assume that 7, €]7,-1,00], i.e., 7x > 71 = 0n_1 — 0,. Suppose that
ok &llon-1, 0], namely, 0, < o < 0,,—1. Then we have

Tk =0k — Op < Op—1 — Op = Tp—1,

a contradiction. So we have oy €]o,_1,0,]. Similarly, one can verify the case 0,1 < 0y,.
This completes the proof. |



The following corollary provides an alternative way to compute the major index,
which will be useful for the construction of Mahonian statistics.

Corollary 2.2 For any permutation 0 = 0109 --0, € S,, define
€ (o) =C"" (0109 0p_1)
and define L(o) = o,. Then we have
si(0) =i— L(€"'(0)),
for 1 <i<n, where €°(c) = o and €*(0) = €(€**(0)).

Proof. 1t is clear that €™ (o) € S,;. By the definition of s,(c), we have
sn(0) =#{o, +1,--- ;nt=n—o0,=n—L(oc) =n— L(€°0)).
By the proof of Theorem 1.1, we see that
M(€"(0)) = (s1(0), -+, si(0)),
which implies that s;(0) =i — L(¢" (o)) fori =1,2,--- ,n. |

The sequence

L(€"(0)), L(€" (), ... L(€"(0))

gives an alternative way to compute the major code. It also facilitates the computation
of H(o). For example, let 0 = 392648517. We have

M(o) =1(0,0,1,3,1,4,3,5,2), H(o)= 496182537,
see Table 1.

The following corollary shows that Han’s bijection H commutes with the comple-
mentation operator c. For a permutation ¢ € S,, we define co as 17y -+ 7,, Where
7, =n+1—o0;. Foracode a= (ay,as,...,a,) € E,, we define ca = (by,by,...,b,),
where b; =1 —1 — a;.

Corollary 2.3 Foro € S, and s = (s1, 82, ,8,) € E,. We have
H(co) = cH(o).

The above corolalry can be easily verified by induction on n. It also follows from
Theorem 2.1 and the relations



o = 392648517

|
¢0(0) = 392648517

l
%'(0) = 52486173
l
©(0) = 2715364
!
(o) = 534162
|
©(0) = 31254
|
@5 (o) = 4231
|
¢%(0) = 312

|
€"(0) =12
l

¢Bo)=1
|
(1,2,2,1,4,2,4,3,7)

i3
M(o)=(0,0,1,3,1,4,3,5,2)

I(H(0)) =(0,0,1,3,1,4,3,5,2)

)
C-1(48617253) - 7 = 496182537
T
C3'(3751624) - 3 = 48617253
T
C;1(364152) - 4 = 3751624
T
C51(25314) - 2 = 364152
T
C;1(2431) - 4 = 25314
T
C;1(132) -1 = 2431
T
Cy(12)-2 =132
T
Cyt(1)-2=12
T
CrH)-1=1
T
0

the construction of H (o)

Table 1: The procedures to compute H (o) and M (o)




3 A characterization of fixed points

In this section, we give a characterization of the fixed points of Han’s map H. As will
be seen, the fixed points of Han’s map are related to the strong fixed points of Foata’s
second fundamental transformation which are easier to describe.

The notion of strong fixed points of Foata’s map is related to the strong Foata classes
introduced by Bjorner and Wachs [1]. A labeling w of a poset P is called recursive if every
principal order ideal of P is labeled by a set of consecutive numbers. In particular, if P
is a chain with n elements and w : P — [n] is a labeling of P. Reading the labels from
bottom to top, the labels form a permutation ¢ = o109 - - -0, € S,,. It is easily seen that
w is a recursive labeling of P if and only if for each i € [n], {01, 09, -, 0;} forms a set of
consecutive numbers. By the Theorem 4.2 in [1], we deduce that a permutation o € S,
is a strong fixed point of Foata’s map if and only if for each i € [n], {01,009, -+ ,0:}
forms a set of consecutive numbers. For example, 0 = 45367281 € Sg is a strong fixed
point of Foata’s map, while 7 = 34125678 is not, since {m,m, 13} = {1,3,4} is not a
set of consecutive numbers.

Theorem 3.1 For each o € S, 0 is a fived point of H, i.e. H(o) = o, if and only if o
is a strong fixed point of Foata’s map.

Proof. Suppose that H(oc) = o. By Theorem 2.1, we see that I(c) = M(o). In
particular, we have s, _1(0) = t,_1(0). If 0,,_1 > 0, by Corollary 2.2 we have

Sn_1(c)=n—-1—-L(¢(c)=n—1—(op.1—0p) =n—1+0, —0p_1,

and by definition t,_1(0c) = n — 0,_1. It follows that o, = 1. If 0,1 < 0,, then
Sp_1(0) =0, —0p_1—1land t,_1(0c) =n — 0,_1 — 1. Hence o, = n. Using the relation
(2.1), we get

M(%(0)) = (s1(0), s2(0), -, 50-1(0)). (3.2)

Moreover, when o,, = 1 or ¢,, = n, we have
C(o)=0C,, (01 0n-1). (3.3)

Combining (3.2), (3.3) and the fact that I(C,, (01 0p-1))
we obtain

—~
~
—_
—
Q
~—
~
(V]
—~
Q
~—
~
S
|
—_
—
Q
~—
~—

M(€(a)) = 1(¢(0)).

By induction on n, we deduce that €’(o) is a strong fixed point of Foata’s map. Conse-
quently, by relation (3.3)

{(€(o)1+1,(C(0)2+1,---,(€(0)i +1}, ifo, =1
{(€(0))1,(€(0))2,- -+, (€(0))i}, if o = n,

which is a set of consecutive integers. Thus o is a strong fixed point of Foata’s map.

{019027"' >Ui}:{

9



Conversely, suppose that o € .S, is a strong fixed point of Foata’s map. So {o1, -+ ,0,-1}
is a set of consecutive integers with n — 1 numbers in [n]. This implies that o, = 1 or
o, = n. Hence

(') = Co, (o) =

O Opet, if o, = n,

{ (o1 —=1)-+-(op_1 — 1), ifo, =1;

where ¢’ = 0109+ - 0,_1. It follows that C"(0’) is a strong fixed point of Foata’s map.
By induction on n we deduce that

H(C (")) = Co (o).

Consequently,
H(o) = C, [(H(C™(0))) - on
=C,, (C™()) - on
=C,.(Co, () on=0"-0, =0,
as desired. This completes the proof. 1

The following corollary gives another characterization of the fixed points of H in
terms of codes.

Corollary 3.2 Let o0 € S,,. The following statements are equivalent:

(1) M(o) = I(0), that is, o is a fized point of H.

(2) 1(o) = (t1(0),t2(0),- -+ ,tu(0)) such that t;(c) =0 ori—1 for each i € [n].

Proof. 1t is easy to check that o satisfies the Condition (2) if ¢ is a strong fixed point
of Foata’s map. Conversely, suppose that [(c) = (t1(0),t2(0), - ,t,(0)) such that
ti(c) = 0 or i — 1 for each i € [n]. We proceed by induction on n to show that o is a
strong fixed point of Foata’s map. The statement is obvious for n = 1. Now we may
assume that the claim holds for any permutation of length n — 1 satisfying Condition

(2). It is clear that
I(C,,(0") = (t1(0), . .., tn_1(0)).

The inductive hypothesis implies that I(C,, (¢)) is a strong fixed point of length n — 1.
Since t, =0 or t, =n — 1, we have 0, = 1 or 0, = n, and hence

{ (0r = 1)+ (0p1 — 1), if o, =1;

01" Op_1, if o, = n.

C,, (") =

It follows that o is also a strong fixed point of Foata’s map. Now the corollary is a
consequence of Theorem 3.1. |
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Corollary 3.3 For anyn > 1, Han’s map H has 2" fized points.

By Theorem 3.1, we see that each fixed point of H is a fixed point of ®, but the
converse is not true. For example, let o = 14235 € S5, we have ®(0) = ¢. But it is not
a fixed point of H.

4 A construction of Mahonian statistics

In this section, we give a construction of Mahonian statistics on permutations by using
the major code. It should be mentioned that Clarke [2] gave the following construction of
a class of Mahonian statistics on words based Foata’s second fundamental transformation.

Theorem 4.1 Let X = {1™,2™2 ... k™ } be a multiset with my +my+ -+ my = n.
Let e = (e1,e9, - ,e,) € {0,1}", w € R(X). For any 1 <i <mn, let

si(w), if e; =0;
ui(w):{ (w)

Then the statistic .
inmaj, (w) =Y u;(w)
i=1

is Mahonian on R(X).

Since uy(w) = 0 and u,(w) = t,(w) = s,(w), Clarke in fact constructed 2"~2 Maho-
nian statistics on R(X), where

We proceed to construct a class of Mahonian statistics {M.|e € {0,1}"} for permu-
tations. The statistics M, satisfy the following properties

=
L
L
°
—
Q
N~—
|

ri(o) + -+ r,(o0) =maj(H (o)), (4.4)

maj(o). (4.5)

=
=
jH
=
B
—~~
Q
S~—
Il

si(o) + -+ sp(0)

Definition 4.2 Let o € S,, with M(0) = (s1(0), s2(0), -+, $u(0)). For any2 <i <n,

define
{ T — 1, if Si_l(O') < Si(o-);

ri(o) = :
0, otherwise.

11



and set ri(o) = s1(c) = 0. For any vector e = (eq, eq, -+ ,e,) € {0,1}", the statistic M,
on S, is defined by

Me(o) = Zui(a),

where
si(o), ife;=1;

wilo) = { ri(o), if e; =0. (4.6)

Theorem 4.3 For any e = (e1,e9, -+ ,e,) € {0,1}" the statistic M, is Mahonian on
Sh.-

The following lemma shows that Theorem 4.3 holds for any e € {0, 1}" if it is true
for vectors e with e, = 1.

Lemma 4.4 For 1 <k < n, there exists a bijection Hy: S, — S, such that

M(Hy(0)) = (51(0), -+ s snt-1(0), snk (Hi(0), -+ s0(Hi(0)) (4.7)
and
2 5(HK)) = 50y(0) + P (0) + -+ (o). (4.8)

In particular, M and M are equidistributed on S,, for e’ = (ey, -+ ,e4_x-1,1,0,---,0)
and €’ = (e1, -+ ,en_p_1,1,1,+-+ 1),

Proof. Let o € S, and M(0) = (s1(0),s2(0),- -+ ,8n(0)). Forn —k+1 <7 < n, set
si=1i—si(c) = L(€""(0)), the last letter of €"*(c). Define Hy: S,, — S,, by

Hy(o) = Cy' (- [C5"  (€%(0)) - Sl ) - 8, (4.9)

n—k+1

where €"(0) = (). We first show that Hy is a bijection. Suppose that Hy (o) = Hg(w).
From the definition (4.9) we see that

si(0) = si(m) for j>n—k+1,
and so €% (o) = €* (). From the definition of ¢ and Corollary 2.2, we obtain

' (0) = (Cnr) "1 (€M (0)),
hence we deduce that 7 (c) = €7(x) for j =0,1,--- , k. In particular, we have o = 7.

Thus Hy is a bijection.

12



We proceed to use induction to demonstrate that the bijection Hy satisfies the prop-
erties (4.7) and (4.8). For k = 1, we have

Since Cs_,l preserves the relative order, equation (4.7) is true for H;, namely,

M(Hy(0)) = (s1(0), -+, 8n-2(0), $n-1(H1(0)), $u(H1(0)))-
Since s!,_, is defined as the last element of €'(0), we find

/

: / /.
S 1, its, |, <s;

/ et /
Sn—1 + 17 if Sp—1 Z Spe

(H1(0))n-1= {

Again, by the definition of s}, we see that s/, _; < s/ if and only if s,_1(0) > s,(0).
Therefore, from Corollary 2.2 it follows that

sn-1(Hy(0)) = {

/ : /! /.
- (Sn—l - Sn + n)? if Sp—1 < Sp;

/ / e /

n—1 +1- Sn)? if Sp—1 Z Sp -

_ { sn-1(0) = sn(0), if 51_1(0) > $n(0);
) = sn(

—sp(0) +n—1, if s,-1(0) < s,(0).
So we deduce that

Sn—1(H1(0)) + $p(Hi(0)) = sp—1(Hi(0)) + sn(0)
B { Sn—1(0), if s,_1(0) > sp(0);

Sp_1(o) +n—1, if s,_1(0) < s,(0).
= Sp-1(0) + 1(0).

Thus the equation (4.8) holds for H;. Assume that the relations (4.7) and (4.8) hold for
H; with j < k — 1. We shall prove that H also satisfies the equations (4.7) and (4.8).
By (4.9), we have

Hi(o) = C; (Hp-1(€(0))) - s

/
/
n n

and by the inductive hypothesis, the major code of Hy_1(%(c)) satisfies the relations
$i(Hi_1(€(0))) = s;(€(0)) = si(0) for 1<i<n—Fk-—1

and



= $pk(0) +Tpnp1(0)+ -+ ro_1(0).

It is evident that the last element of Hy_1(%'(0)) is equal to s/, ;(c). The same argument
as in the proof for the case k = 1 shows that

si(Hi(0)) = si(Hp_1(€¢(0))) for i <n —2,

and
Sn—1(Hg(0)) + $n(Hi(0)) = Sp—1(0) + (o).

Consequently,
si(Hp(0)) = s;(0) for 1 <i<n—Fk—1.

That is to say, the relation (4.7) holds for Hy. By Corollary 2.2, s,,_1(Hx_1(%(0))) =
n—1—L(Hy_1(€¢(0))) = sn—1(0), hence

Sn—k(Hi(0)) + -+ + $n2(Hi(0)) + $n-1(Hi(0)) + sn(Hi(0))
= sn-k(Hp1(€(0))) + - + sn2(Hr1(€(0))) + sn-1(0) + 70 (0)
= Sn—k(Hk-1(€¢(0))) + -+ - + sn—2(Hp-1(%¢(0))) + sp-1(Hp—1(€(0))) + r0(0)
= 8nk(0) + Tnopy1(0) + -+ rp1(0) +10(0).
So the relation (4.8) holds for Hy. This completes the proof. |

In view of the above lemma, we are now ready to present the proof of Theorem 4.3.

Proof of Theorem 4.3. We shall justify Theorem 4.3 by showing that for each e € {0, 1}",
there exists a bijection ¥, on S, satisfying M.(c) = maj(¥.(o)) for any o € S,. The
argument is by induction on n. For n = 1, define ¥ = ¥(;) as the identity map on 5.

Suppose for each j < n—1 and e € {0,1}’, we have constructed a bijection ¥, on S;
such that M.(o) = maj(V.(0)).

For any e € {0,1}", by Lemma 4.4, we may assume the rightmost zero in e is at the
position n — k — 1, i.e., e = (€1, -+ ,€4_4_2,0,1,--- ;1) with £ > 0. For any o € S,,, we
have €**1(0) € S,_x_1 and

M(€* (o)) = (51(0), 52(0), -+, $0-k-1(0))-

Let € = (e1,++ ,€,_k_1). By the inductive hypothesis, there exists a bijection ¥; on
Sp_1_1 such that M.(€*1(0)) = maj(¥.(€* ' (0))). Now define

\Ife<(7) = (C%)—l - ((Cs;kk)—l [\Ifé(%k—"l(a))] ) S;L—k) R B

n’

where, for n —k < i <n, s, =i — s;(0) is the last element of €" ().

By the definition of W, and Corollary 2.2, we see that
(sn-k(We(0)), -+, 5n(Ve(0))) = (5n-k(0), -, 5n(0)).
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Moreover,

51(We(0)) + -+ + snp-1(Le(0)) = maj(Le(€"(0)))
= M(¢"(0))
= Ul(O') + -+ Un_k_l(O').

Therefore,

M.(o) =ui(o) + -+ Up—p—2(0) + Upn_t—1(0) + Sp_i(o) + - - + s,(0)
= Me(€*(0)) + 50 i(Ve(0)) + - - + 52(Ve(0))
=51 (We(0)) + -+ + 8k 1(Ve(0)) + 8p_p(Ve(0)) + - - + 5,(Vo(0))
= maj(V.(0)),

where u; is given by (4.6) for the vector e. This completes the proof. |

Take the same permutation ¢ = 392648517 as in the previous example in Table 1.
The calculation of Hy(o) in Lemma 4.4 can be illustrated as follows. First we have

(51(0>7"‘;5n(0)) = (07071737174737572)7
(5/175/27"'75;) = (17272717472747377)-

Then we compute

Hy(o) = CoH{C7HO (O (31254) - 2) - 4] - 3} - 7
= O YO O (413652) - 4] -3} - 7
= ;7 Y{C51(5137624) - 3} - 7
= 0;'{61487253} - 7
— 614982537,

where 31254 = €% (o), M(614982537) = (0,0,1,3,2,1,5,3,2). Now one sees that Lemma
4.4 holds.

To conclude this paper, we remark that the statistic M, coincides with the major
index for the fixed points of Han’s map H. To be precise, let ¢ be a fixed point of H.
By Corollary 3.1, s;(6) =i — 1 or 0 for each i. Consequently, s;_ 1 < s; if and only
if s, =i—1, and s;_1 > s; if and only if s; = 0. Hence we have s;(0) = r;(0) and
M. (o) = maj(o) for each e € {0,1}".

Acknowledgments. This work was supported by the 973 Project, the PCSIRT Project
of the Ministry of Education, and the National Science Foundation of China.

15



References

1]

2]

3]

[4]

[11]

[12]

[13]

[14]

[15]

A. Bjorner and M.L. Wachs, Permutation statistics and linear extensions of posets,
J. Combin. Theory Ser. A 58 (1991), 85-114.

B. Clarke, A note on some Mahonian statistics, Sém. Lothar. Combin. 53 (2005),
Article B53a.

M. Denert, The genus zeta function of hereditary orders in central simple algebras
over grobal fields, Math. Comp. 54 (1990), 449-465.

A. Dzhumadil’daev, MacMahon’s theorem for a set of permutations with given
descent indices and right-maximal records, Electron. J. Combin. 17 (2010), R34.

D. Foata. On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19
(1968), 236-240.

D. Foata and D. Zeilberger, Denert’s permutation statistics is indeed Euler-
Mahonian, Studies in Applied Math. 83 (1990), 31-59.

J. Haglund, The ¢, t-Catalan Numbers and the Space of Diagonal Harmonics, Amer.
Math. Soc., Providence, Rhode Island, 2008.

G.-N. Han, Une courte d’emonstration d’un résultat sur la Z-statistique, C. R. Acad.
Sci. Paris, Série I, 314 (1992), 969-971.

G.-N. Han, Une transformation fondamentale sur les rearrangements de mots, Adv.
Math. 105 (1994), 26-41.

G.-N. Han, Euler-Mahonian triple set-valued statistics on permutations, European
J. Combin. 29 (2008), 568-580.

F. Hivert, J.C. Novelli, J.Y. Thibon, Multivariate generalizations of the Foata-
Schiitzenberger equidistribution, DMTCS proc. AG, 2006, 289-300.

P.A. MacMahon, The indices of permutations and the derivation therefrom of func-
tions of a single variable associated with the permutations of any assemblage of
objects, Amer. J. Math. 35 (1913), 314-321.

P.A. MacMahon, Two applications of general theorems in combinatory analysis,
Proc. London Math. Soc. 15 (1916), 314-321

M. Skandera, An Eulerian parnter for inversions, Sém. Lothar. Combin. 46 (2001),
Article B46d.

D. Zeilberger and D.M. Bressoud, A proof of Andrews ¢g-Dyson conjecture, Discrete
Math. 54 (1985), 201-224.

16



