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Abstract

Ramanujan defined the polynomials ψk(r, x) in his study of power series in-
version. Berndt, Evans and Wilson obtained a recurrence relation for ψk(r, x).
In a different context, Shor introduced the polynomials Q(i, j, k) related to im-
proper edges of a rooted tree, leading to a refinement of Cayley’s formula. He
also proved a recurrence relation and raised the question of finding a combina-
torial proof. Zeng realized that the polynomials of Ramanujan coincide with the
polynomials of Shor, and that the recurrence relation of Shor coincides with the
recurrence relation of Berndt, Evans and Wilson. So we call these polynomials
the Ramanujan-Shor polynomials, and call the recurrence relation the Berndt-
Evans-Wilson-Shor recursion. A combinatorial proof of this recursion was ob-
tained by Chen and Guo, and a simpler proof was recently given by Guo. From
another perspective, Dumont and Ramamonjisoa found a context-free grammar
G to generate the number of rooted trees on n vertices with k improper edges.
Based on the grammar G, we find a grammar H for the Ramanujan-Shor polyno-
mials. This leads to a formal calculus for the Ramanujan-Shor polynomials. In
particular, we obtain a grammatical derivation of the Berndt-Evans-Wilson-Shor
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recursion. We also provide a grammatical approach to the Abel identities and a
grammatical explanation of the Lacasse identity.
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1 Introduction

For integers 1 ≤ k ≤ r + 1, Ramanujan [14] defined the polynomials ψk(r, x) by the
following relation:

∞∑
k=0

(x+ k)r+ke−u(x+k)uk

k!
=

r+1∑
k=1

ψk(r, x)

(1− u)r+k
, (1.1)

and derived the recurrence relation:

ψk(r, x) = (x− 1)ψk(r, x− 1) + ψk−1(r + 1, x)− ψk−1(r + 1, x− 1), (1.2)

where ψ1(0, x) = 1, ψ0(r, x) = 0 and ψk(r, x) = 0 for k > r + 1. Berndt, Evans and
Wilson [1] obtained another recurrence relation

ψk(r, n) = (n− r − k + 1)ψk(r − 1, n) + (r + k − 2)ψk−1(r − 1, n). (1.3)

By setting u = 0 in (1.1), Ramanujan deduced the identity

r+1∑
k=1

ψk(r, x) = xr. (1.4)

Zeng [20] observed that the polynomials ψk(r, x) coincide with the polynomails
introduced by Shor [17]. Let

Qn,k(x) = ψk+1(n− 1, x+ n). (1.5)

Then (1.4) can be rewritten as

n−1∑
k=0

Qn,k(x) = (x+ n)n−1, (1.6)
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and (1.3) can be recast as

Qn,k(x) = (x− k + 1)Qn−1,k(x+ 1) + (n+ k − 2)Qn−1,k−1(x+ 1). (1.7)

Shor [17] defined the polynomials Qn,k(x) in the notation of Q(i, j, k). To be more
specific, the numbers Q(i, j, k) are defined by the recurrence relation

Q(i, j, k) = (k + i− 1)Q(i− 1, j, k) + (i+ j − 2)Q(i− 1, j − 1, k), (1.8)

where Q(1, 0, k) = 1, Q(i,−1, k) = 0 for i ≥ 1 and Q(1, j, k) = 0 for j ≥ 1.

Let [n] denote the set {1, 2, . . . , n}. Shor showed that, for k ≥ 1, kQ(i − k, j, k)
equals the number of forests on [i] rooted at {1, 2, . . . , k} with j improper edges. For a
rooted tree T and a vertex of v of T , we use Tv to denote the subtree of T rooted at v,
namely, the subtree of T consisting of the vertex v together with all the descendants of
v. An edge (u, v) of T , with v being the child of u, is called an improper edge if there
exists a vertex in Tv that is smaller than u. This leads to a combinatorial proof of the
relation

i−1∑
j=0

Q(i, j, k) = (i+ k)i−1, (1.9)

which can be considered as a refinement of Cayley’s formula. As noted by Shor [17],
Q(i, j, k) is a polynomial in k for i ≥ 1 and 0 ≤ j ≤ i − 1, and (1.9) holds when k is
replaced by a variable x. Indeed, the polynomials Q(i, j, x) can be expressed as Qi,j(x),
and so we call Qn,k(x) the Ramanujan-Shor polynomials. Notice that in the notation
of Qn,k(x), (1.9) turns to be exactly the formula (1.6).

Shor proved that in addition to the recurrence relation (1.8), the polynomials
Q(i, j, k) also satisfy the following relation: For i ≥ 1, 0 ≤ j ≤ i− 1 and k ≥ 1,

Q(i, j, k) = (k − j + 1)Q(i− 1, j, k + 1) + (i+ j − 2)Q(i− 1, j − 1, k + 1). (1.10)

He asked the question of finding a combinatorial interpretation of the above recurrence
relation. Notice that (1.10) is precisely the recursion (1.7) proved by Berndt, Evans and
Wilson. So we call it the Berndt-Evans-Wilson-Shor recursion. It is worth mentioning
that the recursion (1.8) of Shor can be deduced from the recursion (1.2) of Ramanujan
and the Berndt-Evans-Wilson-Shor recursion (1.7).

Zeng [20] found the following interpretations of the polynomials Qn,k(x) in terms
of the number of improper edges of trees on [n+ 1] with root 1:

Qn,k(x) =
∑

T∈Fn+1,k

xdegT (1)−1, (1.11)
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where Fn,k denotes the set of trees on [n] with k improper edges and with root 1,
and degT (1) denotes the degree of the vertex 1 in T . Zeng also showed that the
polynomials Qn,k(x) can be interpreted by the number of improper edges of rooted
trees (not necessarily rooted at 1) on [n], namely,

Qn,k(x) =
∑

T∈Rn,k

(x+ 1)degT (1), (1.12)

where Rn,k denotes the set of rooted trees on [n] with k improper edges. In answer to
a question of Zeng [20], Chen and Guo [4] found a bijection showing that (1.11) and
(1.12) are equivalent.

We should also note that (1.11) is equivalent to the interpretation of Qn,k(x) given
by Shor when x is a positive integer. As noted by Shor [17], for a positive integer r,
rQn,k(r) equals the number of forests on [n + r] rooted at {1, 2, . . . , r} with a total
number of k improper edges. Let F be such a forest counted by rQn,k(r). Let Ti be the
tree in F rooted at i, where 1 ≤ i ≤ r. For each Ti, removing the root i and coloring
the subtrees of Ti with color i, we get a forest on {r + 1, r + 2, . . . , r + n} with each
tree colored by one of colors 1, 2, . . . , r. After relabeling, this leads to a forest on [n]
with each tree associated with one of the colors 1, 2, . . . , r. Let Un,k denote the set of
forests of rooted trees on [n] with k improper edges. For a forest F in Un,k, let tree(F )
denote the number of trees in F . By the above argument, one sees that

rQn,k(r) =
∑

F∈Un,k

rtree(F ),

which is equivalent to (1.11) since a forest F in Un,k gives rise to a rooted tree T in
Fn+1,k by adding a new root 0.

Subtracting (1.7) from (1.8), the Berndt-Evans-Wilson-Shor recursion (1.7) takes
the form

Qn,k(1 + x) = Qn,k(x) + (n+ k − 1)Qn−1,k(1 + x), (1.13)

where n ≥ 1, 0 ≤ k ≤ n− 1, Q1,0(x) = 1 and Qn,k(x) = 0 if k ≥ n or k < 0. Chen and
Guo [4] gave a combinatorial proof of (1.13) in answer to the question of Shor. More
precisely, let Fn+1,k[deg(2) > 0] denote the set of rooted trees in Fn+1,k in which the
vertex 2 is not a leaf, and let Fn+1,k[deg(n+ 1) > 0] denotes the set of rooted trees in
Fn+1,k in which the vertex n + 1 is not a leaf. A bijection between Fn+1,k[deg(2) > 0]
and Fn+1,k[deg(n + 1) > 0] was constructed in [4]. A simpler bijection was given by
Guo [9].

Based on Shor’s recursive procedure to construct rooted trees, Dumont and Ra-
mamonjisoa [7] found a context-free grammar to enumerate rooted trees with a given
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number of improper edges. They defined a grammar G by the following substitution
rules:

G : A→ A3S, S → AS2.

Let D denote the formal derivative with respect to G. Dumont and Ramamonjisoa
showed that, for n ≥ 1,

Dn−1(AS) = AnSn

n−1∑
k=0

b(n, k)Ak,

where b(n, k) denotes the number of rooted trees on [n] with k improper edges. Note
that b(n, k) = Qn,k(0).

Based on the Dumont-Ramamonjisoa grammar, we obtain a grammar H to generate
the Ramanujan-Shor polynomials Qn,k(x). Let

H : a→ axy, x→ xyw, y → y3w,w → yw2,

and let D denote the formal derivative with respect to H. For n ≥ 1, we obtain the
following relation

Dn(a) = axynwn−1

n−1∑
k=0

Qn,k(xw−1)yk.

With the aid of the grammar H, we are led to a simple derivation of the Berndt-Evans-
Wilson-Shor recursion in the form of (1.13).

It turns out that the grammar H can also be used to deal with the Abel identities.
In a certain sense, the formal derivative with respect to the grammar H can be viewed
as a shift-invariant operator for the Abel identities in the spirit of the umbral calculus,
see Rota [16]. As will be seen, the Abel identities can be deduced from the Leibnitz
formula with respect to the grammar H.

Riordan [15] defined the sum

An(x1, x2; p, q) =
n∑

k=0

(
n

k

)
(x1 + k)k+p(x2 + n− k)n−k+q,

where n ≥ 1 and the parameters p, q are integers. He found closed formulas of
An(x1, x2; p, q) for some p and q. These identities were called the Abel identities or the
Abel-type identities since the case (p, q) = (−1, 0) corresponds to the classical Abel
identity. We give a grammar H ′ based on the grammar H and show that the summa-
tions An(x1, x2; p, q) can be evaluated by using the grammar H ′. Using this approach,
closed forms can be deduced for An(x, y;−1, 0), An(x1, x2,−1,−1) and An(x1, x2,−2, 0)
and An(x1, x2;−2,−2). The case for An(x1, x2;−2,−2) seems to be new.
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We conclude this paper with a grammatical explanation of the identity:

nn+1 =
n∑

k=1

n−j∑
k=0

(
n

j

)(
n− j
k

)
jjkk(n− j − k)n−j−k.

We call this identity the Lacasse identity. It was conjectured by Lacasse [10] in the
study of the PAC-Bayesian machine learning theory. Since then, several proofs have
been found. For example, Sun [18] gave a derivation by using the umbral calculus,
Younsi [19] found a proof with aid of the Abel identity, Prodinger [13] provided a
justification based on Cauchy’s integral formula, Gessel [8] proved the identity by
means of the Lagrange inversion formula, and Chen, Peng and Yang [5] obtained a
combinatorial interpretation in terms of triply rooted trees.

This paper is organized as follows. In Section 2, we give an overview of the Dumont-
Ramamonjisoa grammar and introduce a grammatical labeling of labeled trees. In
Section 3, we find a grammar H to generate the Ramanujan-Shor polynomials. Section
4 is devoted to a proof of the Berndt-Evans-Wilson-Shor relation by using the grammar
H. In Section 5, we consider the grammatical derivations of Abel identities. We also
provide a grammatical explanation of the Lacasse identity.

2 The Dumont-Ramamonjisoa Grammar

In this section, we give an overview of the context-free grammar introduced by Dumont
and Ramamonjisoa [7] to generate rooted trees. The approach of using context-free
grammars to combinatorial polynomials was introduced in [2]. Further studies can be
found in [3, 6, 7, 11, 12]. A context-free grammar G over an alphabet A is defined to
be a set of production rules. Given a context-free grammar, one may define a formal
derivative D as a differential operator on polynomials or Laurent polynomials in A,
that is, D is a linear operator satisfying the relation

D(uv) = D(u)v + uD(v),

and in general the Leibnitz formula

Dn(uv) =
n∑

k=0

(
n

k

)
Dk(u)Dn−k(v). (2.1)

Dumont and Ramamonjisoa [7] defined the following grammar

G : A→ A3S, S → AS2. (2.2)
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Let D denote the formal derivative with respect to the grammar G. Notice that D can
also be viewed as the operator

D = A3S
∂

∂A
+ AS2 ∂

∂S
.

Dumont and Ramamonjisoa established a connection between the grammar G and the
enumeration of rooted trees on [n] with k improper edges. The notion of an improper
edge of a rooted tree was introduced by Shor. Let T a rooted tree on [n]. An edge of T
is represented by a pair (u, v) of vertices with v being a child of u. We say that an edge
(u, v) of T is improper if v < u or there exists a descendant of v that is smaller than
u; otherwise, (u, v) is called a proper edge. Recall that b(n, k) denotes the number of
rooted trees on [n] with k improper edges. Dumont and Ramamonjisoa obtained the
following relation.

Theorem 2.1 For n ≥ 1,

Dn−1(AS) = AnSn

n−1∑
k=0

b(n, k)Ak. (2.3)

For example, for n = 1, 2, 3, we have

D0(AS) = AS,

D1(AS) = D(A)S + AD(S) = A2S2(1 + A),

D2(AS) = D(D(AS)) = A3S3(2 + 4A+ 3A2).

Dumont and Ramamonjisoa gave a proof of the above theorem by showing that
the coefficients of Dn(AS) satisfy the recurrence relation (1.8) of Shor. More precisely,
let s(n, k) denote the coefficient of An+kSn in Dn−1(AS), Dumont and Ramamonjisoa
proved that

s(n, k) = (n− 1)s(n− 1, k) + (n+ k − 2)s(n− 1, k − 1),

which is equivalent to the relation (1.8) for the case x = 0.

Here we present a proof in the language of a grammatical labeling of rooted trees,
which was introduced in [3]. Let Rn denote the set of rooted trees on [n] and let Fn

denote the set of rooted trees on [n] with root 1. Recall that Fn,k is the set of rooted
trees in Fn with k improper edges, and Rn,k is the set of rooted trees in Rn with k
improper edges. Shor [17] provided a construction of a rooted tree in Rn by adding
the vertex n into a tree in Rn−1. For a better understanding of the construction, let
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us consider the following procedure to delete the vertex n from a rooted tree T in Rn

to obtain a rooted tree T ′ in Rn−1. For a rooted tree T ∈ Rn and a vertex u in T , we
adopt the notation βT (u), or simply β(u), for the minimum vertex among the vertices
in the subtree of T rooted at u.

1. Case 1: n is a leaf in T . Delete the vertex n.

2. Case 2: n is not a leaf. Assume that n has t children b1, b2, . . . , bt. We may
further assume that

β(b1) < β(b2) < · · · < β(bt).

Contract the edge (n, bt) and relabel the resulting vertex by bt.

Conversely, one can construct a rooted tree T on [n] with k or k+1 improper edges
from a rooted tree T ′ on [n − 1] with k improper edges. There are four operations to
add the vertex n to T ′.

1. Adding n to the tree T ′ as a child of an arbitrary vertex v, we obtain a tree
T ∈ Rn,k with n being a leaf.

2. Splitting a proper edge (i, j) into (i, n) and (n, j), we obtain a tree T ∈ Rn,k+1.
In this case, the degree of n equals one.

3. Splitting an improper edge (i, j) into (i, n) and (n, j), we also obtain a tree
T ∈ Rn,k+1. In this case, the degree of n also equals one.

4. Choose an improper edge (v, bj) in T ′, where v has t children b1, b2, . . . , bt listed
in the increasing order of their β-values. We relabel v by n and make v a child of
n. Moreover, assign b1, . . . , bj to be the children of n and assign bj+1, . . . , bt to be
the children of v. Then we are led to a tree T ∈ Rn,k+1. In this case, the degree
of n in T is at least two.

As will be seen, the above construction is closely related to the grammar G. To
demonstrate this connection, we introduce a grammatical labeling of rooted trees. We
may view a rooted tree T on [n] as a rooted tree T̂ on {0, 1, 2, . . . , n} with 0 being the
root with only one child. Clearly, the edge below the root 0 of T̂ is always a proper
edge. Moreover, we represent an improper edge by double edges, called the left edge
and the right edge. The idea of using double edges to represent an improper edge is
due to Dumont and Ramamonjisoa [7]. We label a vertex of T̂ except for 0 by S and
label an edge of T̂ by A. In other words, a proper edge of T is labeled by A and an
improper edge of T is labeled by A2. The weight of T is defined by the product of the
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labels attached to T̂ , denoted by w(T ). Apparently, for any tree T in Rn,k, we have
w(T ) = An+kSn.

Figure 2.1 illustrates all rooted trees on {1, 2, 3}, where the improper edges are
represented by double edges, and the vertex 0 is added at the top of each tree in R3.

q q q q q q

q q q q q q
q q q q q q
q q q q q q
0 0 0 0 0 0

1 1 2 2 3 3

2 23 31 1

3 32 21 1

0 0 0q q q
q q qq q qq q q�

�
�
�

�
�

�
�

�
�

@
@

@
@

@
@
@
@

1 2 3

2 23 31 1

Figure 2.1: Rooted trees in R3.

The following relation is a restatement of Theorem 2.1.

Theorem 2.2 For n ≥ 1,

Dn−1(AS) =
∑
T∈Rn

w(T ). (2.4)

In view of the above grammatical laleling of rooted trees, it can be seen that the
four cases in Shor’s construction of a tree T ′ on [n] from a tree on [n − 1] correspond
to the substitution rules in G. Instead of giving a detail proof, let us use an example
to demonstrate the correspondence.

In Figure 2.2, T is a rooted tree on {1, 2, 3, 4}. The weight of T is w(T ) = A6S4.
The trees T1, T2, T3 and T4 are obtained from T in the four cases of Shor’s construction.

Case 1: T1 is obtained from T by adding the vertex 5 as a leaf. Comparing the
weights of T1 and T , it can be seen that this operation corresponds to the substitution
rule S → AS2. Notice that the label S indicates where one can apply this operation.

Case 2: T2 is obtained from T by splitting the left edge (4, 1) into two edges (4, 5)
and (5, 1). This operation corresponds to the substitution rule A→ A3S.
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Figure 2.2: An example for the operator D

Case 3: T3 is obtained from T by splitting the proper edge (1, 3) into (1, 5) and
(5, 3). This operation also corresponds to the substitution rule A→ A3S.

Case 4: T4 is obtained by adding 5 to T via the following procedure: 4 is relabeled
by 5, a new vertex 4 is added as a child of 5, the subtree rooted by 1 and the subtree
rooted by 2 are assigned as a child of 5 and a child of 4, respectively. It can be seen
that this operation also corresponds to the substitution rule A→ A3S.

The above argument is sufficient to lead to a rigorous proof of relation (2.4).

3 A grammar for the R-S polynomials

In this section, we give a grammar H to generate the Ramanujan-Shor polynomials
Qn,k(x). Define

H : a→ axy, x→ xyw, y → y3w,w → yw2. (3.1)

Recall that a rooted tree T ∈ Fn,k is rooted at 1 and has k improper edges. For
T ∈ Fn,k, we label a proper edge by y, and represent each improper edge of T by double
edges, which are both labeled by y. Meanwhile, we label the vertex 1 by a, label each
child of the vertex 1 by x and label other vertices by w, so that for T ∈ Fn+1,k, the
weight of T equals

w(T ) = axdegT (1)yn+kwn−degT (1). (3.2)

Figure 3.3 illustrates a rooted tree in F6,2 with weight w(T ) = ax2y7w3.

Let D denote the formal derivative with respect to the grammar H. Recall that
Fn is the set of rooted tree on [n] with root 1. The next theorem shows that D can be
used to generate the sum of weights of rooted trees in Fn.
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1

5

3 4 6

2

Figure 3.3: A rooted tree T ∈ F6,2

Theorem 3.1 For n ≥ 1,

Dn(a) =
∑
T∈Fn

w(T ). (3.3)

To prove the above relation, it is sufficient to observe that the substitution rules in
H correspond to the changes of labels in Shor’s construction according to the above
labeling scheme.

Figure 3.4 gives three rooted trees T1, T2 and T3 obtained from the tree T in Figure
3.3 by adding the vertex 7 as a leaf as in Case 1 of Shor’s construction. Since 7 is child
of the root 1, w(T1) is obtained from w(T ) by applying the substitution rule a→ axy.
Similarly, 7 is a child of 2 in T2, and w(T2) is obtained from w(T ) by utilizing the
rule x → xyw. Since 7 is a child of 6 in T3, w(T3) is obtained from w(T ) by the rule
w → yw2.

1

5

3 4 6

2 7

(a) w(T1) = ax3y8w3

1

5

3 4 6

2

7

(b) w(T2) = ax2y8w4

1

5

3 4 6

7

2

(c) w(T3) = ax2y8w4

Figure 3.4: The action of D

For Case 2, Case 3 and Case 4 in Shor’s construction, the changes of weights of the
resulting trees can be characterized by the rule y → y3w, just like the rule A → A3S
in the Dumont-Ramamonjisoa grammar.
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Let Qn(x, y) denote the generating function of Qn,k(x), that is,

Qn(x, y) =
n−1∑
k=0

Qn,k(x)yk =
∑

T∈Fn+1

xdegT (1)−1yimp(T).

For n = 1, 2, 3, we have

Q1(x, y) = 1.

Q2(x, y) = y + x+ 1.

Q3(x, y) = 3y2 + (3x+ 4)y + x2 + 3x+ 2.

We now come to a relationship between the grammar H and the polynomials
Qn(x, y).

Theorem 3.2 For n ≥ 1,

Dn(a) = axynwn−1Qn(xw−1, y). (3.4)

For n = 1, 2, 3, we have

D(a) = axy = axyQ0(xw−1, y),

D2(a) = ax2y2 + axy2w + axy3w = axy2w(xw−1 + 1 + y) = axy2wQ1(xw−1, y),

D3(a) = ax3y3 + 3ax2y3w + 3ax2y4w + 2axy3w2 + 4axy4w2 + 3axy5w2

= axy3w2
(
x2w−2 + 3xw−1 + 2 + (4xw−1 + 3)y + 3y2

)
= axy3w2Q2(xw−1, y).

We end this section with a grammatical derivation of the relation (1.8) of Shor,
which can be restated below in the notation of Qn,k(x).

Theorem 3.3 For n ≥ 2 and 1 ≤ k ≤ n− 2, we have

Qn,k(x) = (x+ n− 1)Qn−1,k(x) + (n+ k − 2)Qn−1,k−1(x). (3.5)

Proof. For n ≥ 1, by the definition of Qn(x, y), (3.4) can be written as

Dn(a) = (xw−1)aynwn

n−1∑
k=0

ykQn,k(xw−1). (3.6)
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For n ≥ 2, substituting n by n− 1, (3.6) takes the form

Dn−1(a) = (xw−1)ayn−1wn−1

n−2∑
k=0

ykQn−1,k(xw−1). (3.7)

Since
D(xw−1) = xyw · w−1 − x · w−2yw2 = 0, (3.8)

that is, xw−1 is a constant with respect to D, we find that

D
(
ykQn−1,k(xw−1)

)
= Qn−1,k(xw−1)D(yk) = kyk+2wQn−1,k(xw−1).

Meanwhile,

D
(
ayn−1wn−1

)
= axynwn−1 + (n− 1)ayn+1wn + (n− 1)aynwn.

Therefore, applying the operator D to both sides of (3.7) yields

Dn(a) = (xw−1)aynwn

{
n−2∑
k=0

kyk+1Qn−1,k(xw−1)

+(xw−1 + (n− 1)y + (n− 1))
n−2∑
k=0

ykQn−1,k(xw−1)

}
. (3.9)

For n ≥ 2 and 0 ≤ k ≤ n−2, comparing the coefficients of axyn+kwn on the right-hand
sides of (3.6) and (3.9), we deduce that

Qn,k(xw−1) = (xw−1 + n− 1)Qn−1,k(xw−1) + (n+ k − 2)Qn−1,k−1(xw−1). (3.10)

Setting w = 1 completes the proof.

4 The Berndt-Evans-Wilson-Shor Recursion

The section is devoted to a grammatical derivation of the Berndt-Evans-Wilson-Shor
recurrence relation (1.7). To this end, we establish a grammatical expression for Qn(r+
x, y), where r is a nonnegative integer.

Theorem 4.1 For n ≥ 1 and r ≥ 0,

Dn(axr) = axrynwn(r + xw−1)Qn(r + xw−1, y). (4.1)
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To prove this relation, we give a combinatorial interpretation ofQn(x+r, y) based on
Zeng’s interpretation of Qn,k(x) in terms of the set Fn,k of rooted trees on [n] with root

1 containing k improper edges. We define F
(r)
n to be the set of rooted trees on [n] with

root 1 for which each child of the root is colored by one of the colors b, w1, w2, . . . , wr,
where b stands for the black color, and w1, w2, . . . , wr are considered white colors.

We now define a grammatical labeling of a rooted tree T̄ ∈ F (r)
n . First, represent

an improper edge of T̄ by double edges, and denote the resulting tree by T̂ . Then the
root of T̂ is labeled by axr, a black vertex is labeled by x and each of the remaining
vertices is labeled by w. Moroever, each edge of T̂ is labeled by y. In other words, as
far as T̄ is concerned, a proper edge is labeled by y and an improper edge is labeled
by y2. For T̄ ∈ F (r)

n , we have

w(T̄ ) = axblack(T̄ )+rwn−black(T̄ )yn+imp(T̄ ), (4.2)

where black(T̄) denotes the number of black vertices in T̄ .

Using the above labeling scheme, the right-hand side of (4.1) can be expressed as
follows.

Theorem 4.2 For n ≥ 0 and r ≥ 0,

axrynwn(r + xw−1)Qn(r + xw−1, y) =
∑

T̄∈F (r)
n+1

w(T̄ ). (4.3)

Proof. By (4.2), we see that∑
T̄∈F (r)

n+1

w(T̄ ) =
∑

T̃∈F (r)
n+1

axblack(T̄ )+rwn−black(T̄ )yn+imp(T̄ )

= axrynwn

n−1∑
k=0

yk
∑

T̄∈F (r)
n+1,k

xblack(T̄ )w−black(T̄ ).

Given a rooted tree T ∈ Fn,k, one can construct a rooted tree T̄ in F
(r)
n,k by assigning the

color b to some children of the root 1 and one of the r white colors to each remaining
children of the root 1. Thus∑

T̄∈F (r)
n+1,k

xblack(T̄ )w−black(T̄ ) =
∑

T∈Fn+1,k

degT (1)∑
i=0

(
degT (1)

i

)
(xw−1)irdegT (1)−i

=
∑

T∈Fn+1,k

(r + xw−1)degT (1),
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which can be expressed as Qn,k(r + xw−1) according to the interpretation (1.11) of
Qn,k(x). It follows that

∑
T̄∈F (r)

n+1

w(T ) = axrynwn(1 + xw−1)
n−1∑
k=0

ykQn,k(r + xw−1),

as claimed.

The following theorem establishes a connection between the grammar H and the
sum of weights of rooted trees in F

(r)
n .

Theorem 4.3 For n ≥ 1 and r ≥ 0,

Dn(axr) =
∑

T̄∈F (r)
n+1

w(T̄ ).

The proof is similar to that of Theorem 3.1. The operation of adding n as a black
child of the root 1 can be described by the substitution rule a→ axy and the operation
of adding n as a white child of the root 1 corresponds to the rule x→ xyw.

We now give a grammatical derivation of the Berndt-Evans-Wilson-Shor recursion
for Qn,k(x), that is, for n ≥ 1 and 0 ≤ k ≤ n− 1,

Qn,k(1 + x) = Qn,k(x) + (n+ k − 1)Qn−1,k(1 + x). (4.4)

Note that Q1,0(x) = 1 and Qn,k(x) = 0 if k ≥ n or k < 0.

Our proof relies on the generating function with respect to the grammar H. For a
Laurent polynomial w of the variables in the alphabet V , the exponential generating
function of w with respect to D is defined by

Gen(w, t) =
∑
n≥0

Dn(w)
tn

n!
.

We have the following properties:

Gen′(w, t) = Gen(D(w), t) (4.5)

Gen(w + v, t) = Gen(w, t) + Gen(v, t) (4.6)

Gen(wv, t) = Gen(w, t)Gen(v, t), (4.7)

where Gen′(w, t) stands for the differentiation of Gen(w, t) with respect to t, and v is
also a Laurant polynomial of the variables in the alphabet V , see [2].
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We are now in a position to present a grammatical proof of (4.4). It is easily seen
that (4.4) follows from the following relation for n ≥ 1,

axyn+1wn(1 + xw−1)Qn(1 + xw−1, y)

= axyn+1wn(1 + xw−1)Qn(xw−1, y)

+ axwn(1 + xw−1)
n−2∑
k=0

(n+ k − 1)Qn−1,k(1 + xw−1)yn+k+1. (4.8)

Invoking (4.1) for n ≥ 1 and r = 0, we obtain that for n ≥ 1,

Dn(a) = axynwn−1Qn(xw−1, y). (4.9)

Again, utilizing (4.1) for n ≥ 1 and r = 1, we find that

Dn(ax) = axynwn(1 + xw−1)Qn(1 + xw−1, y), (4.10)

and so
Dn−1(ax) = axyn−1wn−1(1 + xw−1)Qn−1(1 + xw−1, y). (4.11)

Thus (4.8) can be rewritten as

yDn(ax) = yw(1 + xw−1)Dn(a) + y3w
∂(Dn−1(ax))

∂y
. (4.12)

Expanding (4.11) as

Dn−1(ax) = axyn−1wn−1(1 + xw−1)
n−2∑
k=0

Qn−1,k(1 + xw−1)yk,

we see that

axy
∂(Dn−1(ax))

∂a
= xyDn−1(ax),

xyw
∂(Dn−1(ax))

∂x
= ywDn−1(ax),

yw2∂(Dn−1(ax))

∂w
= (n− 1)ywDn−1(ax).

Notice that

D = axy
∂

∂a
+ xyw

∂

∂x
+ y3w

∂

∂y
+ yw2 ∂

∂w
,
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so that

Dn(ax) = xyDn−1(ax) + nywDn−1(ax) + y3w
∂(Dn−1(ax))

∂y
, (4.13)

and therefore, (4.12) is equivalent to

(y − 1)Dn−1(D(ax)) + (nyw + xy)Dn−1(ax) = yw(1 + xw−1)Dn−1(D(a)), (4.14)

for n ≥ 1. In terms of the generating functions, (4.14) can be reformulated as

(xy + yw)Gen(ax, t) + (y − 1 + tyw)Gen(axyw + ax2y, t)

= (xy + yw)Gen(axy, t). (4.15)

Let

A(t) = (y − 1 + tyw)Gen(axyw + ax2y, t)

+ (xy + yw)Gen(ax, t)− (xy + yw)Gen(axy, t).

Since D(xw−1) = 0 as given in (3.8), we have

A(t) = (1 + xw−1)Gen(axyw, t)
(
y − 1 + tyw + ywGen(y−1w−1 − w−1, t)

)
.

It remains to show that

y − 1 + tyw + ywGen(y−1w−1 − w−1, t) = 0. (4.16)

Observe that

D(y−1w−1 − w−1) = −y−2w−1y3w − y−1w−2yw2 + w−2yw2 = −1.

Hence
Gen(y−1w−1 − w−1, t) = y−1w−1 − w−1 − t, (4.17)

which proves (4.16), so that A(t) vanishes. This completes the proof.

5 The Abel Identities

In this section, we present a grammatical approach to the Abel identites. To this end,
we establish an expression of Dn(axry) in terms of rooted trees on [n]. Recall that the
set of such rooted trees is denoted by Rn.

For a rooted tree T ∈ Rn, we may construct a rooted tree T̄ by coloring each child
of the vertex 1 by one of the colors b, w1, w2, . . . , wr. It should be noted that 1 is not
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necessarily the root of T . Let R
(r)
n denote the set of rooted trees on [n] for which the

children of 1 are colored as described above.

We need the following grammatical labeling for a rooted tree T̄ ∈ R
(r)
n,k: First,

represent T̄ as a rooted tree T̂ on {0, 1, . . . , n} with root 0, and represent an improper
edge by double edges. Label the vertex 1 by axr, label a black vertex by x and label
each of the remaining vertices by w. Moreover, each edge in T̂ is labeled by y. Thus
the weight of T̄ is given by

w(T̄ ) = axblack(T̄ )+rwn−1−black(T̄ )yn+imp(T̄). (5.1)

Using the same argument as in the proof of Theorem 4.3, we are led to the following
relation.

Theorem 5.1 For n ≥ 1 and r ≥ 0,

Dn−1(axry) =
∑

T̄∈R(r)
n

w(T̄ ). (5.2)

Analogous to Theorem 4.1, there is a connection between Dn(axry) and Qn(x, y).

Theorem 5.2 For n ≥ 1 and r ≥ 0,

Dn−1(axry) = axrynwn−1Qn(r + xw−1 − 1, y). (5.3)

In the notation of Qn(x, y), the relation (2.3) of Dumont and Ramamonjisoa takes
the form

Dn−1(yw) = ynwnQn(0, y). (5.4)

In addition, Dumont [7] obtained grammatical expressions of Qn(1, y) and Qn(−1, y):
For n ≥ 1,

Dn(w) = ynwn+1Qn(1, y), (5.5)

Dn(y) = yn+1wnQn+1(−1, y). (5.6)

It can be checked that by setting a = x = w, the grammar H reduces to the grammar
of Dumont and Ramamonjisoa. Meanwhile, (5.4) can be deduced from (5.3) by setting
a = x = w and r = 0 and (5.5) can be deduced from (4.1) by setting a = x = w and
r = 0.

We remark that (5.6) can also be justified by a grammatical labeling of rooted trees
in the set Rn,k[degT(1) = 0] of rooted trees in Rn,k in which the vertex 1 is a leaf.
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For a rooted tree T in Rn,k[degT(1) = 0], let T̂ denote the tree obtained from T by
adding a new root 0 and representing each improper edge by double edges. Label each
vertex except for 1 by x and label each edge in T̂ by y. Therefore, for a rooted tree in
Rn,k[degT(1) = 0], we have

w(T ) = yn+kwn−1. (5.7)

Note that the vertex 1 is not endowed with a label. On the other hand, in Shor’s
construction, it is not allowed to add new vertices as children of the vertex 1. The
argument for the proof of Theorem 2.2 implies that for n ≥ 1,

Dn(y) =
∑

T∈Rn+1,k[degT (1)=0]

w(T ).

Utilizing the interpretation (1.12) of Qn,k(x), we see that for x = −1,

Qn,k(−1) = |Rn+1,k[degT (1) = 0]|.

Thus it follows from (5.7) that

Dn(y) = yn+1wn

n−1∑
k=0

ykQn,k(−1),

which is the right-hand side of (5.6).

The following relations are needed in the grammatical derivations of Abel identities.

Theorem 5.3 For n ≥ 1,

Dn(y)|y=w=1 = nn, (5.8)

Dn(yw)|y=w=1 = (n+ 1)n, (5.9)

Dn(axr)|a=y=w=1 = xr(x+ r)(x+ r + n)n−1, (5.10)

Dn(axry)|a=y=w=1 = xr(x+ r + n)n. (5.11)

Proof. In the notation of Qn(x, y), the relation (1.6) can be rewritten as

Qn(x, 1) = (x+ n)n−1. (5.12)

Setting y = w = 1 in (5.6), we obtain that

Dn(y)|y=w=1 = Qn+1(−1, 1),
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which equals nn according to (5.12). This proves (5.8). The rest of the relations in the
theorem can be obtained from (5.4), (4.1) and (5.3), respectively. This completes the
proof.

The classical Abel identity states that for n ≥ 1,

(x+ y + n)n =
n∑

k=0

(
n

k

)
x(x+ k)k−1(y + n− k)n−k. (5.13)

Since y has appeared as a variable in the grammar H, we shall use the following form
of (5.13): For n ≥ 1,

(x1 + x2 + n)n =
n∑

k=0

(
n

k

)
x1(x1 + k)k−1(x2 + n− k)n−k. (5.14)

Proof of (5.14). Let

H ′ : a1 → a1x1y, a2 → a2x2y, x1 → x1yw, x2 → x2yw,

y → y3w, w → yw2, (5.15)

and let D denote the formal derivative associated with the grammar H ′. Viewing a1

as a and x1 as x and applying (5.10) with respect to H, we get

Dn(a1)|a1=y=w=1 = x1(x1 + n)n−1. (5.16)

Similarly, invoking (5.11), we obtain that

Dn(a2y)|a2=y=w=1 = (x2 + n)n. (5.17)

Moreover, since

D(a1a2) = a1a2(x1 + x2)y, D(x1 + x2) = (x1 + x2)yw,

treating a1a2 as a and x1 + x2 as x, we may apply (5.11) to deduce that

Dn(a1a2y)|a1=a2=y=w=1 = (x1 + x2 + n)n. (5.18)

Finally, (5.14) is follows from the Leibnitz formula

Dn(a1a2y) =
n∑

k=0

(
n

k

)
Dk(a1)Dn−k(a2y)

along with the relations (5.16), (5.17) and (5.18). This completes the proof.
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Riordan [15] obtained a class of generalizations of the classical Abel identity by
considering the sum

An(x, y; p, q) =
n∑

k=0

(
n

k

)
(x+ k)k+p(y + n− k)n−k+q,

where n ≥ 1 and p, q are integers. He found closed forms for the cases when (p, q) lies
in

{(−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 0),

(2, 0), (−1,−1), (−1, 1), (−1, 2), (1, 1), (1, 2), (2, 2)} .

These identities for An(x, y; p, q) are also called the Abel identities or the Abel-type
identities. The original Abel identity corresponds to the case (p, q) = (−1, 0). For
(p, q) = (−1,−1), Riordan obtained a closed form for An(x, y; p, q), which is stated in
the variables x1 and x2: For n ≥ 1,

(x1 + x2)(x1 + x2 + n)n−1 =
n∑

k=0

(
n

k

)
x1x2(x1 + k)k−1(x2 + n− k)k−1. (5.19)

Proof of (5.19). Let H ′ denote the grammar given by (5.15), and let D denote the
formal derivative associated with H ′. Using the same reasoning as for the proof of
(5.16), we see that

Dn(a2)|a2=y=w=1 = x2(x2 + n)n−1. (5.20)

Analogous to (5.18), we get the relation

Dn(a1a2)|a1=a2=y=w=1 = (x1 + x2)(x1 + x2 + n)n−1. (5.21)

In view of (5.16), (5.20) and (5.21), we are led to (5.19) by applying the Leibnitz
formula

Dn(a1a2) =
n∑

k=0

(
n

k

)
Dk(a1)Dn−k(a2).

This completes the proof.

We next consider the case (p, q) = (−2, 0) of the Abel identity given by Riordan:
For n ≥ 2,

n∑
k=0

(
n

k

)
x1(x1 + 1)(x1 + k)k−2(x2 + n− k)n−k

= x−1
1

[
(x1 + 1)(x1 + x2 + n)n − nx1(x1 + x2 + n)n−1

]
. (5.22)
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Proof of (5.22). Let H ′ denote the grammar defined as above, and let D denote the
formal derivative associated with H ′. Set

s1 = a1y
−1 + a1x

−1
1 w,

so that D(s1) = a1x1. Analogous to (5.16), we find that for n ≥ 1,

Dn(s1)|a1=y=w=1 = x1(x1 + 1)(x1 + n)n−2. (5.23)

Since
s1a2y = a1a2 + a1a2x

−1
1 yw

and x−1w is a constant as shown in (3.8), we get

Dn(s1a2y) = Dn(a1a2) + x−1
1 wDn(a1a2y).

By the Leibnitz formula

Dn(s1a2y) =
n∑

k=0

(
n

k

)
Dk(s1)Dn−k(a2y),

we find that

n∑
k=0

(
n

k

)
Dk(s1)Dn−k(a2y) = Dn(a1a2) + x−1wDn(a1a2y),

which yields (5.22) by applying (5.17), (5.18), (5.21) and (5.23). This completes the
proof.

We obtain a closed formula for the case (p, q) = (−2,−2).

Theorem 5.4 For n ≥ 1,

n∑
k=0

(
n

k

)
x1x2(x1 + 1)(x2 + 1)(x1 + k)k−2(x2 + n− k)n−k−2

= ((x1 + x2)3 − 3n(x1 + x2)− 2n)(x1 + x2 + n)n−3

+
(x1 + x2)2

x1x2

(x1 + x2 + 1)(x1 + x2 + n)n−2. (5.24)

We need the following lemma.
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Lemma 5.5 Let D denote the formal derivative associated with the grammar H. For
n ≥ 2,

Dn(ay−1)|a=y=w=1 = x(x+ 1)(x+ n)n−2 − (x+ n)n−1. (5.25)

For n ≥ 3,
Dn(ay−2)|a=y=w=1 = (x3 − 3nx− 2n)(x+ n)n−3. (5.26)

Proof. Since D(ay−1) = ax− ayw and D(x−1w) = 0 as given in (3.8), we have

Dn(ay−1) = Dn−1(ax)− x−1wDn−1(axy).

Applying (5.10) and (5.11) with r = 1, we get

Dn(ay−1)|a=y=w=1 = x(x+ 1)(x+ n)n−2 − (x+ n)n−1.

Since
D(ay−2) = axy−1 − 2aw

and
D(axy−1) = ax2(1 + x−1w)− axyw,

we see that for n ≥ 3,

Dn(ay−2) = Dn−1(axy−1 − 2aw)

= Dn−2
(
ax2(1 + x−1w)− axyw

)
− 2x−1wDn−1(ax)

= (1 + x−1w)Dn−2(ax2)− x−1wDn−2(ax2y)− 2x−1wDn−1(ax).

In light of (5.10) and (5.11), we find that

Dn(ay−2)|a=y=w=1 = x(x+ 1)(x+ 2)(x+ n)n−3 − x(x+ n)n−2 − 2(x+ 1)(x+ n)n−2,

which implies (5.26). This complete the proof.

Proof of Theorem 5.4. Assume that H ′ is the grammar given in (5.15) and D is the
formal derivative with respect to H ′. Let

s1 = a1y
−1 + a1x

−1
1 w

and
s2 = a2y

−1 + a2x
−1
2 w.

Clearly, D(s1) = a1x1 and D(s2) = a2x2. It follows from (5.10) that

Dn(s2)|a2=y=w=1 = x2(1 + x2)(x2 + n)n−2. (5.27)
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By the same argument as that for the proof of (5.18), we deduce from (5.25) and (5.26)
that

Dn(a1a2y
−1)|a1=a2=y=w=1 = (x1 + x2)(x1 + x2 + 1)(x1 + x2 + n)n−2

− (x1 + x2 + n)n−1

and

Dn(a1a2y
−2)|a1=a2=y=w=1 = ((x1 + x2)3 − 3n(x1 + x2)− 2n)(x1 + x2 + n)n−3.

Since D(x1w
−1) = D(x2w

−1) = 0, we get

Dn(s1s2) = Dn(a1a2(y−1 + x−1
1 w)(y−1 + x−1

2 w))

= Dn
(
a1a2y

−2 + a1a2y
−1(x−1

1 + x−1
2 )w + a1a2(x1x2)−1w2

)
= Dn(a1a2y

−2) + (x−1
1 + x−1

2 )wDn(a1a2y
−1)

+ (x1x2)−1w2Dn(a1a2). (5.28)

By the Leibnitz formula

Dn(s1s2) =
n∑

k=0

(
n

k

)
Dk(s1)Dn−k(s2),

we obtain (5.24) by using (5.23), (5.27) and (5.28). This completes the proof.

We conclude this paper with a one-line grammatical explanation of the Lacasse
identity.

Theorem 5.6 For n ≥ 1,

nn+1 =
n∑

j=1

n−j∑
k=0

(
n

j

)(
n− j
k

)
jjkk(n− j − k)n−j−k. (5.29)

Proof. Because of the relation

k

(
n

k

)
= n

(
n− 1

k − 1

)
,

(5.29) can be rewritten as

nn =
n∑

j=1

n−j∑
k=0

(
n− 1

j − 1

)(
n− j
k

)
jj−1kk(n− k)n−k. (5.30)
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Since D(y) = y3w, we have

Dn(y) = Dn−1(y3w) =
∑

i+j+k=n−1

(
n− 1

i, j, k

)
Di(y)Dj(yw)Dk(y). (5.31)

Invoking (5.8) and (5.9) and setting y = w = 1, we see that (5.31) can be rewritten in
the form of (5.30). This completes the proof.
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