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Abstract

Based on Bóna’s condition for the balanced property of the number of of cycles of
permutations, we give a general criterion for the balanced property in terms of the gen-
erating function of a statistic. We show that the 𝑞-derangement numbers and 𝑞-Catalan
numbers satisfy the balanced property.
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1 Introduction

The notion of the balanced property was introduced by Bóna [7]. Let 𝜉 be a statistic on a
set 𝑄𝑛 of combinatorial objects, and let 𝜉(𝑘) be the number of objects 𝜋 in 𝑄𝑛 such that
𝜉(𝜋) = 𝑘. A statistic 𝜉 over the set 𝑄𝑛 is said to possess the balanced property if for any
𝑚 ≥ 2 and 0 ≤ 𝑟 ≤ 𝑚− 1,

lim
𝑛→∞

∑
𝑘

𝜉(𝑘)

∣𝑄𝑛∣ =
1

𝑚
, (1.1)

where the sum ranges over all 𝑘 congruent to 𝑟 modulo 𝑚. We assume that 𝑚𝑛 is the
maximum value of 𝜉. Then the balanced property (1.1) can be expressed in terms of a finite
sum

lim
𝑛→∞

𝜉(𝑟) + 𝜉(𝑚+ 𝑟) + ⋅ ⋅ ⋅+ 𝜉(𝑝𝑚+ 𝑟)

∣𝑄𝑛∣ =
1

𝑚
,

where 𝑝 = ⌊(𝑚𝑛 − 𝑟)/𝑚⌋. In other words, the balanced property means the asymptotically
uniform distribution of a statistic 𝜉 modulo 𝑚.

Bóna [7] has shown that the balanced property (1.1) holds for both the number of cycles
over the set of permutations of [𝑛] = {1, 2, . . . , 𝑛}, and the number of cycles over the set D𝑛

of derangements of [𝑛]. Furthermore, he proved that the number of cycles over D𝑛 with each
cycle having length at least 𝑎 also satisfies the balanced property. In a subsequent paper [8],
Bóna proved the balanced property for the number of parts over compositions of 𝑛.

The main objective of this paper is to find more combinatorial objects that satisfy the
balanced property with respect to certain statistics. We begin with a general criterion for
the balanced property in terms of the generating functions of the statistics. This criterion
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enables us to derive the balanced properties of the major index over derangements of [𝑛] and
the major index over Catalan words of length 2𝑛, which are counted by the 𝑞-derangement
numbers and 𝑞-Catalan numbers, respectively. We also show that the flag major index over
type 𝐵𝑛 derangements satisfies the balanced property.

2 A general criterion

In this section, we give a formulation of a general criterion for the balanced property, which
can be used to derive the balanced properties for the major index over derangements of [𝑛]
and the major index over Catalan words of length 2𝑛. The criterion will be stated in terms of
a statistic over a set 𝑄𝑛. But it can also be rephrased in terms of the generating function of
the statistic. While our criterion is based on a general setting, the proof is essentially the same
as the proof of Bóna for the special case concerning the number of cycles of permutations.
The proof is included for the sake of completeness.

Theorem 2.1. Let 𝜉 be a statistic on a set 𝑄𝑛 of combinatorial objects. The balanced property
(1.1) holds if for any 1 ≤ 𝑗 ≤ 𝑚− 1,

lim
𝑛→∞

𝑓𝑛(𝜔
𝑗)

∣𝑄𝑛∣ = 0, (2.1)

where 𝜔 = 𝑒2𝜋𝑖/𝑚 and
𝑓𝑛(𝑞) =

∑
𝜋∈𝑄𝑛

𝑞𝜉(𝜋)

is the generating function of the statistic 𝜉.

Proof. Let

𝑇𝑛 =
∑

0≤𝑗≤𝑚−1

𝑓𝑛(𝜔
𝑗)𝜔−𝑗𝑟. (2.2)

Recall that 𝜉(𝑘) denotes the number of elements 𝜋 in𝑄𝑛 such that 𝜉(𝜋) = 𝑘. So the generating
function 𝑓𝑛(𝑥) can be written as

𝑓𝑛(𝑞) =
∑
𝑘

𝜉(𝑘)𝑞𝑘, (2.3)

where the sum ranges over all 𝑘 congruent to 𝑟 modulo 𝑚. Substituting (2.3) into (2.2), we
obtain that

𝑇𝑛 =
∑
𝑘

𝜉(𝑘)
∑

0≤𝑗≤𝑚−1

𝜔(𝑘−𝑟)𝑗 . (2.4)

Since ∑
0≤𝑗≤𝑚−1

𝜔(𝑘−𝑟)𝑗 =

⎧⎨⎩𝑚, if 𝑚∣(𝑘 − 𝑟);

0, else,
(2.5)

the double sum (2.4) simplifies to

𝑇𝑛 = 𝑚
∑
𝑘

𝜉(𝑘).
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Consequently, the balanced property (1.1) can be recast as

lim
𝑛→∞

𝑇𝑛

∣𝑄𝑛∣ = 1. (2.6)

Now, in the expression (2.2) of 𝑇𝑛, the summand 𝑓𝑛(𝜔
𝑗)𝜔−𝑗𝑟 for 𝑗 = 0 is 𝑓𝑛(1) = ∣𝑄𝑛∣. Thus

𝑇𝑛 = ∣𝑄𝑛∣+
∑

1≤𝑗≤𝑚−1

𝑓𝑛(𝜔
𝑗)𝜔−𝑗𝑟. (2.7)

Substituting (2.7) into (2.6), we conclude that the the balanced property holds if and only if

lim
𝑛→∞

∑
1≤𝑗≤𝑚−1

𝑓𝑛(𝜔
𝑗)

∣𝑄𝑛∣ 𝜔−𝑗𝑟 = 0. (2.8)

Evidently, the condition (2.1) implies (2.8) since ∣𝜔−𝑗𝑟∣ = 1. This completes the proof.

3 The 𝑞-derangement numbers

In this section, we shall show that the major index over derangements of [𝑛] satisfies the
balanced property. Let 𝑆𝑛 be the set of permutations of the set [𝑛]. The major index of a
permutation 𝜋 = 𝜋1𝜋2 ⋅ ⋅ ⋅𝜋𝑛 ∈ 𝑆𝑛 is defined to be the sum of the indices 𝑖 such that 𝜋𝑖 > 𝜋𝑖+1,
that is,

maj(𝜋) =
∑

𝜋𝑖>𝜋𝑖+1

𝑖.

Denote by maj(𝑘) the number of permutations of [𝑛] with major index 𝑘.

The problem on the balanced property of the major index over permutations has been
considered by Gordon [14] and Roselle [15]. For any coprime numbers 𝑘, 𝑙 ≤ 𝑛, the number of
permutations 𝜋 of [𝑛] such that maj(𝜋) is congruent to 𝑖 modulo 𝑘 and maj(𝜋−1) is congruent
to 𝑗 modulo 𝑙 equals 𝑛!/(𝑘𝑙), which is independent of 𝑖 and 𝑗. To be more specific,

∣{𝜋 ∣ maj(𝜋) ≡ 𝑖 (mod 𝑘), maj(𝜋−1) ≡ 𝑗 (mod 𝑙)}∣ = 𝑛!

𝑘𝑙
. (3.1)

Taking 𝑙 = 1, the formula (3.1) specializes to the fact that the number of permutations
of [𝑛] with major index 𝑖 modulo 𝑘 equals 𝑛!/𝑘. In other words, for any 𝑛 ≥ 𝑚 and any
0 ≤ 𝑖 ≤ 𝑚− 1, we have ∑

𝑘

maj(𝑘)

𝑛!
=

1

𝑚
, (3.2)

where the sum ranges over all 𝑘 congruent 𝑖 modulo 𝑚. As noted in [5], the relation (3.1)
was implicit in Gordon [14] and has been made explicit by Roselle [15]. When 𝑙 divides 𝑛− 1
and 𝑘 divides 𝑛, a combinatorial proof has been given by Barcelo, Maule and Sundaram [5].
A more detailed description of the background on the relation (3.1) can also be found in
[5]. The identity (3.2) can be viewed as an exact balanced property in comparison with the
balanced property in the asymptotic sense. Moreover, (3.1) can be considered as a bivariate
version of the exact balanced property.

3



Using representations of the symmetric group, Barcelo and Sundaram [6, Theorem 2.6]
have obtained (3.2) for the special case 𝑚 = 𝑛. They also gave a bijective proof in this case.
Recently, Barcelo, Sagan, and Sundaram [9] gave a combinatorial interpretation of (3.1) in
the general case by using shuffles of permutations.

We note that our proof of Theorem (2.1) easily applies to the exact balanced property
(3.2). In general, we say a statistic 𝜉 processes the exact balanced property if for any 0 ≤ 𝑟 ≤
𝑚− 1 and 𝑛 ≥ 𝑁 , ∑

𝑘

𝜉(𝑘)

∣𝑄𝑛∣ =
1

𝑚
,

where the sum ranges over all 𝑘 congruent to 𝑟 modulo 𝑚, and 𝑁 depends only on 𝑚.
Inspecting the derivation of the formula (2.8), we see that the exact balanced property holds
if and only if ∑

1≤𝑗≤𝑚−1

𝑓𝑛(𝜔
𝑗)

∣𝑄𝑛∣ 𝜔−𝑗𝑟 = 0. (3.3)

In the usual notation [0]𝑞! = 1, [𝑛]𝑞! = [1]𝑞[2]𝑞 ⋅ ⋅ ⋅ [𝑛]𝑞, where [𝑛]𝑞 = 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞𝑛−1 for
𝑛 ≥ 1, the generating function for the major index of permutations of [𝑛] is known to be

𝑓𝑛(𝑞) =
∑
𝜋∈𝑆𝑛

𝑞maj(𝜋) = [𝑛]𝑞!,

see Andrews [2]. Since for 𝑛 ≥ 𝑚, 𝑓𝑛(𝑞) contains the factor [𝑚]𝑞, 𝑓𝑛(𝜔
𝑗) contains the factor

[𝑚]𝜔𝑗 . It follows that 𝑓𝑛(𝜔
𝑗) equals zero for any 1 ≤ 𝑗 ≤ 𝑚− 1. Therefore the relation (3.3)

holds, which implies the exact balanced property (3.2).

Moreover, it is not difficult to derive the balanced property and the exact balanced
property for the flag major index over permutations of type 𝐵𝑛, which is introduced by Adin
and Roichman [4]. Denote by 𝑆𝐵

𝑛 the set of 𝐵𝑛-permutations. Then the generating function
for the flag major index over 𝑆𝐵

𝑛 is given by

𝑓𝐵
𝑛 (𝑞) =

∑
𝜋∈𝑆𝐵

𝑛

𝑞fmaj(𝜋) = [2]𝑞[4]𝑞 ⋅ ⋅ ⋅ [2𝑛]𝑞,

see Chow [11]. For 𝑛 ≥ 2𝑚 − 1, 𝑓𝐵
𝑛 (𝑞) contains the factor [2𝑚]𝑞. It follows from (2.5) that

𝑓𝐵
𝑛 (𝜔𝑗) = 0. This yields (3.3), leading to the exact balanced property for the flag major index
over 𝐵𝑛-permutations.

A derangement of [𝑛] is a permutation 𝜋1𝜋2 ⋅ ⋅ ⋅𝜋𝑛 of [𝑛] such that 𝜋𝑖 ∕= 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
The following counting formula of derangements with respect to the major index was given
by Gessel and published later in [13],

𝑑𝑛(𝑞) =
∑
𝜋∈D𝑛

𝑞maj(𝜋) =
∑

0≤𝑘≤𝑛

(−1)𝑘𝑞(
𝑘
2)

∏
𝑘+1≤𝑡≤𝑛

[𝑡]𝑞, (3.4)

where [0]𝑞! = 1. Combinatorial proofs for (3.4) has been found by Wachs [16], and Chen and
Xu [10].

4



Theorem 3.1. The major index over derangements of [𝑛] satisfies the balanced property. In
other words, for any 0 ≤ 𝑟 ≤ 𝑚− 1, we have

lim
𝑛→∞

maj(𝑟) + maj(𝑚+ 𝑟) + ⋅ ⋅ ⋅+maj(𝑝𝑚+ 𝑟)

∣D𝑛∣ =
1

𝑚
,

where

𝑝 =

⌊(
𝑛
2

)− 𝑟

𝑚

⌋
.

Proof. Consider the values of 𝑑𝑛(𝑞) evaluated at 𝑞 = 𝜔𝑗 , namely,

𝑑𝑛(𝜔
𝑗) =

∑
0≤𝑘≤𝑛

(−1)𝑘𝜔𝑗(𝑘2)
∏

𝑘+1≤𝑡≤𝑛

[𝑡]𝜔𝑗 . (3.5)

Note that among the 𝑚 consecutive integers 𝑛, 𝑛− 1, . . . , 𝑛−𝑚+ 1, there exists an integer
𝑎 which can be divided by 𝑚. For such a choice of 𝑎, we have [𝑎]𝜔𝑗 = 0. So any summand in
(3.5) containing the factor [𝑎]𝜔𝑗 can be ignored. Consequently, the formula (3.5) reduces to
the following form

𝑑𝑛(𝜔
𝑗) =

∑
𝑛−𝑚+2≤𝑘≤𝑛

(−1)𝑘𝜔𝑗(𝑘2)
∏

𝑘+1≤𝑡≤𝑛

[𝑡]𝜔𝑗 . (3.6)

In order to estimate [𝑡]𝜔𝑗 , let us compute [𝑡]2
𝜔𝑗 . For any 𝑡 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑛}, we have

∣[𝑡]𝜔𝑗 ∣2 =
∣∣∣∣1− 𝜔𝑡𝑗

1− 𝜔𝑗

∣∣∣∣2 = 1− cos(2𝜋𝑡𝑗/𝑚)

1− cos(2𝜋𝑗/𝑚)
, (3.7)

which is clearly bounded by 2/𝑐, where

𝑐 = min{1− cos(2𝜋𝑗/𝑚) ∣ 1 ≤ 𝑗 ≤ 𝑚− 1}.
It is clear that 2/𝑐 ≥ 1. Hence,∏

𝑘+1≤𝑡≤𝑛

∣[𝑡]𝜔𝑗 ∣2 ≤
(
2

𝑐

)𝑛−𝑘

≤
(
2

𝑐

)𝑚−2

.

Observe that the above estimate is independent of 𝑗. It follows from (3.6) that

∣∣𝑑𝑛(𝜔𝑗)
∣∣ ≤ ∑

𝑛−𝑚+2≤𝑘≤𝑛

∣∣∣∣∣∣(−1)𝑘𝜔𝑗(𝑘2)
∏

𝑘+1≤𝑡≤𝑛

[𝑡]𝜔𝑗

∣∣∣∣∣∣ ≤ (𝑚− 1)

(
2

𝑐

)(𝑚−2)/2

.

Thus 𝑑𝑛(𝜔
𝑗) is bounded by a constant. By Theorem 2.1, the major index over D𝑛 satisfies

the balanced property. This completes the proof.

For the type 𝐵 case, denote by D𝐵
𝑛 the set of derangements of type 𝐵𝑛. Adin and

Roichman [4] have shown that the generating function of the flag major index over D𝐵
𝑛

equals ∑
𝜋∈D𝐵

𝑛

𝑞fmaj(𝜋) =
∑

0≤𝑘≤𝑛

(−1)𝑘𝑞𝑘(𝑘−1)[2𝑛]𝑞[2𝑛− 2]𝑞 ⋅ ⋅ ⋅ [2𝑘 + 2]𝑞,

see also Chow [11], and Adin, Brenti and Roichman [3]. By an argument very similar to
the proof of Theorem 3.1, we can derive the balanced property for the flag major index over
𝐵𝑛-derangements.
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4 The 𝑞-Catalan numbers

In this section, we shall derive the balanced property for the major index over Catalan words
of length 2𝑛. The 𝑞-Catalan number is defined by

𝐶𝑛(𝑞) =
1

[𝑛+ 1]𝑞

[
2𝑛

𝑛

]
𝑞

=
∏

2≤𝑡≤𝑛

[𝑡+ 𝑛]𝑞
[𝑡]𝑞

, (4.1)

where [
𝑛

𝑘

]
𝑞

=
[𝑛]𝑞!

[𝑘]𝑞![𝑛− 𝑘]𝑞!
,

see, for example, Andrews [1], and Fürlinger and Hofbauer [12]. A combinatorial interpreta-
tion of 𝐶𝑛(𝑞) in term of the major index of the Catalan words of length 2𝑛 has been given in
[12]. A Catalan word 𝑤 of length 2𝑛 is a sequence consisting of 𝑛 0’s and 𝑛 1’s such that no
prefix contains more 1’s than 0’s. Denote the set of Catalan words of length 2𝑛 by C𝑛. The
major index for a Catalan word 𝑤 = 𝑤1𝑤2 ⋅ ⋅ ⋅𝑤2𝑛 ∈ C𝑛 is defined by

maj(𝑤) =
∑

𝑤𝑖>𝑤𝑖+1

𝑖.

Let maj(𝑘) be the number of Catalan words of length 2𝑛 with major index 𝑘. Fürlinger and
Hofbauer have shown that

𝐶𝑛(𝑞) =
∑
𝑤∈C𝑛

𝑞maj(𝑤).

The number of Catalan words is given by the Catalan number

𝐶𝑛(1) =
1

𝑛+ 1

(
2𝑛

𝑛

)
. (4.2)

Theorem 4.1. The major index over Catalan words of length 2𝑛 satisfies the balanced prop-
erty. In other words, for any 0 ≤ 𝑟 ≤ 𝑚− 1, we have

lim
𝑛→∞

maj(𝑟) + maj(𝑚+ 𝑟) + ⋅ ⋅ ⋅+maj(𝑝𝑚+ 𝑟)

𝐶𝑛(1)
=

1

𝑚
,

where

𝑝 =

⌊
𝑛(2𝑛− 1)− 𝑟

𝑚

⌋
.

Proof. By Theorem 2.1, it suffices to show that for any 0 ≤ 𝑗 ≤ 𝑚− 1,

lim
𝑛→∞

𝐶𝑛(𝜔
𝑗)

𝐶𝑛(1)
= 0.

Let 1 ≤ 𝑗 ≤ 𝑚 − 1. Suppose that 𝑗/𝑚 = 𝑢/𝑣, where 𝑢 and 𝑣 are coprime positive integers
with 2 ≤ 𝑣 ≤ 𝑚. Write 𝑛 = 𝑙𝑣 + 𝑠, where 0 ≤ 𝑠 ≤ 𝑣 − 1. Denote the denominator of (4.1) by
𝐷𝑛(𝑞), namely,

𝐷𝑛(𝑞) =
∏

2≤𝑡≤𝑛

[𝑡]𝑞 = [𝑛]𝑞!.
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It should not be overlooked that the denominator 𝐷𝑛(𝑞) vanishes when 𝑞 is set to 𝜔𝑗 .
In fact, since 𝜔𝑗𝑣 = 𝑒2𝜋𝑖𝑗𝑣/𝑚 = 𝑒2𝜋𝑖𝑢 = 1, we have 1 − 𝜔𝑗𝑡 = 0 for any 𝑣∣𝑡. More precisely,
𝐷𝑛(𝑞) contains the factor

𝐹𝑛(𝑞) =
∏

1≤𝑘≤𝑙

[𝑘𝑣]𝑞 = [𝑣]𝑙𝑞 ⋅ [𝑙]𝑞𝑣 !,

in which the factor [𝑣]𝑙𝑞 causes 𝐷𝑛(𝑞) to vanish when evaluated at 𝑞 = 𝜔𝑗 . We proceed to
represent 𝐶𝑛(𝑞) as a quotient whose denominator does not vanish for 𝑞 = 𝜔𝑗 .

If 0 ≤ 𝑠 ≤ 𝑣 − 2, let

𝐴𝑛(𝑞) =

∏
𝑙+1≤𝑘≤2𝑙[𝑘𝑣]𝑞

𝐹𝑛(𝑞)
.

Canceling the common factor [𝑣]𝑙𝑞 in the numerator and the denominator, we can reduce it
to the form

𝐴𝑛(𝑞) =

[
2𝑙

𝑙

]
𝑞𝑣
.

Denote the quotient 𝐶𝑛(𝑞)/𝐴𝑛(𝑞) by 𝐵𝑛(𝑞). It can be checked that

𝐵𝑛(𝑞) =

⎛⎜⎝ ∏
2≤𝑡≤𝑛

𝑡∕∈{𝑣−𝑠,2𝑣−𝑠,...,𝑙𝑣−𝑠}

[𝑡+ 𝑛]𝑞

⎞⎟⎠
⎛⎜⎝ ∏

2≤𝑡≤𝑛
𝑣 ∤ 𝑡

[𝑡]𝑞

⎞⎟⎠
−1

. (4.3)

Clearly, the denominator of 𝐵𝑛(𝑞) does not vanish for 𝑞 = 𝜔𝑗 .

For the case 𝑠 = 𝑣 − 1, let

𝑈𝑛(𝑞) =

∏
𝑙+1≤𝑘≤2𝑙+1[𝑘𝑣]𝑞

𝐹𝑛(𝑞)
.

Similarly, 𝑈𝑛(𝑞) can be reduced to the following form

𝑈𝑛(𝑞) =

[
2𝑙 + 1

𝑙

]
𝑞𝑣
, (4.4)

where the denominator does not vanish for 𝑞 = 𝜔𝑗 . Moreover, we see that 𝑉𝑛(𝑞) = 𝐶𝑛(𝑞)/𝑈𝑛(𝑞)
has the following representation

𝑉𝑛(𝑞) =

⎛⎜⎝ ∏
2≤𝑡≤𝑛

𝑡∕∈{2𝑣−𝑠,...,𝑙𝑣−𝑠,(𝑙+1)𝑣−𝑠}

[𝑡+ 𝑛]𝑞

⎞⎟⎠
⎛⎜⎝ ∏

2≤𝑡≤𝑛
𝑣 ∤ 𝑡

[𝑡]𝑞

⎞⎟⎠
−1

.

Again, the denominator of 𝑉𝑛(𝑞) is nonzero when 𝑞 = 𝜔𝑗 .

We are now ready to give an estimate of ∣𝐶𝑛(𝜔
𝑗)∣. First, consider the case 0 ≤ 𝑠 ≤ 𝑣−2.

Since 𝜔𝑗𝑣 = 1, we have

𝐴𝑛(𝜔
𝑗) =

(
2𝑙

𝑙

)
, (4.5)

𝐵𝑛(𝜔
𝑗) =

⎛⎜⎝ ∏
2≤𝑡≤𝑛

𝑡∕∈{𝑣−𝑠,2𝑣−𝑠,...,𝑙𝑣−𝑠}

[𝑡+ 𝑠]𝜔𝑗

⎞⎟⎠
⎛⎜⎝ ∏

2≤𝑡≤𝑛
𝑣 ∤ 𝑡

[𝑡]𝜔𝑗

⎞⎟⎠
−1

. (4.6)
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In order to give an estimate for ∣𝐵𝑛(𝜔
𝑗)∣, it is necessary to reduce the above expression to

a quotient such that the numbers of factors the numerator and the denominator are both
finite. It is easy to verify that 𝐵𝑛(𝜔

𝑗) = 1 for 𝑠 = 0 and 𝑠 = 1. By (4.6), we have

𝐵𝑛(𝜔
𝑗) =

⎛⎝[𝑣 − 1]𝜔𝑗 !𝑙
∏

𝑠+2≤𝑡≤2𝑠

[𝑡]𝜔𝑗

⎞⎠⎛⎝[𝑣 − 1]𝜔𝑗 !𝑙
∏

2≤𝑡≤𝑠

[𝑡]𝜔𝑗

⎞⎠−1

=
∏

2≤𝑡≤𝑠

[𝑡+ 𝑠]𝜔𝑗

[𝑡]𝜔𝑗

.

In view of (3.7), we see that∏
2≤𝑡≤𝑠

∣[𝑡+ 𝑠]𝜔𝑗 ∣2
∣[𝑡]𝜔𝑗 ∣2 =

∏
2≤𝑡≤𝑠

1− cos(2𝜋(𝑡+ 𝑠)𝑗/𝑚)

1− cos(2𝜋𝑡𝑗/𝑚)
≤

(
2

𝑐

)𝑠−1

,

where
𝑐 = min{1− cos(2𝜋𝑡𝑗/𝑚) ∣ 1 ≤ 𝑗 ≤ 𝑚− 1, 2 ≤ 𝑡 ≤ 𝑚− 2}.

Consequently, ∣𝐵𝑛(𝜔
𝑗)∣ is bounded by a constant, say, 𝑐1. By (4.5), for 0 ≤ 𝑠 ≤ 𝑣− 2, we get

∣𝐶𝑛(𝜔
𝑗)∣ ≤ 𝑐1

(
2𝑙

𝑙

)
. (4.7)

For the case 𝑠 = 𝑣 − 1, substituting 𝑞 = 𝜔𝑗 in (4.4), we obtain that

𝑈𝑛(𝜔
𝑗) =

(
2𝑙 + 1

𝑙

)
. (4.8)

On the other hand, by an analogous argument to the case 𝑠 ≤ 𝑣 − 2, it can be shown that
∣𝑉𝑛(𝜔

𝑗)∣ is also bounded by a constant, say 𝑐2. It follows from (4.8) that for 𝑠 = 𝑣 − 1,

∣𝐶𝑛(𝜔
𝑗)∣ ≤ 𝑐2

(
2𝑙 + 1

𝑙

)
. (4.9)

Up to now, we have obtained the estimates for the ∣𝐶𝑛(𝜔
𝑗)∣ in the above two cases,

namely, (4.7) for 0 ≤ 𝑠 ≤ 𝑣− 2, and (4.9) for 𝑠 = 𝑣− 1. By (4.2), we can derive the following
general upper bound

∣𝐶𝑛(𝜔
𝑗)∣

𝐶𝑛(1)
≤ 𝑐3 ⋅

(𝑛+ 1)
(
2𝑙+1
𝑙

)(
2𝑛
𝑛

) , (4.10)

where 𝑐3 = max(𝑐1, 𝑐2). Based on Stirling’s formula, the central binomial coefficient can be
estimated as follows (

2𝑛

𝑛

)
∼ 22𝑛√

𝜋𝑛
, as 𝑛 → ∞. (4.11)

Since 𝑙 = (𝑛− 𝑠)/𝑣 tends to infinity as 𝑛 → ∞, we have(
2𝑙 + 1

𝑙

)
∼ 2

(
2𝑙

𝑙

)
∼ 22𝑙+1

√
𝜋𝑙

, as 𝑛 → ∞. (4.12)

Combining (4.10), (4.11) and (4.12), we find that

lim
𝑛→∞

∣𝐶𝑛(𝜔
𝑗)∣

𝐶𝑛(1)
≤ lim

𝑛→∞ 𝑐3 ⋅
√

𝑛

𝑙
⋅ (𝑛+ 1)

22𝑛−2𝑙−1
= 0.

Thus the balanced property follows from Theorem 2.1. This completes the proof.
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