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1. Introduction

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two sets of variables,
and sλ(X) and sλ(Y ) be the Schur functions indexed by a partition λ. Then
the classical Cauchy identity on Schur functions is stated as follows:

Theorem 1.1 For n ≥ 1, we have

n∏
i,j=1

1

1− xiyj

=
∑

λ

sλ(X)sλ(Y ), (1.1)

where the sum ranges over all partitions with length ≤ n.

The classical treatments of Theorem 1.1 include the Robinson-Schensted-
Kunth correspondence and the Cauchy-Binet formula [18, 19]. There is also
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a derivation based on matrix product involving the elementary symmetric
functions as given in Macdonald [18, p. 67]. This paper aims to establish a
connection between the Cauchy identity and the lattice path method due to
Gessel-Viennot [8, 9]. The key ingredient in our lattice path construction is
a flagged form of the Cauchy determinant with respect to the variable sets.
Recall the Cauchy determinant on X and Y :

∣∣∣∣
1

1− xiyj

∣∣∣∣
n×n

.

We follow the common notation for the Vandermonde determinant:

∆(X) =
∣∣xn−j

i

∣∣
n×n

=
∏

1≤i<j≤n

(xi − xj).

Symmetrizing operators have been used for the construction of symmetric
functions. In this paper, we show that the Jacobi symmetrizer [16], also called
the total symmetrizer in a slightly different version by Lascoux and Pragacz
[15], can be efficiently used to compute the Cauchy determinant.

Definition 1.2 (Jacobi Symmetrizer) For any polynomial f(X), the Ja-
cobi symmetrizer ∂ is given by

f(X)∂ =
1

∆(X)

∑
σ∈Sn

sign(σ)fσ(X),

where Sn is the set of permutations on {1, 2, . . . , n}, and sign(σ) is the sign
of σ.

The operator ∂ can also be defined by the divided difference operators.
Let ∂xi,xj

be the divided difference operator given by

f(x1, . . . , xn)∂xi,xj
=

f(x1, . . . , xn)− f(. . . , xj, . . . , xi, . . .)

xi − xj

.

We follow the notation of Lascoux [16] to write the operators to the right of
a function. Usually we denote ∂xi,xi+1

by ∂i. Then the Jacobi symmetrizer ∂
(see Lascoux [16]) can be expressed as:

∂ = (∂n−1) · (∂n−2∂n−1) · · · (∂1∂2 · · · ∂n−1).

Notice that the operators are applied from left to right.

The equivalence of these two definitions of the Jacobi symmetrizer may
be verified in several ways. For example, it follows from the basis theorem
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of the module of polynomials in X over symmetric functions. The Jacobi
symmetrizer can also be represented as an integral as given by Bernstein-
Gelfand-Gelfand [3] and Demazure [5], and restated by Tamvakis [21].

This paper contains the following results:

1. We obtain the flagged Cauchy determinant:

F (X,Y ) =

∣∣∣∣∣
∑

k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)

∣∣∣∣∣
n×n

, (1.2)

where hi are the complete symmetric functions.

2. Using the Jacobi symmetrizer, we derive the classical formula on Cauchy
determinant:

∣∣∣∣
1

1− xiyj

∣∣∣∣
n×n

= ∆(X) ∆(Y )
n∏

i,j=1

1

1− xiyj

. (1.3)

3. We obtain a lattice path evaluation of the flagged Cauchy determinant
and a correspondence with Young tableaux, leading to the Cauchy the-
orem.

4. Choosing different origins and destinations, we obtain the equivalence
of the flagged Cauchy determinant and a determinant in the complete
symmetric functions in the full variable sets X and Y :

∣∣∣∣∣
∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

.

Notice that the above formula has the same indices as in the flagged
formula (1.2). This leads to the following identity of Gessel [7]:

Theorem 1.3 We have
∣∣∣∣∣
∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑

λ

sλ(X)sλ(Y ). (1.4)

To conclude this section, we note that the idea of flagged Schur functions
and mutli-Schur functions has proved to be very efficient in the study of Schu-
bert polynomials in connection with divided difference operators (see Lascoux
[16] and Wachs [22]). Flagged determinants with respect to the variable sets
can also be used to give simple character formulas for the symplectic groups
and the orthogonal groups, see Chen-Li-Louck [4] and Hamel-King [14].
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2. The Jacobi Symmetrizer

In this section, we give an evaluation of the Cauchy determinant by using
the Jacobi symmetrizer. Roughly speaking, the Jacobi symmetrizer plays
an analogous role as the Cauchy-Binet formula as far as the computation
is concerned. First we observe the action of the Jacobi symmetrizer on a
monomial:

xk1
1 xk2

2 · · · xkn
n ∂ =

1

∆(X)

∣∣xki
j

∣∣
n×n

. (2.5)

In particular, the Schur function sλ(X) can be written as

xλ1+n−1
1 xλ2+n−2

2 · · · xλn
n ∂.

The Jacobi symmetrizer has the vanishing property: xk1
1 xk2

2 · · · xkn
n ∂ = 0 if

any two exponents ki and kj are equal for i 6= j. Moreover, if [k1, k2, . . . , kn]
is a permutation of [n− 1, n− 2, . . . , 0], then xk1

1 xk2
2 · · ·xkn

n ∂ equals the sign
of [k1, k2, . . . , kn] with respect to the permutation [n− 1, n− 2, . . . , 1, 0].

We are now ready to present a proof of (1.3) by using the Jacobi sym-
metrizer. We use X(i) to denote the variable set {x1, . . . , xi−1, xi+1, . . . , xn}.
Then we have

∣∣∣∣
1

1− xiyj

∣∣∣∣
n×n

=
n∏

i,j=1

1

1− xiyj

∣∣∣∣∣
∏

k 6=i

(1− xkyj)

∣∣∣∣∣
n×n

.

The determinant on the right hand side of the above equation can be ex-
panded as:

∣∣∣∣∣
n−1∑

k=0

(−1)kek(X
(i))yk

j

∣∣∣∣∣
n×n

=
∑
σ∈Sn

sign(σ)
n∏

i=1

(
n−1∑

ki=0

(−1)kieki
(X(i))yki

σi

)
, (2.6)

where σ ranges over all permutations on {1, 2, . . . , n}. Using the Jacobi
symmetrizer ∂Y acting on the variable set Y , we may rewrite (2.6) as

n∏
i=1

(
n−1∑

ki=0

(−1)kieki
(X(i))yki

i

)
∂Y ∆(Y )

=
∑

0≤k1, k2, ..., kn≤n−1

(
n∏

i=1

(−1)kieki
(X(i))yki

i

)
∂Y ∆(Y ). (2.7)
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From the vanishing property of ∂Y it follows that (2.7) can be expressed as
a summation over permutations of [n− 1, n− 2, . . . , 1, 0]:

∆(Y )
∑

τ

sign(τ)
n∏

i=1

(−1)τieτi
(X(i)), (2.8)

where τ ranges over all permutations of [n− 1, n− 2, . . . , 0].

Using the Jacobi symmetrizer ∂X for the variable set X, we may write
the summation in (2.8) as

(
n∏

i=1

(−1)n−ien−i(X
(i))

)
∂X ∆(X). (2.9)

By the vanishing property of ∂X , in the expansion of the above product in
(2.9) we only need to consider the terms xk1

1 xk2
2 · · ·xkn

n , where [k1, k2, . . . , kn]
are permutations of [n− 1, n− 2, . . . , 1, 0]. Since xn is the only variable that
appears in en−i(X

(i)) for every i ≤ n − 1, we have to choose kn = n − 1.
Moreover, [k1, k2 . . . , kn−1] has to be a permutation of [n− 2, n− 3, . . . , 1, 0]

and xk1
1 xk2

2 · · · xkn−1

n−1 has to come from the expansion of

n−1∏
i=1

(−1)n−i−1en−i−1(X
(i,n)), (2.10)

where X(i,n) = X\{xi, xn}. Iterating this procedure, we reach the conclusion
that the monomial x2x

2
3 · · ·xn−1

n is obtained by choosing x2x3 · · ·xn from
en−1(X

(1)), x3x4 · · · xn from en−2(X
(2), ..., and xn from e1(X

(n−1)). Since
x2x

2
3 · · ·xn−1

n ∂X =
∏n

i=1(−1)n−i, we obtain

n∏
i=1

(−1)n−ien−i(X
(i))∂X = 1.

Keeping track of the computation, we get the desired formula.

We remark that in the above proof we only used the definition of the
Jacobi symmetrizer without resort to divided difference operators.

3. The Flagged Cauchy Determinant

Let hk(xi, xi+1, . . . , xn) be the complete symmetric function in xi, xi+1, . . . , xn.
Then we may transform the Cauchy determinant into a flagged form with
respect to the variable sets X and Y .
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Theorem 3.1 We have∣∣∣∣
1

1− xiyj

∣∣∣∣
n×n

= ∆(X) ·∆(Y ) · F (X, Y ), (3.11)

where F (X, Y ) denotes the determinant as in (1.2), namely,

F (X,Y ) =

∣∣∣∣∣
∑

k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)

∣∣∣∣∣
n×n

.

Proof. First, we express the (i, j)-entry in the Cauchy determinant as

1

1− xiyj

=
∑

k≥0

(xiyj)
k =

∑

k≥0

hk(xi)hk(yj).

We recall the divided difference property of the complete symmetric func-
tions:

hk(xi, . . . , xj)− hk(xi+1, . . . , xj+1)

xi − xj+1

= hk−1(xi, . . . , xj+1).

Subtracting the (i + 1)-th row from the i-th row and dividing by (xi − xi+1)
for i = 1, 2, . . . , n− 1, we get the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
k

hk−1(x1, x2)hk(y1)
∑
k

hk−1(x1, x2)hk(y2) · · · ∑
k

hk−1(x1, x2)hk(yn)

∑
k

hk−1(x2, x3)hk(y1)
∑
k

hk−1(x2, x3)hk(y2) · · · ∑
k

hk−1(x2, x3)hk(yn)

...
...

...
...

∑
k

hk(xn)hk(y1)
∑
k

hk(xn)hk(y2) · · · ∑
k

hk(xn)hk(yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Subtracting the (i + 1)-th row from the i-th row and dividing by (xi− xi+2)
for i = 1, 2, . . . , n− 2, then subtracting the (i + 1)-th row from the i-th row
and dividing by (xi − xi+3) for i = 1, 2, . . . , n− 3, .... Eventually, we obtain
the determinant ∣∣∑

k hk−n+i(xi, . . . , xn)hk(yj)
∣∣
n×n

.

Applying analogous operations to the columns of the above determinant:
Subtracting the (i + 1)-th column from the i-th column and dividing by
(yi− yi+1) for i = 1, 2, . . . , n−1, then subtracting the (i+1)-th column from
the i-th column and dividing by (yi− yi+2) for i = 1, 2, . . . , n− 2, and so on,
we get a flagged determinant with respect to the complete functions in X
and Y : ∣∣∑

k hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)
∣∣
n×n

. (3.12)

All the division operations yield the Vandermonde determinants ∆(X) and
∆(Y ). This completes the proof.
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4. Lattice paths and the Cauchy identity

The lattice path method introduced by Gessel and Viennot [8, 9] has been
widely used as a powerful technique for the study of symmetric functions,
plane partitions and many combinatorial problems (see also [1, 2, 6, 10, 11,
12, 13, 20, 23]).

We first construct the underlying (lattice) digraph D as the integer lattice
Z×Z, where the arcs (or steps) are horizontal or vertical with the following
requirements: if a vertical arc lies strictly to the left of the y-axis, it must be
an up step from (i, j) to (i, j + 1); if a vertical edge lies strictly to the right
of y-axis, then it must be a down step from (i, j) to (i, j − 1); and there are
no vertical steps on the y-axis. A path in D is also called a lattice path, and
a path is always meant to be in D.

The weights of arcs in D are given below:

1. A horizontal arc has weight 1.

2. For i < 0, a vertical arc from (i, j) to (i, j + 1) has weight xn+i−1.

3. For i > 0, a vertical arc from (i, j) to (i, j + 1) has weight yn−i+1.

The weight of a path P , denoted by w(P ), is defined as the product of
the weights of the arcs on the path P . Given an n-tuple (P1, P2, . . . , Pn) of
lattice paths, its weight is defined to be the product of the weights of Pi. We
now suppose that A1, A2, . . . , An are the origins and B1, B2, . . . , Bn are the
destinations. Let P(Ai, Bj) be the set of lattice paths from Ai to Bj in D.
Similarly, we use P(A,B) to denote the set of all n-tuples (P1, P2, . . . , Pn)
of lattice paths in D where Pi starts with Ai and ends with Bi. We also
follow the notation P0(A,B) for the set of all n-tuples (P1, P2, . . . , Pn) of
nonintersecting lattice paths where Pi has origin Ai and destination Bi. By
GF(P(A,B)) and GF(P0(A,B)) we mean the generating functions, or the
sums of weights, of the n-tuples of lattice paths in P(A,B) and P0(A,B)
respectively.

For the purpose of this paper, we choose

Ai = (i− n− 1,−i), and Bi = (n− i + 1,−i), i = 1, 2, . . . , n. (4.13)

With the above choice, we have the following lattice path interpretation of
the entries in the flagged Cauchy determinant.

Lemma 4.1 The generating function for the D-paths from Ai to Bj equals

GF(P(Ai, Bj)) =
∑

k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn). (4.14)
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Proof. We classify the D-paths P from Ai to Bj by their intersection points
with the y-axis. To be more specific, assume that P intersects with the y-axis
at the point Q. We define the A-height (resp. B-height) of P as the difference
between the y-coordinates of Ai (resp. Bj) and Q. First we consider the case
i ≥ j and the family of paths P with A-height k (k ≥ 0). Since there are no
arcs on the y-axis, the weights of all such paths sum to

hk(xi, . . . , xn)hk+i−j(yj, . . . , yn).

Summing over k, one gets the right hand side of (4.14). The case i < j can
be treated in a similar manner. This completes the proof.

By adapting the standard Gessel-Viennot argument, we may interpret
the flagged Cauchy determinant by non-intersecting lattice paths.

Theorem 4.2 We have the following relation:

F (X,Y ) = GF(P0(A,B)). (4.15)

Proof. From Lemma 4.1 it follows that

F (X, Y ) = |GF(P(Ai, Bj))|n×n =
∑
σ∈Sn

sign(σ)
n∏

i=1

GF(P(Ai, Bσi
)).

Suppose σ is a permutation in Sn and (P1, P2, . . . , Pn) is an n-tuple of lattice
paths such that Pi has origin Ai and destination Bσi

. We now consider
the situation that some paths in {P1, P2, . . . , Pn} intersect. We need a total
order on the vertices of D, say the lexicographic order. With respect to this
order, we may find the minimum vertex Q among all the intersection vertices.
Moreover, we choose two paths Pi and Pj such that i and j are the smallest
and the nearest to the smallest. Let P ′

i be the path consisting of the segment
of Pi from Ai to Q and the segment of Pj from Q to Bσj

, and P ′
j be the path

consisting of the segment of Pj from Aj to Q and the segment of Pi from Q to
Bσi

. Meanwhile, we set σ′ to be the permutation by switching the elements
σi and σj. Let P ′

k = Pk for each k 6= i, j. Then (P ′
1, P

′
2, . . . , P

′
n) has the same

weight as (P1, P2, . . . , Pn) and the sign of σ′ is the opposite to the sign of σ.
Therefore, we have obtained a sign reversing involution. Note that the paths
(P1, P2, . . . , Pn) do not intersect with each other only when the permutation
σ is the identity, namely, σi = i. This completes the proof.

Given the sets A and B of origins and destinations, we may translate an
n-tuple (P1, P2, . . . , Pn) of nonintersecting lattice paths into a pair of Young
tableaux of the same shape on {1, 2, . . . , n}.
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Theorem 4.3 There is a one-to-one correspondence between n-tuples
(P1, P2, . . . , Pn) of nonintersecting lattice paths with Pi going from Ai to Bi

and pairs of Young tableaux of the same shape on {1, 2, . . . , n}. Equivalently,
we have

GF(P0(A,B)) =
∑

λ,`(λ)≤n

sλ(X)sλ(Y ). (4.16)

Proof. Given any n-tuple (P1, P2, . . . , Pn) of nonintersecting paths such that
Pi is from Ai to Bi, let Qi be the intersection point of Pi and the y-axis. We
now cut each Pi into two segments Ui and Vi, where Ui goes from Ai to Qi

and Vi goes from Qi to Bi. For the n-tuple (U1, U2, . . . , Un) we can associate
it with a tableau S on {1, 2, . . . , n}. The i-th row of S is obtained from the
path Ui by reading the weights on vertical steps. The column strictness of S
is guaranteed by the nonintersecting property of (U1, U2, . . . , Un). Similarly,
the n-tuple (V1, V2, . . . , Vn) corresponds a tableau T on {1, 2, . . . , n}. Thus
the n-tuple (P1, P2, . . . , Pn) of nonintersecting lattice paths corresponds to a
pair of tableaux (S, T ) of the same shape. The above procedure is reversible.
Hence we obtain a bijection.

From the above correspondence and the evaluation of the flagged Cauchy
determinant it follows the Cauchy identity (Theorem 1.1). The following
Figures 4.1 and 4.2 illustrate the correspondence for n=4.

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

-
x

6

y

A1 s

A2 s

A3 s

A4 s

B1s

B2s

B3s

B4s

Ox1

x1

x2

x3

x3

x3

x4

y1

y2

y2

y3

y3

y4

y4

Figure 4.1 Nonintersecting paths from Ai to Bi

We now make an easy observation that enables one to write the flagged
Cauchy determinant in the full variable sets X and Y . Let A′

i = (−n,−i) and
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S=
1 1 2 3
3 3
4 ,

T=
1 2 3 4
2 3
4

Figure 4.2 A pair of tableaux of the same shape

B′
i = (n,−i). It is clear that there is a one-to-one correspondence between

n-tuples (P1, P2, . . . , Pn) of nonintersecting lattice paths with Pi going from
Ai to Bi and n-tuples (P ′

1, P
′
2, . . . , P

′
n) of nonintersecting lattice paths with

P ′
i going from A′

i to B′
i. Restricted by the nonintersecting property, every

path P ′
i must pass the points Ai and Bi; moreover, there is a unique way to

extend the path Pi to the points A′
i and B′

i. The following figure shows such
a correspondence with Figure 4.1.

O

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

q q q q q q q q q q q q q

-
x

6

y

A′
1 s

A′
2 s

A′
3 s

A′
4 s B′

4s

B′
1s

B′
2s

B′
3s

x1

x1

x2

x3

x3

x3

x4

y1

y2

y2

y3

y3

y4

y4

Figure 4.3 Nonintersecting paths from A′
i to B′

i

Lemma 4.4 Let A′
i = (−n,−i) and B′

i = (n,−i). The generating function
for the D-paths from A′

i to B′
j equals

GF(P(A′
i, B

′
j)) =

∑

k

hk−n+i(X)hk−n+j(Y ). (4.17)

The nonintersecting lattice path argument yields Theorem 1.3 of Gessel.
Notice that Theorem 1.3 and Theorem 4.2 have two different determinant
forms, which implies that these two determinants are equivalent. We now
present an algebraic proof of this fact. The following property of multi-Schur
functions [16, 17] is needed.

10



Lemma 4.5 For any family L0, L1, . . . , Ln−1 of variables such that |Li| ≤ i,
we have

sλ(H1, H2, . . . , Hn) = |hλj+j−i(Hj)|n×n = |hλj+j−i(Hj − Ln−i)|n×n, (4.18)

where H1, H2, . . . , Hn are sets of variables, and the complete super symmetric
function hk(X − Y ) is defined by the generating function

∑

k≥0

hk(X − Y )tk =

∏
y∈Y (1− yt)∏
x∈X(1− xt)

.

Notice that matrix in equation (1.4) can be expressed as the product of
two matrices:

(∑

k

hk−n+i(X)hk−n+j(Y )

)

n×n

= (hj−i(X))n×∞ · (hi−j(Y ))∞×n . (4.19)

Let Xi = {x1, x2, . . . , xi}, Yi = {y1, y2, . . . , yi}. On the left hand side of
(4.19) we can substitute the pair of variable sets (X,Y ) of the (i, j)-entry
with (X −Xn−i, Y − Yn−j). In accordance with this substitution on the left
hand side, we should make the substitutions on the right hand side of (4.19)
with X in the i-th row being replaced by X −Xn−i in the first matrix and
Y in j-th column being replaced by Y − Yn−j in the second matrix. After
these substitutions, it follows that (4.19) can be rewritten as

(∑

k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

)

n×n

= (hj−i(X −Xn−i))n×∞ · (hi−j(Y − Yn−j))∞×n . (4.20)

Applying the Cauchy-Binet formula to (4.19) we get
∣∣∣∣∣
∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑

1≤k1<k2<···<kn

∣∣hkj−1+j−i(X)
∣∣
n×n

· |hki−1+i−j(Y )|n×n . (4.21)

Applying the Cauchy-Binet formula to (4.20) we get
∣∣∣∣∣
∑

k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

∣∣∣∣∣
n×n

=
∑

k1<···<kn

∣∣hkj−1+j−i(X −Xn−i)
∣∣ · |hki−1+i−j(Y − Yn−j)| . (4.22)
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From Lemma 4.5 it follows that

∣∣hkj−1+j−i(X)
∣∣
n×n

=
∣∣hkj−1+j−i(X −Xn−i)

∣∣
n×n

, (4.23)

|hki−1+i−j(Y )|n×n = |hki−1+i−j(Y − Yn−j)|n×n . (4.24)

Applying (4.23) and (4.24) to (4.21), we have

∣∣∣∣∣
∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑

k1<···<kn

∣∣hkj−1+j−i(X −Xn−i)
∣∣ · |hki−1+i−j(Y − Yn−j)|

=

∣∣∣∣∣
∑

k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

∣∣∣∣∣
n×n

=

∣∣∣∣∣
∑

k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)

∣∣∣∣∣
n×n

.

The last equality comes from simultaneously reversing the order of rows and
columns of the determinant. Therefore, we have accomplished an algebraic
proof of the equivalence of flagged Cauchy determinant (4.15) and the deter-
minant (1.4) in the full variable sets.

Furthermore, we can obtain a more general theorem:

Theorem 4.6 For any two families L0, L1, . . . , Ln−1 and G0, G1, . . . , Gn−1

of variables such that |Li| ≤ i, |Gi| ≤ i, we have
∣∣∣∣∣
∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=

∣∣∣∣∣
∑

k

hk−n+i(X − Li−1)hk−n+j(Y −Gj−1)

∣∣∣∣∣
n×n

. (4.25)
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