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Abstract

A collection of k-subsets A1, A2, . . . , Adon [n] = {1, 2, . . . , n}, not nec-
essarily distinct, is called a (d, c)-cluster if the union A1 ∪ A2 ∪ · · · ∪ Ad

contains at most ck elements with c < d. Let F be a family of k-subsets
of an n-element set. We show that for k ≥ 2 and n ≥ k + 2, if every
(k, 2)-cluster of F is intersecting, then F contains no (k − 1)-dimensional
simplices. This leads to an affirmative answer to Mubayi’s conjecture for
d = k based on Chvatal’s simplex theorem. We also show that for any
d with 3 ≤ d ≤ k and n ≥ dk

d−1 , if every (d, d+1
2 )-cluster is intersecting,

then |F| ≤
(

n−1
k−1

)

with equality only when F is a star. This result contains
Frankl’s theorem for d ≥ 2 and Mubayi’s theorem for d = 3 as special
cases.

Keywords: Clusters of subsets, Chvatal’s simplex theorem, d-simplex, Erdös-
Ko-Rado Theorem, Mubayi’s conjecture

AMS Classifications: 05D05.

1 Introduction

This paper is concerned with the study of families of subsets with intersecting
clusters. The first result is a proof of an important case of a conjecture recently
proposed by Mubayi [7] on intersecting families with the aid of Chvatal’s simplex
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theorem. The second result is a theorem that is an extension of Frankl’s theorem
and Mubayi’s theorem.

Let us review some notation and terminology. The set {1, 2, . . . , n} is usually
denoted by [n] and the family of all k-subsets of a finite set X is denoted by Xk

or
(

X

k

)

. A family F of sets is called a star if ∩F∈FF = {x} for some x ∈ X.

In 1961, Erdös, Ko, and Rado [3] proved the following classical result.

Theorem 1.1 (The EKR Theorem) Let n ≥ 2k and let F ⊆
(

[n]
k

)

be an in-

tersecting family. Then |F| ≤
(

n−1
k−1

)

with equality only when F is a star.

In 1976, Frankl [4] obtained the following generalization of the EKR Theorem.

Theorem 1.2 (Frankl) Let k ≥ 2, d ≥ 2, and n ≥ dk/(d − 1). Suppose that
F ⊆ [n]k such that every d sets of F have a nonempty intersection, then |F| ≤
(

n−1
k−1

)

with equality only when F is a star.

In fact, the following two conjectures due to Erdös and Chvatal imply Frankl’s
Theorem for d ≥ 3. Recall that a d-dimensional simplex or a d-simplex for short,
is defined as a collection of d + 1 sets A1, A2, . . . , Ad+1 such that every d of them
have a nonempty intersection, but A1 ∩ A2 ∩ · · · ∩ Ad+1 = ∅. A 2-dimensional
simplex is called a triangle.

The Erdös conjecture [2] is stated as follows:

Conjecture 1.3 (Erdös) For n ≥ 3k
2
, if F ⊆ [n]k contains no triangle, then

|F| ≤
(

n−1
k−1

)

with equality only when F is a star.

Chvatal [1] proposed the following conjecture as a generalization of the Erdös
conjecture.

Conjecture 1.4 (Chvatal’s Simplex Conjecture) Let k ≥ d + 1 ≥ 3, n ≥
k(d + 1)/d, and F ⊆ [n]k. If F contains no d-dimensional simplex, then |F| ≤
(

n−1
k−1

)

with equality only when F is a star.

Chvatal’s simplex conjecture remains open. Nevertheless, important progress
has been made on the asymptotic properties and special cases. Chvatal proved
his conjecture for the case d = k−1, which we call Chvatal’s simplex theorem [1].
Frankl and Füredi [5] have shown that Chvatal’s conjecture holds for sufficiently
large n.

Theorem 1.5 (Chvatal’s Simplex Theorem) For n ≥ k +2 ≥ 5, if F ⊆ [n]k

contains no (k − 1)-dimensional simplices, then |F| ≤
(

n−1
k−1

)

with equality only
when F is a star.
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Theorem 1.6 (Frankl and Füredi) For k ≥ d + 2 ≥ 4, there exists n0 such
that for n > n0, if F ⊆ [n]k contains no d-dimensional simplices, then |F| ≤

(

n−1
k−1

)

with equality only when F is a star.

As we shall see, a recent conjecture proposed by Mubayi [7] is in fact related
to Chvatal’s simplex theorem.

Conjecture 1.7 (Mubayi’s Conjecture) Let k ≥ d ≥ 3 and n ≥ dk/(d − 1).
Suppose that F ⊆ [n]k such that for every A1, A2, . . . , Ad ∈ F satisfying |A1 ∪
A2 ∪ · · · ∪ Ad| ≤ 2k, we have A1 ∩ A2 ∩ · · · ∩ Ad 6= ∅. Then |F| ≤

(

n−1
k−1

)

with
equality only when F is a star.

Mubayi confirmed his conjecture for d = 3 in [7] and showed that it holds for
d = 4 while n is sufficiently large in [8]. Here we introduce the terminology of
clusters of subsets. A collection of k-subsets A1, A2, . . . , Ad of [n] is said to be a
(d, c)-cluster if the union A1 ∪A2 ∪ · · · ∪Ad contains at most ck elements, where
c < d is a constant that may depend on d. A cluster is said to be intersecting if
their intersection is nonempty. Then Mubayi’s theorem can be stated as follows.

Theorem 1.8 (Mubayi) Let k ≥ 3 and n ≥ 3k
2
. Suppose that F ⊆ [n]k such

that every (3, 2)-cluster A1, A2, A3 ∈ F is intersecting, then |F| ≤
(

n−1
k−1

)

with
equality only when F is a star.

In this paper, we study the case d = k of Mubayi’s conjecture in connection
with Chvatal’s simplex theorem. We show that for the case d = k, the condi-
tions for Mubayi’s conjecture ensures the nonexistence of any (k−1)-dimensional
simplex. Therefore, applying Chvatal’s simplex theorem gives a confirmation of
Mubayi’s conjecture for d = k, which serves as further evidence in support of
Mubayi’s conjecture.

In Section 3, we present a theorem on families of subsets with intersecting
clusters. As direct consequences, it follows Frankl’s Theorem (Theorem 1.2) for
d ≥ 3 and Mubayi’s Theorem for d = 3 (Theorem 1.8).

2 Mubayi’s Conjecture for d = k

We obtain the following theorem which implies Mubayi’s conjecture for the case
k = d from Chvatal’s simplex theorem.

Theorem 2.1 Let k ≥ 3 and n ≥ k + 2. Suppose that F ⊆ [n]k is a collection of
subsets of [n] such that every (k, 2)-cluster is intersecting. Then F contains no
(k − 1)-dimensional simplices.
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Proof. Suppose that A1, A2, . . . , Ak ∈ F are such that every k − 1 of them have
nonempty intersection. We proceed to show that A1 ∩ A2 ∩ · · · ∩ Ak 6= ∅. To
the contrary, assume that A1 ∩ A2 ∩ · · · ∩ Ak = ∅. Then every k − 1 sets of
A1, A2, . . . , Ak intersect at a different element in [n]. For each i, 1 ≤ i ≤ k, there
are k − 1 collections of k − 1 sets containing Ai and so Ai has k − 1 elements
which are in the intersections of those k − 1 collections.

Let us construct a bipartite graph G = (X, Y, E), where X = ∪iAi, and
Y = {A1, A2, . . . , Ak}. There is an edge between x ∈ X and Ai if x ∈ Ai.
Clearly the degree of Ai equals k, and there total number of edges in G equals
k2. Since every k − 1 sets of A1, A2, . . . , Ak intersect at a different element in
[n], there are k elements x1, x2, . . . xk whose degrees are k − 1. Hence there are
k(k − 1) edges adjacent to x1, x2, . . . , xk. Assume that the remaining elements
of X are y1, y2, . . . , ym. Therefore, there are k2 − k(k − 1) = k edges adjacent
to y1, y2, . . . , ym. Since the degree of yi is at least one for each yi, we have
m ≤ k. Thus the number of elements in X is at most 2k. This implies that
A1 ∩A2 ∩ · · · ∩Ak 6= ∅, contradicting the assumption that A1 ∩A2 ∩ · · ·∩Ak = ∅.
Hence F does not contain any (k − 1)-dimensional simplex.

3 Families of Sets with Intersecting Clusters

In this section, we study families of k-subsets with intersecting (d, d+1
2

)-clusters.
The main result of this section is the following theorem that includes Frankl’s
theorem (Theorem 1.2) and Mubayi’s theorem (Theorem 1.8) as special cases.

Theorem 3.1 Let k ≥ d ≥ 3 and n ≥ dk
d−1

. Suppose that F ⊆ [n]k is a family of

subsets of [n] such that every (d, d+1
2

)-cluster is intersecting. Then |F| ≤
(

n−1
k−1

)

with equality only when F is a star.

The following lemma gives an upper bound on the number of edges in a graph
with intersecting clusters, and it will be used in the proof of Theorem 3.1.

Lemma 3.2 Let n > d ≥ 3. Suppose that F ⊆ [n]2 is a family of 2-subsets of
[n] such that every (d, d+1

2
)-cluster is intersecting. Then |F| ≤ n−1 with equality

only when F is a star.

Proof. Since F is a family of 2-subsets, we may consider it as a graph G with
vertex set [n]. The conditions in the lemma imply that any d edges A1, A2, . . . ,
Ad of G either intersect at a common vertex or cover at least d + 2 vertices.

We now proceed by induction on n. For n = d + 1, any d edges trivially
form a (d, d+1

2
)-cluster since they cover at most n = d + 1 vertices. Therefore,

any d edges of G must intersect at a common vertex and thus form a star. This
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implies that any d edges of G cover d + 1 = n vertices. It is to be shown that
|F| = |E(G)| ≤ d = n− 1. Otherwise, we may assume that |F| ≥ n = d + 1. Let
A1, A2, · · · , Ad+1 be d+1 distinct edges of G. We claim that A1, A2, . . . , Ad+1 also
form a star. Since A1, A2, · · · , Ad form a star and d ≥ 3, A1, A2, . . . , Ad−1 form
a star. Note that A1, A2, . . . , Ad−1, Ad+1 form a star as well. Consequently, the
edge Ad+1 contains the intersecting point of the star formed by A1, A2, . . . , Ad−1.
It can be deduced that A1, A2, . . . , Ad+1 cover d + 2 = n + 1 vertices, which is
contradiction to the cardinality of G. Thus, we have shown that |F| = |E(G)| ≤
d = n − 1 with equality only when G is a star.

Now assume that n ≥ d + 2 and that the lemma holds for n − 1. We claim
that G must contain a vertex of degree one. Otherwise, every vertex of G has
degree at least two. Now, for each connected component C of G, the following
relation holds

|V (C)| ≤ |E(C)|. (3.1)

Moreover, C cannot be a star since the degree of any vertex is at least two. Let
C1, C2, . . . , Cm be the connected components of G ordered by the relation

|E(C1)| ≥ |E(C2)| ≥ · · · ≥ |E(Cm)|.

We proceed to find d edges that form a (d, d+1
2

)-cluster, but are not intersect-
ing. Let us consider two cases.

Case 1: |C1| ≥ d. Since C1 is not a star, it contains a path P with three edges.
Since d ≥ 3, we can add d − 3 edges to P to obtained a connected subgraph H
of C1. Let A1, A2, . . . , Ad be d edges of H . Then we have

|A1 ∪ A2 . . . ∪ Ad| = |V (H)| ≤ |E(H)| + 1 = d + 1.

Since H is not a star, we obtain A1 ∩ A2 . . . ∩ Ad = ∅.

Case 2: |C1| < d. Let r ≥ 1 be the integer such that

b =
r

∑

i=1

|E(Ci)| < d and
r+1
∑

i=1

|E(Ci)| ≥ d.

It is clear that Cr+1 has at least d−b edges. We now take any connected subgraph
H of Cr+1 with d − b edges. Since H is connected, we have the relation

|E(H)| ≥ |V (H)| − 1. (3.2)

Let A1, A2, . . . , Ad be the d edges in C1, C2, . . . , Cr, H . From (3.1) and (3.2) it
follows that

|A1 ∪ A2 · · · ∪ Ad|

= |V (C1)| + |V (C2)| + · · · + |V (Cr)| + |V (H)|

≤ |E(C1)| + |E(C2)| + · · · + |E(Cr)| + |E(H)| + 1

= d + 1.

5



Noting that C1, C2, . . . , Cr and H are disjoint, we have A1 ∩ A2 · · · ∩ Ad = ∅.

Summing up, we reach the claim that G has a vertex with degree one. This
allows us to assume that v is a vertex of degree one in G. Let G′ be the induced
graph obtained from G by deleting the vertex v. Clearly, G′ is a graph with
n−1 vertices in which every d edges A1, A2, . . . , Ad either intersect at a common
vertex or cover at least d + 2 vertices. By the inductive hypothesis, we have
|E(G′)| ≤ n − 2. Hence

|F| = |E(G)| = |E(C)| + 1 ≤ n − 1.

Finally, it is necessary to show that |F| = n − 1 only when G is a star. Let
A1, A2, . . . , An−1 be the n − 1 edges of G. Clearly,

|A1 ∪ A2 . . . ∪ An−2| = n − 1.

By the inductive hypothesis, A1, A2, . . . , An−2 form a star. So there is a vertex of
A1 with degree one. Since n ≥ 5, we may repeat this procedure to conclude that
A2, . . . , An−1 form a star. Then the intersecting vertex of A2, . . . , An−2 belongs
to A1 and An−1. So we infer that A1, . . . , An−1 form a star.

The following lemma is an extension of Lemma 3 of Mubayi [7]. While the
proof of Mubayi relies on the EKR theorem, our proof is based on the above
Lemma 3.2 and Frankl’s theorem (Theorem 1.2).

Lemma 3.3 Let k + 1 ≥ d ≥ 2, t ≥ 2, and 2 ≤ l ≤ k. Let S1, S2, . . . , St be
pairwise disjoint k-subsets and X = S1∪S2 ∪· · ·∪St. Suppose that F is a family
of l-subsets of X satisfying the following conditions

1. Si ∈ F for all i if l = k.

2. |F| ≤ d if t = 2.

3. For every A1, A2, . . . , Ad ∈ F and 1 ≤ i ≤ t, A1 ∩ A2 · · · ∩ Ad ∩ Si = ∅
implies |A1 ∪ A2 · · · ∪ Ad − Si| > dl

2
.

Then we have |F| <
(

tk−1
l−1

)

.

Proof. For d = 2, the above lemma reduces to Lemma 3 in [7]. So we may
assume that d ≥ 3. We begin with the case l = 2. We claim that any (d, d+1

2
)-

cluster of F is intersecting, namely, for any A1, A2, . . . , Ad ∈ F , we have either
A1 ∩ A2 · · · ∩ Ad 6= ∅ or |A1 ∪ A2 ∪ · · · ∪ Ad| ≥ d + 2. To this end, we assume
that A1 ∩ A2 · · · ∩ Ad = ∅. This gives A1 ∩A2 · · · ∩ Ad ∩ Si = ∅ for any Si. Since
X = ∪Si is the ground set of F , there exists Sm such that A1 ∩ Sm 6= ∅. Since
A1 ∩ A2 · · · ∩ Ad ∩ Sm = ∅ and l = 2, from Condition 3 we get

|A1 ∪ A2 · · · ∪ Ad − Sm| > d.
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Furthermore, the condition A1 ∩ Sm 6= ∅ yields

|A1 ∪ A2 · · · ∪ Ad| > d + 1.

This concludes the proof of the claim.

Since d ≥ 3, with the aid of Lemma 3.2 we obtain that |F| ≤ tk − 1. So it
remains to show that it is impossible for |F| to reach the upper bound tk−1. To
this end, we assume that |F| = tk − 1. Again, by Lemma 3.2, F must be a star,
i.e., ∩F∈FF = {x} for some x in [tk]. Without loss of generality, we may assume
that x ∈ S1 and A1 ⊆ S1. It turns out that the above assumptions are sufficient
to determine the star structure of F : any edge Ai is either of the form {x, y} for
y ∈ S1, or of the form {x, z} for z ∈ Sj (2 ≤ j ≤ t). In other words, the elements
in A1 form a star, and every element in Sj for 2 ≤ j ≤ t is connected to x ∈ S1

while Ai is considered as an edge in a graph. Since d − 1 ≤ k, we may choose
d − 1 subsets A2, A2, . . . , Ad such that Ai − x ⊆ S2 for 2 ≤ i ≤ d. At this point,
we have A1 ∩ A2 · · · ∩ Ad ∩ S2 = ∅ and

|(A1 ∪ A2 ∪ · · · ∪ Ad) − S2| = 2 < d,

which is contrary to Condition 3. Hence we have |F| < tk − 1. So the lemma is
proved for l = 2.

We immediate encounter the case l ≥ 3. We proceed by induction on t. We
first consider the case t = 2, namely, X = S1 ∪ S2. If l = k, then from Condition
2 and k ≥ 3 we have

|F| ≤ d ≤ k + 1 <

(

2k − 1

k − 1

)

=

(

2k − 1

l − 1

)

,

which is the required inequality.

We now come to the case l < k, and we will show that A1∩A2 · · ·∩Ad 6= ∅ for
any A1, A2, . . . , Ad ∈ F . If this is not true, then there exist A1, A2, . . . , Ad ∈ F
for which

A1 ∩ A2 · · · ∩ Ad = ∅. (3.3)

Let A = A1 ∪A2 ∪ · · ·∪Ad. It is clear that A contains at most dl elements. Since
S1 and S2 are disjoint, so are A ∩ S1 and A ∩ S2. Therefore, either A ∩ S1 or
A ∩ S2 contains at most half of the elements in A. There is no danger to assume
that

|A ∩ S1| ≤
dl

2
.

Note that (3.3) yields A1 ∩ A2 · · · ∩ Ad ∩ S1 = ∅. Taking into account that
X = S1 ∪ S2, we get

|A − S2| = |A ∩ S1| ≤
dl

2
,

contradicting Condition 3. Thus, we are led to the assertion that A1∩A2 · · ·∩Ad 6=
∅ for any A1, A2, . . . , Ad ∈ F . In view of Frankl’s Theorem (Theorem 1.2) we
obtain

|F| ≤

(

2k − 1

l − 1

)

. (3.4)
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Next we prove that equality in (3.4) can never be reached. Let us assume that

|F| =

(

2k − 1

l − 1

)

. (3.5)

By Frankl’s theorem, F is a star, i.e., ∩F∈FF = {x} for some x in [2k]. Without
loss of generality, we may assume that x ∈ S1. Moreover, from the assumption
that (3.5) it follows that F contains all the l-subsets of [2k] which contain the
element x. Therefore F can be constructed from S1 and S2 as follows. Let us
simply assume that x ∈ S1. Then any subset Ai ∈ F is either of the form B∪{x}
for B ∈ [S1 − x]l−1 or of the form C ∪ {x} for C ∈ [S2]

l−1.

Since d ≤ k + 1 and 2 ≤ l < k, we have

d − 1 ≤ k ≤

(

k

l − 1

)

.

Now we may choose A1 ∈ F with A1 ⊆ S1 and d−1 sets A2, A3, . . . , Ad ∈ F with
Ai −x ⊆ S2 for each i ≥ 2. Since A1 ∩S2 = ∅, we have A1 ∩A2 · · · ∩Ad ∩S2 = ∅.
Moreover, observing that Ai − x ⊆ S2 for i = 2, 3, . . . , d gives

|(A1 ∪ A2 ∪ · · · ∪ Ad) − S2| = |A1| = l <
dl

2
.

This contradicts Condition 3, which asserts that |F| <
(

2k−1
l−1

)

. Therefore, the
lemma is valid for t = 2, l ≥ 3.

Up to now, we have verified the Lemma for t = 2. Next we deal with the case
t ≥ 3. Let us assume that the Lemma holds for t − 1. We first consider the case
l < k.

We need to show that there exists 1 ≤ m ≤ t such that

|F ∩ [Sm]l| ≤
d + 1

2
. (3.6)

To the contrary, we may assume that, for any 1 ≤ i ≤ t, the following inequality
holds

|F ∩ [Si]
l| ≥

d + 2

2
. (3.7)

In particular, we may consider only S1 and S2. From (3.7) it follows that

|F ∩ [S1]
l| + |F ∩ [S2]

l| ≥ d + 2.

Hence we are able to choose d sets A1, A2, . . . , Ad from (F ∩ [S1]
l) ∪ (F ∩ [S2]

l)
such that there exist Ai ⊆ S1 and Aj ⊆ S2. Since |(A1 ∪A2 ∪ · · · ∪Ad)| ≤ dl and
S1 ∩ S2 = ∅, we have either

|(A1 ∪ A2 ∪ · · · ∪ Ad) ∩ S1| ≤
dl

2
(3.8)

or

|(A1 ∪ A2 ∪ · · · ∪ Ad) ∩ S2| ≤
dl

2
. (3.9)
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There is no loss of generality in assuming that (3.8) is valid. In this case we have

|(A1 ∪ A2 ∪ · · · ∪ Ad) − S2| = |(A1 ∪ A2 ∪ · · · ∪ Ad) ∩ S1| ≤
dl

2
.

However, the choices of A1, A2, . . . , Ad ensure that A1∩A2 · · ·∩Ad∩S2 = ∅. This
is a contradiction to Condition 3. Thus (3.6) has been verified.

For notational convenience, let us take m = 1. Given D1 ⊆ S1 of size l − r
(0 ≤ r ≤ l), we construct a family of r-subsets Fr:

Fr = {D2 |D2 ⊆ S2 ∪ · · · ∪ St, D1 ∪ D2 ∈ F}.

We proceed to show that Fr satisfies the conditions of the lemma. Otherwise,
we may assume that there exist A1, A2, . . . , Ad ∈ Fr and i ∈ {2, · · · , t} such
that A1 ∩ A2 · · · ∩ Ad ∩ Si = ∅ and

|(A1 ∪ A2 ∪ · · · ∪ Ad) − Si| ≤
d

2
r.

Now, let A′
j = Aj ∪D1 for 1 ≤ j ≤ d. We claim that for any A′

1, A
′
2, . . . , Ad ∈ F ,

we have A′
1 ∩ A′

2 · · · ∩ A′

d ∩ Si = ∅. Recalling that l ≥ r, we get

|(A′

1 ∪ A′

2 ∪ · · · ∪ A′

d) − Si| = |D1| + |(A1 ∪ A2 ∪ · · · ∪ Ad) − Si|

≤ l − r +
dr

2
= l +

d − 2

2
r ≤ l +

d − 2

2
l =

dl

2
,

contradicting Condition 3. Thus Fr satisfies the conditions of the lemma.

For r ≥ 2, by the inductive hypothesis, the inequality |Fr| <
(

(t−1)k−1
r−1

)

holds.
For r = 1, we have either |F1| = 1 or |F1| ≥ 2. If |F1| ≥ 2, let

H = {D1 ∈ [S1]
l−1 : D1 ∪ D2 ∈ F , D2 ∈ F1}.

Then the following inequalities hold:

|F1| · |H| ≤ k <

(

k

l − 1

)

.

If not, we can find A1, A2, . . . , Ad ∈ F which contradict the condition of the
lemma. Since l ≥ 3 and d ≤ k + 1, it is easy to check that

l
∑

r=2

(

k

l − r

)

−
d

2
> 0.

Hence |F| can be bounded as follows:

|F| ≤
l

∑

r=1

(

k

l − r

)

|Fr|

≤
l

∑

r=1

(

k

l − r

)(

(t − 1)k − 1

r − 1

)

−
l

∑

r=2

(

k

l − r

)

+ |F ∩ [S1]
l|

≤

(

tk − 1

l − 1

)

−
l

∑

r=2

(

k

l − r

)

+
d

2
<

(

tk − 1

l − 1

)

,
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thereby showing that the lemma is valid for t ≥ 3 and l < k.

Finally, we are left with the case t ≥ 3 and l = k. Since S1 ∈ F , the following
relation easily holds:

|F ∩ [S1]
k| = 1 ≤

d

2
. (3.10)

Based on the above inequality, we may employ the same reasoning as for the
case l < k to reach the conclusion |F| <

(

tk−1
k−1

)

. The details are omitted. This
completes the proof of the lemma.

We are now ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let S1, S2, . . . , St be a maximum subfamily of pairwise
disjoint k-subsets from F . If t = 1, then F is intersecting and the result follows
from Theorem 1.1. So we may assume that t ≥ 2. If n = tk, then we set l = k.
The condition on F in Theorem 3.1 implies the condition on F in Lemma 3.3
with d replaced by d − 1. In fact, suppose that there exist A1, A2, . . . , Ad−1

∈ F for which A1 ∩ A2 · · · ∩ Ad−1 ∩ Si = ∅. Since every (d, d+1
2

)-cluster of F is
intersecting, we see that

|A1 ∪ A2 ∪ · · · ∪ Ad−1 ∪ Si| >
d − 1

2
k,

hence

|A1 ∪ A2 ∪ · · · ∪ Ad−1 − Si| >
d + 1

2
k − k =

d − 1

2
k.

For t = 2, the assumption states that |F| ≤ d − 1. Again, by Lemma 3.3 we
obtain |F| ≤

(

n−1
k−1

)

.

We now consider the case n > tk and let

Y = [n] − ∪t
i=1Si.

By the choices of S1, S2, . . . , St, it can be seen that Y does not contain any
subset A ∈ F . Given D1 ⊆ Y k−l (1 ≤ l ≤ k), let Fl be the family of all sets D2

such that
D2 ⊆ S1 ∪ S2 ∪ · · · ∪ St,

and D1 ∪ D2 ∈ F . We have two cases.

Case 1: l < k. We have the assertion that for every A1, A2, . . . , Ad−1 ∈ Fl,
A1 ∩ A2 · · · ∩ Ad−1 ∩ Si = ∅ implies that

|A1 ∪ A2 ∪ · · · ∪ Ad−1 − Si| >
d − 1

2
l. (3.11)

Otherwise, there exist A1, A2, . . . , Ad−1 ∈ Fl, we have A1 ∩A2 · · · ∩Ad−1 ∩Si = ∅
and

|A1 ∪ A2 ∪ · · · ∪ Ad−1 − Si| ≤
d − 1

2
l.
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Setting A′
i = Ai ∪ D1 for i ≤ d − 1, we get A′

i ∈ F , A′
1 ∩ A′

2 · · · ∩ A′
d−1 ∩ Si = ∅,

and

|(A′

1 ∪ A′

2 ∪ · · · ∪ A′

d−1) ∪ Si| = |D1| + |(A1 ∪ A2 ∪ · · · ∪ Ad−1) − Si| + |Si|

≤ k − l +
d − 1

2
l + k = 2k +

d − 3

2
l ≤ 2k +

d − 3

2
k =

d + 1

2
k,

contradicting the cluster intersecting property. Thus we have (3.11), namely, the
condition in Lemma 3.3.

Case 2: l = k. If t = 2, then the condition in the theorem implies that
|Fk| ≤ d − 1. Also, the cluster intersection condition in the theorem states that
for every A1, A2, . . . , Ad−1 ∈ Fk ⊆ F , if A1 ∩ A2 · · · ∩ Ad−1 ∩ Si = ∅ then

|A1 ∪ A2 ∪ · · · ∪ Ad−1 ∪ Si| >
d + 1

2
k,

which implies

|A1 ∪ A2 ∪ · · · ∪ Ad−1 − Si| >
d + 1

2
k − k =

d − 1

2
k.

Thus Fl satisfies the condition in Lemma 3.3 for l ≤ k.

By virtue of Lemma 3.3 for l ≥ 2, we have |Fl| <
(

tk−1
l−1

)

. It is now necessary
to consider the case l = 1. Let us continue to assume that |F1| ≥ 2. Setting

H = {D1 ∈ [Y ]k−1 : D1 ∪ D2 ∈ F , D2 ∈ F1}

gives
|F1| · |H| ≤ d − 1 ≤ k − 1,

otherwise there exist A1, A2, . . . , Ad−1 ∈ F and Si which violate the condition
of the theorem. Clearly, for n − tk = |Y | ≥ k, k − 1 <

(

n−tk

k−1

)

. Since H ⊆ [Y ]k−1,
|H| ≤ 1 for |Y | = k − 1, and |H| = 0 for |Y | < k − 1. Thus we get either
|F1| · |H| = 0 or |Y | = n − tk ≥ k − 1. Consequently,

k
∑

l=1

(

n − tk

k − l

)

> k − 1.

For l = 1 and |F1| = 1, we have

|F| ≤
k

∑

l=1

(

|Y |

k − l

)

|Fl|

<
k

∑

l=1

(

n − tk

k − l

)(

tk − 1

l − 1

)

=

(

n − 1

k − 1

)

,
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and for |F1| ≥ 2, since when l = 1,
(

tk−1
l−1

)

− 1 ≥ 0, we have

|F| ≤
k

∑

l=1

(

|Y |

k − l

)

|Fl|

≤
k

∑

l=2

(

|Y |

k − l

) [(

tk − 1

l − 1

)

− 1

]

+ |F1| · |H|

≤
k

∑

l=1

(

|Y |

k − l

) [(

tk − 1

l − 1

)

− 1

]

+ |F1| · |H|

≤
k

∑

l=1

(

n − tk

k − l

)(

tk − 1

l − 1

)

−
k

∑

l=1

(

n − tk

k − l

)

+ k − 1 <

(

n − 1

k − 1

)

,

as required.
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