Families of Sets with Intersecting Clusters

William Y.C. Chen¹ Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P. R. China

> Jiuqiang Liu² Department of Mathematics Eastern Michigan University Ypsilanti, MI 48197, USA

Larry X.W. Wang³
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China

¹chen@nankai.edu.cn, ²jliu@emich.edu, ³wxw@cfc.nankai.edu.cn

In Memory of Professor Chao Ko

Abstract

A collection of k-subsets A_1, A_2, \ldots, A_d on $[n] = \{1, 2, \ldots, n\}$, not necessarily distinct, is called a (d, c)-cluster if the union $A_1 \cup A_2 \cup \cdots \cup A_d$ contains at most ck elements with c < d. Let \mathcal{F} be a family of k-subsets of an n-element set. We show that for $k \geq 2$ and $n \geq k + 2$, if every (k, 2)-cluster of \mathcal{F} is intersecting, then \mathcal{F} contains no (k - 1)-dimensional simplices. This leads to an affirmative answer to Mubayi's conjecture for d = k based on Chvatal's simplex theorem. We also show that for any d satisfying $3 \leq d \leq k$ and $n \geq \frac{dk}{d-1}$, if every $(d, \frac{d+1}{2})$ -cluster is intersecting, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star. This result contains both Frankl's theorem and Mubayi's theorem as special cases.

Keywords: Clusters of subsets, Chvatal's simplex theorem, d-simplex, Erdös-Ko-Rado Theorem, Mubayi's conjecture

AMS Classification: 05D05.

1 Introduction

This paper is concerned with the study of families of subsets with intersecting clusters. The first result is a proof of an important case of a conjecture recently proposed by Mubayi [7] on intersecting families with the aid of Chvatal's simplex theorem. The second result is a theorem that is an extension of both Frankl's theorem and Mubayi's theorem.

Let us review some notation and terminology. The set $\{1, 2, ..., n\}$ is usually denoted by [n] and the family of all k-subsets of a finite set X is denoted by X^k or $\binom{X}{k}$. A family \mathcal{F} of sets is *intersecting* if every pair of two sets in \mathcal{F} has a nonempty intersection. A family \mathcal{F} of sets in X^k is called a *complete star* if \mathcal{F} consists of all k-subsets containing x for some $x \in X$.

In 1961, Erdös, Ko, and Rado [3] published the following classical result.

Theorem 1.1 (The EKR Theorem) Let $n \geq 2k$ and let $\mathcal{F} \subseteq {n \choose k}$ be an intersecting family. Then $|\mathcal{F}| \leq {n-1 \choose k-1}$ with equality only when \mathcal{F} is a complete star when n > 2k.

In 1976, Frankl [4] obtained a generalization of the EKR Theorem.

Theorem 1.2 (Frankl) Let $k \geq 2$, $d \geq 2$, and $n \geq dk/(d-1)$. Suppose that $\mathcal{F} \subseteq [n]^k$ such that every d sets of \mathcal{F} have a nonempty intersection, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

In fact, the following two conjectures due to Erdös and Chvatal imply Frankl's Theorem for $d \geq 3$. Recall that a *d*-dimensional simplex or a *d*-simplex for short, is defined as a collection of d+1 sets $A_1, A_2, \ldots, A_{d+1}$ such that every d of them have a nonempty intersection, but $A_1 \cap A_2 \cap \cdots \cap A_{d+1} = \emptyset$. A 2-dimensional simplex is called a triangle.

The Erdös conjecture [2] is stated as follows:

Conjecture 1.3 (Erdös) For $n \geq \frac{3k}{2}$, if $\mathcal{F} \subseteq [n]^k$ contains no triangle, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

Chvatal [1] proposed a generalization of the Erdös conjecture.

Conjecture 1.4 (Chvatal's Simplex Conjecture) Let $k \geq d+1 \geq 3$, $n \geq k(d+1)/d$, and $\mathcal{F} \subseteq [n]^k$. If \mathcal{F} contains no d-dimensional simplex, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

Chvatal's simplex conjecture remains open. Chvatal has shown that it is true for d = k - 1, which we call Chvatal's simplex theorem [1]. Frankl and Füredi [5] have shown that Chvatal's conjecture holds for sufficiently large n.

Theorem 1.5 (Chvatal's Simplex Theorem) For $n \ge k+2 \ge 5$, if $\mathcal{F} \subseteq [n]^k$ contains no (k-1)-dimensional simplices, then $|\mathcal{F}| \le {n-1 \choose k-1}$ with equality only when \mathcal{F} is a complete star.

Theorem 1.6 (Frankl and Füredi) For $k \geq d + 2 \geq 4$, there exists n_0 such that for $n > n_0$, if $\mathcal{F} \subseteq [n]^k$ contains no d-dimensional simplices, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

As we shall see, a recent conjecture proposed by Mubayi [7] is related to Chvatal's simplex theorem. Here we introduce the terminology of clusters of subsets. A collection of k-subsets A_1, A_2, \ldots, A_d of [n] is called a (d, c)-cluster if $|A_1 \cup A_2 \cup \cdots \cup A_d| \leq ck$, where c < d is a constant that may depend on d. A cluster is said to be *intersecting* if their intersection is nonempty.

Conjecture 1.7 (Mubayi's Conjecture) Let $k \geq d \geq 3$ and $n \geq dk/(d-1)$. Suppose that $\mathcal{F} \subseteq [n]^k$ such that every (d,2)-cluster of \mathcal{F} is intersecting i.e., for any $A_1, A_2, \ldots, A_d \in \mathcal{F}$, $|A_1 \cup A_2 \cup \cdots \cup A_d| \leq 2k$ implies $A_1 \cap A_2 \cap \cdots \cap A_d \neq \emptyset$. Then $|\mathcal{F}| \leq {n-1 \choose k-1}$ with equality only when \mathcal{F} is a complete star.

Mubayi proved that this conjecture holds for d = 3 (Theorem 1.8) [7]. He also showed that his conjecture holds for d = 4 when n is sufficiently large [8].

Theorem 1.8 (Mubayi) Let $k \geq 3$ and $n \geq \frac{3k}{2}$. Suppose that $\mathcal{F} \subseteq [n]^k$ is a family such that every (3,2)-cluster $A_1, A_2, A_3 \in \mathcal{F}$ is intersecting, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

In this paper, we study the case d = k of Mubayi's conjecture in connection with Chvatal's simplex theorem. We show that for the case d = k, the conditions for Mubayi's conjecture ensures the nonexistence of any (k-1)-dimensional simplex. Therefore, Chvatal's simplex theorem leads to Mubayi's conjecture for d = k. As the main results of this paper, we present a theorem on families of subsets with intersecting clusters which contains both Frankl's Theorem (Theorem 1.2) and Mubayi's Theorem (Theorem 1.8).

2 Subset Families with Intersecting Clusters

In this section, we first consider Mubayi's conjecture in the case k=d. We show that this case is related to Chvatal's simplex theorem (Theorem 1.5). Then we study families of k-subsets with intersecting $(d, \frac{d+1}{2})$ -clusters and obtain a theorem that contains Frankl's theorem (Theorem 1.2) and Mubayi's theorem (Theorem 1.8) as special cases.

Theorem 2.1 Let $k \geq 3$ and $n \geq k + 2$. Suppose that $\mathcal{F} \subseteq [n]^k$ is a collection of subsets of [n] such that every (k, 2)-cluster is intersecting. Then \mathcal{F} contains no (k-1)-dimensional simplices.

Proof. Suppose that $A_1, A_2, \ldots, A_k \in \mathcal{F}$ are such that every k-1 of them have nonempty intersection. We proceed to show that $A_1 \cap A_2 \cap \cdots \cap A_k \neq \emptyset$. To the contrary, assume that $A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset$. Then every k-1 sets of A_1, A_2, \ldots, A_k intersect at a different element in [n]. For each $i, 1 \leq i \leq k$, there are k-1 collections of k-1 sets containing A_i and so A_i has k-1 elements which are in the intersections of those k-1 collections.

Let us construct a bipartite graph G = (X, Y, E), where $X = \bigcup_i A_i$, and $Y = \{A_1, A_2, \ldots, A_k\}$. There is an edge between $x \in X$ and A_i if $x \in A_i$. Clearly the degree of A_i equals k, and there total number of edges in G equals k^2 . Since every k-1 sets of A_1, A_2, \ldots, A_k intersect at a different element in [n], there are k elements x_1, x_2, \ldots, x_k whose degrees are k-1. Hence there are k(k-1) edges adjacent to x_1, x_2, \ldots, x_k . Assume that the remaining elements of X are y_1, y_2, \ldots, y_m . Therefore, there are $k^2 - k(k-1) = k$ edges adjacent to y_1, y_2, \ldots, y_m . Since the degree of y_i is at least one for each y_i , we have $m \leq k$. Thus the number of elements in X is at most 2k. This implies that $A_1 \cap A_2 \cap \cdots \cap A_k \neq \emptyset$, contradicting the assumption that $A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset$. Hence \mathcal{F} does not contain any (k-1)-dimensional simplex.

The following theorem is the main result of this paper.

Theorem 2.2 Let $k \geq d \geq 3$ and $n \geq \frac{dk}{d-1}$. Suppose that $\mathcal{F} \subseteq [n]^k$ is a family of subsets of [n] such that every $(d, \frac{d+1}{2})$ -cluster is intersecting (i.e., for any $A_1, A_2, \ldots, A_d \in \mathcal{F}, |A_1 \cup A_2 \cup \cdots \cup A_d| \leq \frac{d+1}{2}k$ implies that $\bigcap_{i=1}^d A_i \neq \emptyset$). Then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ with equality only when \mathcal{F} is a complete star.

The following lemma gives an upper bound on the number of edges in a graph with intersecting clusters, and it will be used in the proof of Theorem 3.1.

Lemma 2.3 Let $n > d \ge 3$. Suppose that $\mathcal{F} \subseteq [n]^2$ is a family of 2-subsets of [n] such that every $(d, \frac{d+1}{2})$ -cluster is intersecting. Then $|\mathcal{F}| \le n-1$ with equality only when \mathcal{F} is a complete star.

Proof. Since \mathcal{F} is a family of 2-subsets, we may consider it as a graph G with vertex set [n]. The conditions in the lemma imply that any d edges A_1, A_2, \ldots, A_d of G either intersect at a common vertex or cover at least d+2 vertices.

We now proceed by induction on n. For n = d + 1, since any d edges cover at most n = d + 1 vertices, any d edges of G must intersect at a common vertex and thus form a star. This implies that $|\mathcal{F}| = |E(G)| \le d = n - 1$ with equality only when \mathcal{F} (or G) is a complete star.

Assume that $n \ge d+2$ and that the lemma holds for n-1. We first claim that G must contain a vertex of degree one. Otherwise, every vertex of G has degree at least two which implies that every connected component C of G satisfies

$$|V(C)| \le |E(C)|. \tag{2.1}$$

Let C_1, C_2, \ldots, C_m be the connected components of G ordered by the relation

$$|E(C_1)| \ge |E(C_2)| \ge \cdots \ge |E(C_m)|.$$

We proceed to find d edges that form a non-intersecting $(d, \frac{d+1}{2})$ -cluster to reach a contradiction. Let us consider two cases.

Case 1: $|C_1| \ge d$. Since C_1 is not a star, it contains a path P with three edges. Since $d \ge 3$, we can add d-3 edges to P to obtained a connected subgraph H of C_1 . Let A_1, A_2, \ldots, A_d be d edges of H. Then we have

$$|A_1 \cup A_2 \dots \cup A_d| = |V(H)| \le |E(H)| + 1 = d + 1.$$

Since H is not a star, we obtain $A_1 \cap A_2 \dots \cap A_d = \emptyset$.

Case 2: $|C_1| < d$. Let $r \ge 1$ be the integer such that

$$b = \sum_{i=1}^{r} |E(C_i)| < d$$
 and $\sum_{i=1}^{r+1} |E(C_i)| \ge d$.

It is clear that C_{r+1} has at least d-b edges. We now take any connected subgraph H of C_{r+1} with d-b edges. Since H is connected, we have the relation

$$|E(H)| \ge |V(H)| - 1.$$
 (2.2)

Let A_1, A_2, \ldots, A_d be the d edges in C_1, C_2, \ldots, C_r, H . From (2.1) and (2.2) it follows that

$$|A_1 \cup A_2 \cdots \cup A_d|$$

$$= |V(C_1)| + |V(C_2)| + \cdots + |V(C_r)| + |V(H)|$$

$$\leq |E(C_1)| + |E(C_2)| + \cdots + |E(C_r)| + |E(H)| + 1$$

$$= d + 1.$$

Noting that C_1, C_2, \ldots, C_r and H are disjoint, we have $A_1 \cap A_2 \cdots \cap A_d = \emptyset$.

In summary, we have reached the conclusion that G has a vertex with degree one. Let v be a vertex of degree one in G and let G' be the induced graph obtained from G by deleting the vertex v. Clearly, G' is a graph with n-1 vertices in which every d edges A_1, A_2, \ldots, A_d either intersect at a common vertex or cover at least d+2 vertices. By the inductive hypothesis, we have $|E(G')| \leq n-2$ with equality only if G' is a complete star. Hence

$$|\mathcal{F}| = |E(G)| = |E(C)| + 1 \le n - 1$$

with equality only if \mathcal{F} (or G) is a complete star.

The following lemma is an extension of Lemma 3 of Mubayi [7]. While the proof of Mubayi relies on the EKR theorem, our proof is based on the above Lemma 2.3 and Frankl's theorem (Theorem 1.2).

Lemma 2.4 Let $k \ge d \ge 2$, $t \ge 2$, and $2 \le l \le k$. Let S_1, S_2, \ldots, S_t be pairwise disjoint k-subsets and $X = S_1 \cup S_2 \cup \cdots \cup S_t$. Suppose that \mathcal{F} is a family of l-subsets of X satisfying the following conditions

- 1. $S_i \in \mathcal{F}$ for all i if l = k.
- 2. $|\mathcal{F}| \leq d$ if t = 2.
- 3. For every $A_1, A_2, \ldots, A_d \in \mathcal{F}$ and $1 \leq i \leq t, A_1 \cap A_2 \cdots \cap A_d \cap S_i = \emptyset$ implies $|A_1 \cup A_2 \cdots \cup A_d S_i| > \frac{dl}{2}$.

Then we have $|\mathcal{F}| < {tk-1 \choose l-1}$.

Proof. For d=2, the above lemma reduces to Lemma 3 in [7]. So we may assume that $d \ge 3$. Let n=|X|=tk. We consider the following two cases.

Case 1. Assume l=2. We claim that any $(d, \frac{d+1}{2})$ -cluster of \mathcal{F} is intersecting, namely, for any $A_1, A_2, \ldots, A_d \in \mathcal{F}$, we have either $A_1 \cap A_2 \cdots \cap A_d \neq \emptyset$ or $|A_1 \cup A_2 \cup \cdots \cup A_d| \geq d+2$. To this end, we assume that $A_1 \cap A_2 \cdots \cap A_d = \emptyset$. This gives $A_1 \cap A_2 \cdots \cap A_d \cap S_i = \emptyset$ for any S_i . Since $X = \cup S_i$ is the ground set of \mathcal{F} , there exists S_m such that $A_1 \cap S_m \neq \emptyset$. As $A_1 \cap A_2 \cdots \cap A_d \cap S_m = \emptyset$ and l=2, in view of Condition 3 we get

$$|A_1 \cup A_2 \cdots \cup A_d - S_m| > d.$$

Furthermore, the condition $A_1 \cap S_m \neq \emptyset$ yields

$$|A_1 \cup A_2 \cdots \cup A_d| > d+1.$$

So the claim holds.

Since $d \geq 3$, by Lemma 3.2, we obtain that $|\mathcal{F}| \leq n-1$, where n=tk. So it remains to show that it is impossible for $|\mathcal{F}|$ to reach the upper bound n-1. Assume that $|\mathcal{F}| = n-1$. Again, by Lemma 3.2, \mathcal{F} must be a complete star, i.e., \mathcal{F} consists of all 2-subsets of X for some x in X. Without loss of generality, we may assume that $x \in S_1$. Let A_1 be a 2-subset from \mathcal{F} such that $A_1 \subseteq S_1$. Since $d-1 \leq k$, we may choose d-1 2-subsets A_2, A_3, \ldots, A_d such that $A_i \in \mathcal{F}$ and $A_i - x \subseteq S_2$ for $2 \leq i \leq d$. Then $A_1 \cap A_2 \cdots \cap A_d \cap S_2 = \emptyset$ and

$$|(A_1 \cup A_2 \cup \cdots \cup A_d) - S_2| = 2 < d,$$

contradicting Condition 3. Hence we have $|\mathcal{F}| < n-1 = tk-1$. So the lemma is proved for l=2.

Case 2. Assume $l \geq 3$. Then $k \geq l \geq 3$. We proceed by induction on t.

We first consider the case t=2, namely, $X=S_1\cup S_2$. We will show that $A_1\cap A_2\cdots\cap A_d\neq\emptyset$ for any $A_1,\,A_2,\,\ldots,\,A_d\in\mathcal{F}$. If this is not true, then there exist $A_1,A_2,\ldots,A_d\in\mathcal{F}$ for which

$$A_1 \cap A_2 \dots \cap A_d = \emptyset. \tag{2.3}$$

Let $A = A_1 \cup A_2 \cup \cdots \cup A_d$. It is clear that A contains at most dl elements. Since S_1 and S_2 are disjoint, so are $A \cap S_1$ and $A \cap S_2$. Therefore, either $A \cap S_1$ or $A \cap S_2$ contains at most half of the elements in A. We may assume without loss of generality that

 $|A \cap S_1| \le \frac{dl}{2}.$

Note that (2.3) yields $A_1 \cap A_2 \cdots \cap A_d \cap S_1 = \emptyset$. Since $X = S_1 \cup S_2$, we get

$$|A - S_2| = |A \cap S_1| \le \frac{dl}{2},$$

contradicting Condition 3. Thus, we shown that $A_1 \cap A_2 \cdots \cap A_d \neq \emptyset$ for any A_1 , $A_2, \ldots, A_d \in \mathcal{F}$. By Frankl's Theorem (Theorem 1.2) we obtain

$$|\mathcal{F}| \le \binom{2k-1}{l-1}.\tag{2.4}$$

Next we prove that equality in (2.4) can never be reached. Let us assume that

$$|\mathcal{F}| = \binom{2k-1}{l-1}.\tag{2.5}$$

By Frankl's theorem and $d \geq 3$, \mathcal{F} is a complete star, i.e., \mathcal{F} consists of all the l-subsets of [2k] which contain the element x for some x in [2k]. Without loss of generality, we may assume that $x \in S_1$. Then any subset $A_i \in \mathcal{F}$ is either of the form $B \cup \{x\}$ for $B \in [S_1 - x]^{l-1}$ or of the form $C \cup \{x\}$ for $C \in [S_2]^{l-1}$. Since $d \leq k$ and $3 \leq l \leq k$, we have

$$d-1 \le k \le \binom{k}{l-1}.$$

Now we may choose $A_1 \in \mathcal{F}$ with $A_1 \subseteq S_1$ and d-1 sets $A_2, A_3, \ldots, A_d \in \mathcal{F}$ with $A_i - x \subseteq S_2$ for each $i \ge 2$. Since $A_1 \cap S_2 = \emptyset$, we have $A_1 \cap A_2 \cdots \cap A_d \cap S_2 = \emptyset$. Moreover, since $A_i - x \subseteq S_2$ for $i = 2, 3, \ldots, d$, we have

$$|(A_1 \cup A_2 \cup \cdots \cup A_d) - S_2| = |A_1| = l < \frac{dl}{2},$$

contradicting Condition 3. Thus, we have derived that $|\mathcal{F}| < {2k-1 \choose l-1}$ and the lemma is valid for t=2.

Next suppose $t \geq 3$ and the result holds for t-1. We first show that there exists at most one set S_m such that

$$|\mathcal{F} \cap [S_m]^l| \ge \frac{d}{2}.$$

Suppose, to the contrary, that there exist two sets, say S_1 and S_2 , such that

$$|\mathcal{F} \cap [S_i]^l| \ge \frac{d}{2},$$

for i = 1, 2. Then

$$|\mathcal{F} \cap [S_1]^l| + |\mathcal{F} \cap [S_2]^l| \ge d.$$

Hence we are able to choose d sets A_1, A_2, \ldots, A_d from $(\mathcal{F} \cap [S_1]^l) \cup (\mathcal{F} \cap [S_2]^l)$ such that $A_1 \subseteq S_1$ and $A_2 \subseteq S_2$. Since $|(A_1 \cup A_2 \cup \cdots \cup A_d)| \leq dl$ and $S_1 \cap S_2 = \emptyset$, we have either

$$|(A_1 \cup A_2 \cup \dots \cup A_d) \cap S_1| \le \frac{dl}{2}$$
(2.6)

or

$$|(A_1 \cup A_2 \cup \dots \cup A_d) \cap S_2| \le \frac{dl}{2}. \tag{2.7}$$

Without loss of generality, assuming that (2.6) is valid. Then we have

$$|(A_1 \cup A_2 \cup \cdots \cup A_d) - S_2| = |(A_1 \cup A_2 \cup \cdots \cup A_d) \cap S_1| \le \frac{dl}{2}.$$

However, the choices of A_1, A_2, \ldots, A_d ensure that $A_1 \cap A_2 \cdots \cap A_d \cap S_2 = \emptyset$, contradicting Condition 3. Thus we have shown that there exists at most one set S_m such that

$$|\mathcal{F} \cap [S_m]^l| \ge \frac{d}{2}.$$

For convenience, let us assume m = t. Thus we have

$$|\mathcal{F} \cap [S_i]^l| \le \frac{d-1}{2},$$

for i = 1, ..., t - 1. Set $\mathcal{H}_i = \{ F \in \mathcal{F} : |F \cap S_i| = l - 1 \}$ and $\deg_{\mathcal{H}_i}(B) = |\{ F \in \mathcal{H}_i : B \subset F \}|$.

Claim A. There exists at least one set S_i $(i \in \{1, ..., t\})$ such that

$$|\mathcal{H}_i| \le {k \choose l-1}$$
 and $|\mathcal{F} \cap [S_i]^l| \le \frac{d-1}{2}$.

Suppose that Claim A is not true. Then

$$|\mathcal{H}_i| \ge \binom{k}{l-1} + 1,\tag{2.8}$$

for $i = 1, \dots, t - 1$. Moreover, if $|\mathcal{F} \cap [S_t]^l| \leq \frac{d-1}{2}$, then

$$|\mathcal{H}_t| \ge \binom{k}{l-1} + 1.$$

By (2.8), there exists a (l-1)-subset B of S_1 such that

$$\deg_{\mathcal{H}_1}(B) \ge 2. \tag{2.9}$$

Assume that $A_1, A_2 \in \mathcal{H}_1$ are chosen subject to the conditions $B \subset A_1$ and $B \subset A_2$. Since

$$|\mathcal{H}_2| \ge \binom{k}{l-1} + 1 > d-2,$$

we can choose $A_3, \ldots A_d$ from \mathcal{H}_2 . Since $A_1 \cap A_2 = B \subseteq S_1$,

$$A_1 \cap \dots \cap A_d \cap S_2 = \emptyset$$

and

$$|A_1 \cup \cdots \cup A_d - S_2| \le (l+1) + (d-2) = l+d-1 \le \frac{dl}{2}$$

for $d \geq 4$ and $l \geq 3$. So we have reached a contradiction to Condition 3 when $d \geq 4$. Assume d = 3. Let $\{x_i\} = A_i - B$ for i = 1, 2. Then $x_i \notin S_1$ and let $x_1 \in S_{i_0}$ for some $i_0 \geq 2$. Choose A_3 to be either in \mathcal{H}_{i_0} or $\mathcal{F} \cap [S_{i_0}]^l$. We have

$$A_1 \cap A_2 \cap A_3 \cap S_{i_0} = \emptyset$$

and

$$|A_1 \cup A_2 \cup A_3 - S_{i_0}| \le (l-1) + 1 + 1 = l + 1 \le \frac{dl}{2}$$

for $l \geq 3$ and d = 3, contradicting Condition 3 again. Thus Claim A holds.

Without loss of generality, we assume that

$$|\{F \in \mathcal{F} : |F \cap S_1| = l - 1\}| = |\mathcal{H}_1| \le \binom{k}{l - 1}$$
 and $|F \cap [S_1]^l| \le \frac{d - 1}{2}$.

Now consider any $F \in \mathcal{F}$. We may express F as $F_1 \cup F_2$, where $F_1 = F \cap S_1$ and $F_2 = F - F_1$. For a fixed F_1 of size l - r $(1 \le r \le l)$, let \mathcal{F}_r be the family of all r-sets $F_2 \subset S_2 \cup S_3 \cup \cdots \cup S_t$ such that $F_1 \cup F_2 \in \mathcal{F}$.

We claim that \mathcal{F}_r satisfies the conditions of the lemma. For otherwise, we may assume that there exist $A_1, A_2, \ldots, A_d \in \mathcal{F}_r$ and $i \in \{2, \cdots, t\}$ such that $A_1 \cap A_2 \cap \cdots \cap A_d \cap S_i = \emptyset$ and

$$|(A_1 \cup A_2 \cup \dots \cup A_d) - S_i| \le \frac{d}{2}r.$$

Now, let $A'_j = A_j \cup F_1$ for $1 \leq j \leq d$. Then $A'_1, A'_2, \ldots, A'_d \in \mathcal{F}$ and

 $A'_1 \cap A'_2 \cap \cdots \cap A'_d \cap S_i = \emptyset$. Recalling that $l \geq r$, we get

$$|(A'_1 \cup A'_2 \cup \cdots \cup A'_d) - S_i| = |F_1| + |(A_1 \cup A_2 \cup \cdots \cup A_d) - S_i|$$

$$\leq l - r + \frac{dr}{2} = l + \frac{d-2}{2}r \leq l + \frac{d-2}{2}l = \frac{dl}{2},$$

contradicting Condition 3. Thus we have shown that \mathcal{F}_r satisfies the conditions of the lemma. For $r \geq 2$, by the inductive hypothesis, we see that

$$|\mathcal{F}_r| < \binom{(t-1)k-1}{r-1}.$$

Since $l \geq 3$ and $d \leq k$, it is easy to check that

$$\sum_{r=2}^{l} \binom{k}{l-r} - d \ge 0.$$

Hence $|\mathcal{F}|$ can be bounded as follows:

$$|\mathcal{F}| \leq \sum_{r=2}^{l} {k \choose l-r} |\mathcal{F}_r| + |\{F \in \mathcal{F} : |F \cap S_1| = l-1\}| + |\mathcal{F} \cap [S_1]^l|$$

$$\leq \sum_{r=1}^{l} {k \choose l-r} {(t-1)k-1 \choose r-1} - \sum_{r=1}^{l} {k \choose l-r} + {k \choose l-1} + \frac{d-1}{2}$$

$$< {tk-1 \choose l-1} - \sum_{r=2}^{l} {k \choose l-r} + d \leq {tk-1 \choose l-1}.$$

This completes the proof.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. For d=3, the result follows from Theorem 1.8. So we assume $d\geq 4$. Let S_1, S_2, \ldots, S_t be a maximum subfamily of pairwise disjoint k-subsets from \mathcal{F} . We proceed by using induction on t. If t=1, then \mathcal{F} is intersecting and the result follows from Theorem 1.1 when $n\geq 2k$. When $\frac{dk}{d-1}\leq n<2k$, for any $A_1,\ldots,A_d\in\mathcal{F},\ |A_1\cup\cdots\cup A_d|\leq n<2k$, it follows that their intersection is nonempty from the condition of the theorem. Hence the theorem reduces to Theorem 1.2 in this case. Thus we may assume that $t\geq 2$ and the theorem holds for t-1. Note that t=1 is the only case when \mathcal{F} can be a complete star. We now proceed to prove that $|\mathcal{F}|<\binom{n-1}{k-1}$.

If n = tk, then we set l = k. The condition on \mathcal{F} in Theorem 3.1 implies the condition on \mathcal{F} in Lemma 3.3 with d replaced by d - 1. In fact, suppose that there exist $A_1, A_2, \ldots, A_{d-1} \in \mathcal{F}$ for which $A_1 \cap A_2 \cdots \cap A_{d-1} \cap S_i = \emptyset$. Since every $(d, \frac{d+1}{2})$ -cluster of \mathcal{F} is intersecting, we see that

$$|A_1 \cup A_2 \cup \cdots \cup A_{d-1} \cup S_i| > \frac{d-1}{2}k,$$

hence

$$|A_1 \cup A_2 \cup \dots \cup A_{d-1} - S_i| > \frac{d+1}{2}k - k = \frac{d-1}{2}k.$$

For t=2, the assumption of the theorem implies that $|\mathcal{F}| \leq d-1$. Again, by Lemma 3.3, we obtain $|\mathcal{F}| < \binom{n-1}{k-1}$.

We now assume n > tk and let

$$Y = [n] - \bigcup_{i=1}^{t} S_i.$$

Given the choices of S_1, S_2, \ldots, S_t, Y does not contain any subset $A \in \mathcal{F}$. Put

$$\mathcal{F}' = \{ F \in \mathcal{F} : |F \cap Y| = k-1 \}.$$

Claim B. If $|Y| = n - tk \ge k$, then

$$|\mathcal{F}'| \le \binom{n - tk}{k - 1}.\tag{2.10}$$

Suppose that Claim B is not true, that is,

$$|\mathcal{F}'| \ge \binom{n-tk}{k-1} + 1 \ge k+1 > d.$$

Therefore, there exists a (k-2)-subset $B \subset Y$ such that

$$\deg_{\mathcal{F}'}(B) \ge |Y| - k + 3 = (n - tk) - k + 3. \tag{2.11}$$

Otherwise, we would have

$$|\mathcal{F}'| \le \frac{((n-tk)-k+2)\binom{n-tk}{k-2}}{k-1} = \binom{n-tk}{k-1}.$$

Since the number of (k-1)-subsets containing B is equal to |Y|-k+2, there exists a (k-1)-subset C containing B such that $\deg_{\mathcal{F}'}(C) \geq 2$. Suppose that $A_1, A_2 \in \mathcal{F}'$ such that $A_1 \cap A_2 = C \subset Y$. So

$$A_1 \cap A_2 \cap S_i = \emptyset$$

for each $1 \leq i \leq t$. Let $A_3, A_4, \ldots, A_{d-1}$ be additional subsets in \mathcal{F}' such that $B \subseteq A_i$ for each i if $|Y| - k + 3 \geq d - 1$. We deduce that

$$A_1 \cap \cdots \cap A_{d-1} \cap S_i = \emptyset$$

for each $1 \le i \le t$ and

$$\begin{cases} |(A_1 \cup \dots \cup A_{d-1})| \le k - 2 + 2(d-2) + 1 = k + 2d - 5, & \text{if } |Y| - k + 3 \ge d - 1, \\ |(A_1 \cup \dots \cup A_{d-1})| \le |Y| + d - 1 \le k + 2d - 6, & \text{if } |Y| - k + 3 < d - 1. \end{cases}$$

Let S_h be such that $S_h \cap A_1 \neq \emptyset$. Since $k \geq d \geq 4$, it follows that

$$|(A_1 \cup \cdots \cup A_{d-1}) \cup S_h| \le k + 2d - 5 + (k-1) = 2k + 2d - 6 \le \frac{d+1}{2}k,$$

contradicting the assumption of the theorem. So Claim B is justified.

Given any member F in \mathcal{F} , we can always write F as $F_1 \cup F_2$, where $F_1 = F \cap Y$ and $F_2 = F - F_1$. Suppose that F_1 is of size k - l $(1 \le l \le k)$. Let \mathcal{F}_l be the family of all l-sets $F_2 \subset \bigcup_{i=1}^t S_i$ such that $F_1 \cup F_2 \in \mathcal{F}$. We claim that \mathcal{F}_l satisfies the conditions in Lemma 3.3 with d replaced by d-1. For l = k, the intersecting condition on clusters for the theorem implies that $(1) |\mathcal{F}_k| \le d-1$ for t=2 and (2) for every $A_1, A_2, \ldots, A_{d-1} \in \mathcal{F}_k$, if $A_1 \cap A_2 \cap \cdots \cap A_{d-1} \cap S_i = \emptyset$, then

$$|A_1 \cup A_2 \cup \dots \cup A_{d-1} \cup S_i| > \frac{d+1}{2}k$$

which implies that

$$|A_1 \cup A_2 \cup \dots \cup A_{d-1} - S_i| > \frac{d-1}{2}k,$$

thus the claim is justified. Assume that l < k. If the claim is not true, then there exist $A_1, A_2, \ldots, A_{d-1} \in \mathcal{F}_l$ such that $A_1 \cap A_2 \cdots \cap A_{d-1} \cap S_i = \emptyset$ and

$$|A_1 \cup A_2 \cup \cdots \cup A_{d-1} - S_i| \le \frac{d-1}{2}l.$$

Setting $A'_i = A_i \cup F_1$ for $i \leq d-1$, we get $A'_i \in \mathcal{F}$, $A'_1 \cap A'_2 \cdots \cap A'_{d-1} \cap S_i = \emptyset$, and

$$|(A'_1 \cup A'_2 \cup \dots \cup A'_{d-1}) \cup S_i| = |F_1| + |(A_1 \cup A_2 \cup \dots \cup A_{d-1}) - S_i| + |S_i|$$

$$\leq k - l + \frac{d-1}{2}l + k = 2k + \frac{d-3}{2}l \leq 2k + \frac{d-3}{2}k = \frac{d+1}{2}k,$$

contradicting the assumption of the theorem. Thus we have verified the claim which shows that \mathcal{F}_l satisfies the conditions in Lemma 3.3. For $l \geq 2$, it follows from Lemma 3.3 that

$$|\mathcal{F}_l| < {tk-1 \choose l-1}.$$

Note that for $|Y| = n - tk \le k - 2$, we have

$$|\{F \in \mathcal{F} : |F \cap Y| = k - 1\}| = 0.$$

For |Y| = k - 1, we have

$$|\{F \in \mathcal{F} : |F \cap Y| = k-1\}| < d-1 \le k-1.$$

Otherwise we can choose d-1 sets $A_1, \ldots, A_{d-1} \in \mathcal{F}$ together with S_1 in violation of the assumption of theorem. When $|Y| \geq k$, Claim B implies that

$$|\{F \in \mathcal{F} : |F \cap Y| = k - 1\}| \le \binom{n - tk}{k - 1}.$$

Consequently, we have

$$|\{F \in \mathcal{F} : |F \cap Y| = k - 1\}| < \sum_{l=1}^{k} {n - tk \choose k - l}.$$

It follows that

$$\begin{aligned} |\mathcal{F}| &\leq \sum_{l=2}^{k} \binom{|Y|}{k-l} |\mathcal{F}_{l}| + |\{F \in \mathcal{F} : |F \cap Y| = k-1\}| \\ &\leq \sum_{l=2}^{k} \binom{|Y|}{k-l} \left[\binom{tk-1}{l-1} - 1 \right] + |\{F \in \mathcal{F} : |F \cap Y| = k-1\}| \\ &= \sum_{l=1}^{k} \binom{|Y|}{k-l} \left[\binom{tk-1}{l-1} - 1 \right] + |\{F \in \mathcal{F} : |F \cap Y| = k-1\}| \\ &= \sum_{l=1}^{k} \binom{n-tk}{k-l} \binom{tk-1}{l-1} - \sum_{l=1}^{k} \binom{n-tk}{k-l} + |\{F \in \mathcal{F} : |F \cap Y| = k-1\}| \\ &< \binom{n-1}{k-1}, \end{aligned}$$

as required. This completes the proof.

Acknowledgments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.

References

- [1] C. Chvatal, An extremal set-intersection theorem, Q. J. Londan Math. Soc. (2) 12 (1974/1975), 355-359.
- [2] P. Erdös, Topics in combinatorial analysis, *Proc. Second Louisiana Conf. on Combin.*, *Graph Theory and Comput.*, R. Mullin et al eds., LSU, Baton Rouge, 1971, pp. 2-20.
- [3] P. Erdös, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. Oxford (2), 12 (1961), 313-320.
- [4] P. Frankl, On Sperner families satisfying an additional condition, *J. Combin. Theory, Ser. A*, 20 (1976), 1-11.
- [5] P. Frankl and Z. Füredi, Exact solution of some Turan-type problems, J. Combin. Theory, Ser. A, 45 (1987), 226-262.
- [6] A. Hajnal and B. Rothschild, A generalization of the Erdös-Ko-Rado theorem on finite sets, *J. Combin. Theory, Ser. A*, 15 (1973), 359-362.
- [7] D. Mubayi, Erdös-Ko-Rado for three sets, *J. Combin. Theory, Ser. A*, 113 (2006), 547-550.
- [8] D. Mubayi, An intersection theorem for four sets, Adv. Math., 215 (2007), 601-615.