Loop Deletion for the Lamp Lighting Problem
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Abstract

Given an undirected graph with loops allowed, the loop lighting problem is to find a
subset of vertices such that pressing the buttons on these vertices will turn on all the lights
on loop vertices while keeping other lights off. For a graph which has a loop on every vertex,
the corresponding problem is called the all-ones problem. In fact, it can be seen that the
loop lighting problem is equivalent to the all-ones problem. We present a graph theoretical
algorithm to delete a loop vertex of a graph G and to generate a graph H such that a solution
of the loop lighting problem for H determines a solution for the original graph G, and vice
versa. Our algorithm is of polynomial time.
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1 Introduction

The All-Ones Problem for a chessboard was introduced by Sutner [7]. In general, the
all-ones problem can be stated for an undirected graph with loops allowed. Let G be
a graph with n vertices. We assume that for each vertex there is a light and a button.
If one presses a button on a vertex v, the lights on the adjacent vertices will be turned
on/off depending on its status. If there is a loop on a vertex v, then pressing the



button on v will also change the status of the light on v. We assume that all the lights
are initially turned off. Then the all-ones problem asks whether one can turn on all
the lights by pressing certain buttons in a graph G. For the case when every vertex
has a loop, one can always turn on all the lights. This problem has been extensively
studied by several authors, for example, Sutner [9,10], Barua and Ramakrishnan [1]
and Dodis and Winkler [3]. In the perspective of complexity, Sutner [8] shows that
the the minimum all-ones problem for a general graph is NP-complete, and Chen, Li,
Wang and Zhang [2] find a linear time algorithm for the minimum all-ones problem for
trees.

Using the linear algebra setting, it can be seen that the all-ones problem for graphs
with a loop on every vertex is equivalent to the following seeming stronger version:
one can always turn on the lights on the loop vertices and keep other lights off. We
call such a more general problem the loop lighting problem. A linear algebra argument
for the above statement is presented by Lossers [6]. The aim of this paper is to derive
a graph theoretical algorithm to generate a solution of the loop lighting problem. In
essence, this algorithm is a graph theoretical version of the elimination process of
the linear algebra approach. However, it seems to be a necessary addition to the
elegant argument for the all-ones problem for a general graph given by H. Eriksson, K.
Eriksson and J. Sjostrand [4]. We note that from the point of view of complexity, the
construction of Eriksson et al is exponential and our algorithm is of polynomial time.

Sutner [7] proposed the problem of finding a graph theoretical proof of the exis-
tence of a solution to the all-ones problem. For the case of trees, Garvin [5] gives a
combinatorial proof. Using the loop deletion algorithm presented in this paper, one
may repeatedly delete loops and finally obtain a graph without loops. Since the loop
lighting problem for a graph without loops has a trivial solution, we have a graph
theoretical treatment of the loop lighting problem.

2 The Loop Deletion Algorithm

Let GG be an undirected graph with loops allowed. The complementary graph of GG is a
graph H in which there is an edge (u,v) in H if and only if (u,v) is not an edge of G.
Note that a loop (v,v) is regarded as an edge in the consideration of complementary
graphs. The loop deletion algorithm is stated as follows.

The Loop Deletion Algorithm. Let v be a loop vertex of G, namely, there is a
loop on v. Let S be the set of vertices adjacent to v. Let H be the graph obtained
from G by deleting the vertex v, and substituting the induced subgraph on S with its
complementary graph. For example, see Figure 2.1.

Theorem 2.1 Let G be an undirected graph, and v be a loop vertex. Let H be the
graph obtained from G by using the deletion algorithm. Then a solution to the loop



Figure 2.1: Example

lighting problem for the graph H determines a solution of the loop lighting problem for
the original graph G, and vice versa.

Proof. Let G = (V, E), where V and E are the vertex set and the edge set of G. Let
v be a loop vertex of G and S be the set of vertices adjacent to v. Suppose that X
is a solution of the loop lighting problem for the graph H. In other words, pressing
the buttons on the vertices in X will turn on the lights on loop vertices while leaving
other lights off. We may partition X as S; UTj, where S; = X NS, and 77 = X\S;.
Moreover, we set Sy = S\S; and T, = V\(S UT}). Such a partition of V is illustrated
in Figure 2.2.

Figure 2.2: Partition of V

Let w(v;, S1; H) denote the number of vertices u in S; that are adjacent to v; in H.
Note that a vertex v is regarded adjacent to itself if there is a loop attached to v. The
parity of a vertex is said to be even if it has no loops. Since X is a solution of the loop
lighting problem for the graph H, we have

e For any v; € Sy, w(v;, S1; H) + w(v;, Ty; H) equals the parity of v; in H.
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e For any v; € Sy, w(vj, S1; H) +w(vj, T1; H) equals the parity of v; in H.

Let us first consider the case when |S;| is even. One sees that w(v;, S1; H) and
w(v;, S1; G) have the same parity since the complementation involves loops. Therefore,
w(vi, S1; G)+w(v;, Th; G) equals the parity of v; in H, which is the opposite of the parity
of v; in G. Similarly, w(v;, S1; H) and w(v;, S1; G) have the same parity. Therefore, the
parity of w(v;, S1; G) + w(v;, T1; G) is different from the parity of v; in G. It follows
that X U {v} is a solution of the loop lighting problem for the graph G.

It remains to verify the case when |S;| is odd. In this case, w(v;, S1; H) and
w(v;, S1; G) have opposite parities. Therefore w(v;, S1;G) + w(v;, T1; G) differs from
the parity of v; in H. So it equals the parity of v; in G. For a vertex v; in Sy, one
sees that w(v;, S1; H) has different parity from w(v;, S1; G). It follows that X is also a
solution of the loop lighting problem for the graph G.

Conversely, given a solution to the loop lighting problem of the graph G, one can
reverse the above procedure to generate a solution to the problem for the graph H.
This completes the proof. 1

Roughly speaking, the reason why the deletion algorithm works lies in the fact
that the change of parities of the vertices in S can be implemented either by the
complementation with respect to the subset S; or by pressing the loop vertex v.

Using the above deletion algorithm, one can keep deleting loops till one eventually
reaches a graph without loops. Since the loop lighting problem for a graph without
loops has a trivial solution, namely, pressing no buttons, the deletion algorithm leads
to a graph theoretical proof of the existence of a solution of the loop lighting problem.
It is easily seen that our algorithm is of polynomial time. It was noted in [2] that the
algorithm given by H. Eriksson, K. Eriksson and J. Sjostrand [4] is of exponential time.

To conclude this papper, we remark that the loop lighting problem is equivalent
to the all-ones problem. Given an undirected graph H with loops allowed, the loop
lighting problem for H can be transformed into an all-ones problem for a graph G that
has a loop on every vertex. Such a graph G can be constructed from H by adding
a vertex v and reversing the procedure of the loop deletion algorithm. Let X be a
solution of the loop lighting problem for the graph H. Let S| be the set of vertices in
X that have no loops , and S, the set of vertices in V/(H)\X that have no loops. Then
one can reverse the procedure of the loop deletion algorithm to construct the graph G
such that the all-ones problem for GG is equivalent to the loop lighting problem for H.
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