回复 全回 转寄 删除 上一封 下一封 返回 发件人: jcta@asu.edu (Journal) 存入地址簿 阻止发信人 加入过滤器 收件人: chen@nankai.edu.cn 抄送: 邮件主题: Reference Number: 1682 ---- Author: William Y. C. Chen 发件日期: Mon, 13 Oct 2008 07:59:14 -0700 (MST) 看信件原文 打印信件 来信内容: 选择内码:from:GBKGB2312BIG-5UTF-8 to:GBKBIG-5UTF-8 Mon Oct 13 07:58:59 MST 2008 Professor William Y. C. Chen Title: The $q$-Log-convexity of the Generating Functions of the Squares of Binomial Coefficients By: William Y. C. Chen, Robert T. Tang, Larry X. W. Wang, Arthur L. B. Yang Dear Professor William Y. C. Chen Thanks for submitting your paper for publication in The Journal of Combinatorial Theory, Series A, (JCT-A). We have sucessfully received your manuscript, which has been given the reference number: 1682. Please use this number in any future correspondence with the journal. Once I have received the referee reports for your paper I will write to you with a decision regarding publication. In the meantime, should you have any queries, please do not hesitate to contact me at jcta@asu.edu. Yours sincerely, Ole Warnaar Managing Editor, JCTA ================================================================== Appended below is additional information we recorded. ================================================================== NAME ---- William Y. C. Chen ================================================================== EMAIL ----- chen@nankai.edu.cn ================================================================== ADDRESS ------- Center for Combinatorics Nankai University Tianjin 300071 P. R. China ================================================================== TITLE ----- The $q$-Log-convexity of the Generating Functions of the Squares of Binomial Coefficients ================================================================== AUTHORS ------- William Y. C. Chen, Robert T. Tang, Larry X. W. Wang, Arthur L. B. Yang ================================================================== NUMBER OF PAGES --------------- 29 ================================================================== ABSTRACT -------- We prove a conjecture of Liu and Wang on the $q$-log-convexity of the polynomial sequence $\{\sum_{k=0}^n{n\choose k}^2q^k\}_{n\geq 0}$. By using Pieri's rule and the Jacobi-Trudi identity for Schur functions, we obtain an expansion of a sum of products of elementary symmetric functions in terms of Schur functions with nonnegative coefficients. Then the principal specialization leads to the $q$-log-convexity. We also prove that a technical condition of Liu and Wang holds for the squares of the binomial coefficients. Hence we deduce that the linear transformation with respect to the triangular array $\{{n\choose k}^2\}_{0\leq k\leq n}$ is log-convexity preserving. ================================================================== COMMENTS -------- Addressed to - no selection ------------- ================================================================== File Name: D:\Papers_In_Progress\log-convexity-2\squares-s.pdf File Type: application/pdf Length: 176723 bytes ================================================================== 回复 全回 转寄 删除 上一封 下一封 返回 -------------------------------------------------------------------------------- Copyright ? 1999 - 2004 eYou.net. All Rights Reserved