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Abstract. We show that the number of anti-lecture hall compositions of n with the first
entry not exceeding k − 2 equals the number of overpartitions of n with non-overlined parts
not congruent to 0,±1 modulo k. This identity can be considered as a refined version of the
anti-lecture hall theorem of Corteel and Savage. To prove this result, we find two Rogers-
Ramanujan type identities for overpartition which are analogous to the Rogers-Ramanjan type
identities due to Andrews. When k is odd, we give an alternative proof by using a generalized
Rogers-Ramanujan identity due to Andrews, a bijection of Corteel and Savage and a refined
version of a bijection also due to Corteel and Savage.
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1 Introduction

The objective of this paper is to establish a connection between anti-lecture hall compositions
with an upper bound on the first entry and overpartitions under a congruence condition on
non-overlined parts.

In [5], Corteel and Savage introduced the notion of anti-lecture hall compositions and
obtained a formula for the generating function by constructing a bijection. An anti-lecture hall
composition of length k is defined to be an integer sequence λ = (λ1, λ2, . . . , λk) such that

λ1

1
≥ λ2

2
≥ · · · ≥ λk−1

k − 1
≥ λk

k
≥ 0.

The set of anti-lecture hall compositions of length k is denoted by Ak. Corteel and Savage have
shown that

∑

λ∈Ak

q|λ| =

k
∏

i=1

1 + qi

1 − qi+1
. (1.1)
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Let A denote the set of anti-lecture hall compositions. Since any anti-lecture hall composition
can be written as an infinite vector ending with zeros, we have A = A∞ and

∑

λ∈A

q|λ| =
∞
∏

i=1

1 + qi

1 − qi+1
. (1.2)

In view of the above generating function, one sees that anti-lecture hall compositions are
related to overpartitions. An overpartition of n is defined by a non-increasing sequence of
natural numbers whose sum is n in which the first occurrence of a number may be overlined,
see, Corteel and Lovejoy [6]. In the language of overpartitions, the right side of (1.2) is the
generating function for overpartitions of n with the non-overlined parts larger than 1.

The main result of this paper is the following refinement of the anti-lecture hall theorem of
Corteel and Savage [5]:

Theorem 1.1 For k ≥ 3,

∑

λ1≤k−2,λ∈A

q|λ| =
(−q; q)∞
(q; q)∞

(q; qk)∞(qk−1; qk)∞(qk; qk)∞. (1.3)

We shall make a connection between anti-lecture hall compositions and the overpartions
with congruence restrictions. Let Fk(n) be the set of anti-lecture hall compositions λ =
(λ1, λ2, . . .) of n such that λ1 ≤ k. Let Hk(n) be the set of overparitions of n for which
the non-overlined parts are not congruent to 0,±1 modulo k. Therefore, Theorem 1.1 can be
restated as the following equivalent form.

Theorem 1.2 For k ≥ 3 and any positive integer n, we have

|Fk−2(n)| = |Hk(n)|. (1.4)

To prove the main result, we need to compute the generating functions of the anti-lecture
hall compositions λ with λ1 ≤ k, depending on the parity of k. Then we shall show that these
two generating functions of the anti-lecture hall compositions in F2k−2(n) and F2k−3(n) are
equal to the generating functions of overpartitions in H2k(n) and H2k−1(n) respectively. To
this end, we establish two Rogers-Ramanujan type identities (2.9) and (2.12) for overpartitions
which are analogous to the following Rogers-Ramanujan type identity obtained by Andrews
[1, 2]:

∑

N1≥N2≥···≥Nk−1≥0

qN2
1+N2

2 +···+N2
k−1+Na+···+Nk−1

(q)n1(q)n2 · · · (q)nk−1

=
(qa; q2k+1)∞(q2k+1−a; q2k+1)∞(q2k+1; q2k+1)∞

(q; q)∞

(1.5)
where ni = Ni − Ni+1 and 1 ≤ a ≤ k. For k = 2 and a = 1, 2, (1.5) implies the classical
Rogers-Ramanujan identities [8]:

∞
∑

n=0

qn2

(q)n
=

∞
∏

n=0

(1 − q5n+1)−1(1 − q5n+4)−1 (1.6)
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∞
∑

n=0

qn2+n

(q)n
=

∞
∏

n=0

(1 − q5n+2)−1(1 − q5n+3)−1. (1.7)

It is worth mentioning that Andrews’ multiple series transformation [2] can be employed to
derive the overpartition analogues of (1.5).

When the upper bound k is even, the weighted counting anti-lecture hall compositions
leads to the left hand side of the first Rogers-Ramanujan type identity (2.9), whereas the
generating function for the number of overpartitions equals the right hand side of the first
Rogers-Ramanujan type identity (2.9). The case when k is odd can be dealt with in the same
way.

When k is odd, we provide an alternative proof based on a refined version of a bijection of
Corteel and Savage [5], a bijection of Corteel and Savage in the original form for the anti-lecture
hall theorem, and a generalized Rogers-Ramanujan identity (1.5) of Andrews.

This paper is organized as follows: In Section 2, we give two Rogers-Ramanujan type
identities for overpartitions. Section 3 is concerned with the case of an even upper bound k.
Two proofs for the case of an odd upper bound will be presented in Section 4.

2 Rogers-Ramanujan type identities for overpartitions

In this section, we give two Rogers-Ramanujan type identities (2.9) and (2.12) for overparti-
tions. It can be seen that the right side of (2.9) is the generating function for overpartitions
in H2k(n). In the next section we shall show that the left side of (2.9) equals the generating
function for anti-lecture hall compositions in F2k−2(n). Similarly, the right side of (2.12) equals
the generating function for overpartitions in H2k−1(n). In Section 4 we shall show that the left
side of (2.12) equals the generating function for anti-lecture hall compositions in F2k−3(n).

Let us recall Andrews’ multiple series transformation [2]:

2k+4φ2k+3

[

a, q
√

a,−q
√

a, b1, c1, b2, c2, . . . , bk, ck, q
−N ; q, akqk+N

b1···bkc1···ck√
a,−√

a, aq/b1, aq/c1, aq/b2, aq/c2, . . . , aq/bk, aq/ck, aqN+1

]

=
(aq)N (aq/bkck)N
(aq/bk)N (aq/ck)N

∑

m1,...,mk−1≥0

(aq/b1c1)m1(aq/b2c2)m2 · · · (aq/bk−1ck−1)mk−1

(q)m1(q)m2 · · · (q)mk−1

· (b2)m1(c2)m1(b3)m1+m2(c3)m1+m2 · · · (bk)m1+···+mk−1

(aq/b1)m1(aq/c1)m1(aq/b2)m1+m2(aq/c2)m1+m2 · · · (aq/bk−1)m1+···+mk−1

· (ck)m1+···+mk−1

(aq/ck−1)m1+···+mk−1

· (q−N )m1+m2+···+mk−1

(bkckq−N/a)m1+m2+···+mk−1

· (aq)mk−2+2mk−3+···+(k−2)m1qm1+m2+···+mk−1

(b2c2)m1(b3c3)m1+m2 · · · (bk−1ck−1)m1+m2+···+mk−2
. (2.8)

The following summation formula can be derived from the above transformation formula
of Andrews. It can be considered as a Rogers-Ramanujan type identity for overpartitions.
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Theorem 2.1 For k ≥ 2, we have

∑

N1≥N2≥···≥Nk−1≥0

qN1(N1+1)/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

=
(−q; q)∞(q; q2k)∞(q2k−1; q2k)∞(q2k; q2k)∞

(q; q)∞
. (2.9)

Proof. Applying the above transformation formula of Andrews by setting all variables to infinity
except for ck, a and q, we get

∑

N1≥···≥Nk−1≥0

(ck)N1a
N1+···+Nk−1qN1(N1+1)/2+N2

2 +···+N2
k−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−ck)N1

=
(aq/ck; q)∞

(a, q)∞

∑

n≥0

(1 − aq2n)(a, ck; q)naknqkn2

(q, aq/ck; q)ncn
k

.

Setting a = q and ck = −q, we find that

∑

N1≥···≥Nk−1≥0

qN1(N1+1)/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

=
(−q; q)∞
(q; q)∞

∑

n≥0

(−1)n(1 − q2n+1)qkn2+(k−1)n. (2.10)

Using Jacobi’s triple product identity, we get

(q; q2k)∞(q2k−1; q2k)∞(q2k; q2k)∞

=
∞
∑

n=−∞

(−1)nqkn2+(k−1)n

=
∞
∑

n=0

(−1)n(1 − q2n+1)qkn2+(k−1)n. (2.11)

In view of (2.10) and (2.11), we obtain (2.9). This completes the proof.

Our second Rogers-Ramanujan type identity for overpartitions is stated as follows.

Theorem 2.2 For k ≥ 2, we have

∑

N1≥N2≥···≥Nk−1≥0

qN1(N1+1)/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

(−q; q)Nk−1

=
(−q; q)∞(q; q2k−1)∞(q2k−2; q2k−1)∞(q2k−1; q2k−1)∞

(q; q)∞
. (2.12)
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Proof. Applying Andrews’ transformation formula by setting all variables except for c1, ck, a
and q to infinity, we find

∑

N1≥···≥Nk−1≥0

(ck)N1a
N1+···+Nk−1qN1(N1+1)/2+N2

2 +···+N2
k−1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−ck)N1(aq/c1)Nk−1

=
(aq/ck; q)∞

(a, q)∞

∑

n≥0

(−1)n(1 − aq2n)(a, ck; q)n(c1)naknqkn2−(n−1)n/2

(q, aq/ck; q)n(aq/c1)ncn
1 cn

k

.

Moreover, setting a = q, ck = −q and c1 = −q yields

∑

N1≥···≥Nk−1≥0

qN2+···+Nk−1qN1(N1+1)/2+N2
2 +···+N2

k−1(−q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−q)Nk−1

=
(−q; q)∞
(q, q)∞

∑

n≥0

(−1)n(1 − q2n+1)qkn2+kn−n2/2−3n/2. (2.13)

Using Jacobi’s triple product identity, we have

(q; q2k−1)∞(q2k−2; q2k−1)∞(q2k−1; q2k−1)∞

=
∞

∑

n=−∞

(−1)nqkn2+kn−n2/2−3n/2

=

∞
∑

n=0

(−1)n(1 − q2n+1)qkn2+kn−n2/2−3n/2. (2.14)

Combining (2.13) and (2.14), we deduce (2.12). This complete the proof.

3 The case when k is even

In this section, we shall give a proof of Theorem 1.2 for an even upper bound 2k − 2. More
precisely, this case can be stated as follows.

Theorem 3.1 For k ≥ 2 and n ≥ 1, we have

|F2k−2(n)| = |H2k(n)|. (3.15)

Recall that the generating function for overpartitions in H2k(n) equals

∑

n≥0

|H2k(n)|qn =
(−q; q)∞(q; q2k)∞(q2k−1; q2k)∞(q2k; q2k)∞

(q; q)∞
. (3.16)

In view of (2.9), in order to prove Theorem 3.1 we only need to show that the generating
function of anti-lecture hall compositions in F2k−2(n) equals the left hand side of (2.9), as
stated below.
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Theorem 3.2 The generating function of anti-lecture hall compositions in F2k−2(n) is given
by

∞
∑

n=0

|F2k−2(n)|qn =
∑

N1≥N2≥···≥Nk−1≥0

qN1(N1+1)/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

. (3.17)

In order to prove Theorem 3.2, we introduce a triangular representation T (λ) = (tij)16i6j

of an anti-lecture hall composition λ which is similar to a T-triangles introduced by Bousquet-
Mélou [4].

It should be noted that Corteel and Savage [5] used a representation of a composition λ as
a pair of vectors (l, r) = ((l1, l2, . . .), (r1, r2, . . .)), where λi = ili + ri, with 0 ≤ ri ≤ i− 1. Then
l = bλc = (bλ1/1c, bλ2/2c, . . .). It can be checked that a composition λ is an anti-lecture hall
composition if and only if

(1) l1 ≥ l2 ≥ · · · ≥ 0, and

(2) ri ≥ ri+1 whenever li = li+1.

Definition 3.3 The A-triangular representation T (λ) = (ti,j)16i6j of an anti-lecture hall com-
position λ = (λ1, λ2, . . .) is defined to be a triangular array (ti,j)16i6j of nonnegative integers
satisfying the following conditions:

(1) A diagonal entry tj,j in T (λ) equals lj = bλj/jc.

(2) The first rj entries of the j-th column are equal to tj,j + 1, while the other entries in the
j-th column are equal to tj,j.

The sum of all entries of T (λ) is equal to |λ| = λ1 + λ2 + · · · . It can be verified that the
A-triangular representation T (λ) of an anti-lecture hall composition possesses the following
properties:

(1) The diagonal entries of T are weakly decreasing, that is, t1,1 ≥ t2,2 ≥ · · · ≥ 0.

(2) The entries in the j-th column are non-increasing, and they are equal to either the tj,j

or tj,j + 1.

(3) If tj,j = tj+1,j+1, then ti,j ≥ ti,j+1.

Conversely, a triangular array satisfying the above conditions must be the A-triangular
representation of an anti-lecture hall composition.

For example, let λ = (4, 8, 11, 14, 16, 15, 11, 10, 5, 2). The A-triangular representation T (λ)
of λ is illustrated as follows.
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4 4 4 4 4 3 2 2 1 1
4 4 4 3 3 2 2 1 1

3 3 3 3 2 1 1 0
3 3 2 2 1 1 0

3 2 1 1 1 0
2 1 1 0 0

1 1 0 0
1 0 0

0 0
0

Now we are ready to give a proof of Theorem 3.2 by using the A-triangular representation
of an anti-lecture hall composition.

Proof of Theorem 3.2. Let λ be an anti-lecture hall composition with λ1 ≤ 2k − 2. Let
us consider the A-triangular representation T (λ) of λ. We use Ni to denote the number of
diagonal entries tj,j in T (λ) which are greater than or equal to 2i − 1 for 1 ≤ i ≤ k − 1. Then
we have N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0. Let F2k−2(N1, . . . , Nk−1;n) denote the set of anti-lecture
hall compositions λ such that there are Ni diagonal entries in T (λ) that are greater than or
equal to 2i − 1 and λ1 ≤ 2k − 2. We aim to compute the generating function of anti-lecture
hall composition in F2k−2(N1, . . . , Nk−1;n), which can be summed up to yield the generating
function of the anti-lecture hall compositions in F2k−2(n).

Let λ be an anti-lecture hall composition in F2k−2(N1, . . . , Nk−1;n), and let λ(1) = (λ1, . . . ,
λN1), λ(2) = (λN1+1, . . . , λl). Since bλN1+1/(N1 + 1)c = · · · = bλl/lc = 0, we see that λl ≤
· · · ≤ λN1+1 ≤ N1. Evidently λ(2) is a partition whose first part is less than N1 + 1, and the
generating function for possible choices of λ(2) equals 1/(q; q)N1 .

Let us examine the composition λ(1) and its A-triangular representation T (λ(1)). The
triangular array T (λ(1)) can be split into k triangular arrays and we can compute the generating
function for possible choices of λ(1).

Step 1. Let T (1) = T (λ(1)). Extract 1 from each entry in the first N1 columns of T (1) to form
a triangular array of size N1 with all the entries equal to 1, denoted by R(N1, 1).

Step 2. For 2 ≤ i ≤ k − 1, extract 2 from each entry in the first Ni columns of the remaining
triangular array T (1) to generate a triangular array of size Ni with all the entries equal to 2,
denoted by R(Ni, 2).

Step 3. Let S denote the remaining triangular array T (1).

After the above operations, T (λ(1)) is decomposed into k triangular arrays, including an
A-triangle R(N1, 1) of size N1 with entries 1, k − 2 A-triangular arrays R(Ni, 2) of sizes
N2, . . . , Nk−1 respectively with entries 2 where i = 2, . . . , k − 1, and a triangular array S =
(si,j)1≤i≤j≤N1 of size N1. It is easy to see that the generating function for triangular arrays in

R(N1, 1) is q(N1+1)N1/2 and the generating function of triangular arrays in R(Ni, 2) is qN2
i
+Ni .

It can be verified that S possesses the following properties by the definition of the A-
triangular representation of an anti-lecture hall composition:

(1) All the entries in the diagonals of S are equal to 1 or 0. Note that S has N1 diagonal
elements s1,1, s2,2, . . . , sN1,N1 . These diagonal elements can be divided into k−1 segments
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such that the first segment contains n1 = N1 − N2 elements sN2+1,N2+1, . . . , sN1,N1 , the
second segment contains n2 = N2 −N3 elements sN3+1,N3+1, . . . , sN2,N2 , and so on, while
the last segment contains nk−1 = Nk−1 elements s1,1, . . . , sNk−1,Nk−1

. Moreover, the i-th
segment contains mi 1’s followed by 0’s.

(2) The entries in the j-th column are non-increasing, and they are equal to either the tj,j

or tj,j + 1.

(3) If sj,j = sj+1,j+1, then si,j ≥ si,j+1.

We denote the set of triangular arrays possessing the above three properties by S(N1, N2, . . . ,
Nk−1). Now we are in a position to compute the generating function of triangular arrays in
S(N1, N2, . . . , Nk−1).

We may partition a triangular array S ∈ S(N1, N2, . . . , Nk−1) into k − 1 blocks of columns,
where the i-th block consists of the (Ni+1 +1)-th column to the Ni-th column of S. We denote
the i-th block by Si. According to the above three properties, we deduce that the first mi

diagonal entries of Si must be 1 and the entries in the first mi columns of Si are either 1 or 2.

We shall split Si into three trapezoidal arrays S
(1)
i , S

(2)
i and S

(3)
i . First, we may form a

trapezoidal array S
(1)
i of the same size as Si and with the entries in the first mi columns equal

to 1 and the other entries equal to 0. Let S
′

i denote the trapezoidal array obtained from Si

by subtracting 1 from every entry in the first mi columns. Observe that every entry in S
′

i is

either 1 or 0, and S
(1)
i can be regarded as the Ferrers diagram of the conjugate of the partition

α(1) = (Ni+1 + mi, Ni+1 + mi − 1, . . . , Ni+1 + 1).

Furthermore, S
′

i satisfies the following conditions:

(1) All entries in S
′

i are equal to 0 or 1, but the diagonal entries must be 0.

(2) The entries in the same column must be non-increasing.

(3) The first mi entries in the j-th row must be non-increasing, and the remaining entries in
the j-th row are also non-increasing.

We continue to consider the trapezoidal array formed by the first mi columns of S
′

i , and

denote it by S
(2)
i . Similarly, we see that S

(2)
i can be regarded as the Ferrers diagram of the

conjugate of a partition α(2), where

α
(2)
1 ≤ Ni+1, and l(α(2)) ≤ mi.

Define S
(3)
i to be the trapezoidal array formed by the (mi+1)-th column to the (Ni−Ni+1)-

th column of S ′
i. Again, S(3) can be regarded as the Ferrers diagram of the conjugate of a

partition α(3), where

α
(3)
1 ≤ Ni+1 + mi and l(α(3)) ≤ Ni − Ni+1 − mi.
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So the generating function for possible choices of the i-th block Si is given by

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni+1+mi

(q; q)mi
(q; q)Ni+1

(q; q)Ni

(q; q)Ni+1+mi
(q; q)Ni−Ni+1−mi

. (3.18)

which equals

(q; q)Ni

(q; q)Ni+1(q; q)Ni−Ni+1

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni−Ni+1

(q; q)mi
(q; q)Ni−Ni+1−mi

. (3.19)

Observe that the sum

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni−Ni+1

(q; q)mi
(q; q)Ni−Ni+1−mi

is the generating function for partitions with distinct parts between Ni+1+1 and Ni. Therefore,

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni−Ni+1

(q; q)mi
(q; q)Ni−Ni+1−mi

= (−qNi+1+1; q)Ni−Ni+1 . (3.20)

By (3.20), the generating function (3.18) can be simplified to

(q; q)Ni

(q; q)Ni+1(q; q)Ni−Ni+1

(−qNi+1+1; q)Ni−Ni+1 . (3.21)

Thus the generating function for triangular arrays in S can be written as

k−1
∏

i=1

(q; q)Ni

(q; q)Ni+1(q; q)Ni−Ni+1

(−qNi+1+1; q)Ni−Ni+1 =
(q)N1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

.

Recall that the generating function for possible choices of T (λ(2)) equals 1/(q; q)N1 and the
generating functions for R(N1, 1), R(N2, 2), . . . , R(Nk−1, 2) are equal to q(N1+1)N1/2, qN2

2+N2 ,. . . ,

qN2
k−1+Nk−1 respectively. We also note that the generating function for anti-lecture hall com-

positions in F2k−2(N1, . . . , Nk−1, n) is the product of the generating functions for T (λ(2)),
R(N1, 1), R(N2, 2), . . . , R(Nk−1, 2) and S, and therefore it equals

q(N1+1)N1/2+N2
2 +···+N2

k−1+N2+···+Nk−1

(q)N1

(q)N1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

=
q(N1+1)N1/2+N2

2 +···+N2
k−1+N2+···+Nk−1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

.

Summing up the generating functions of anti-lecture hall compositions in F2k−2(N1, . . . , Nk−1, n),
we get the generating function for anti-lecture hall compositions in F2k−2(n),

∑

n≥0

|F2k−2(n)|qn =
∑

N1≥···≥Nk−1≥0

q(N1+1)N1/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

. (3.22)

The proof is therefore completed.
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For example, let λ = (4, 8, 11, 14, 16, 15, 11, 10, 5, 2) and let k = 3. Then λ(2) = (5, 2),
N1 = 8, N2 = 5, m1 = 2 and m2 = 1. The decomposition of T (λ) is illustrated as follows:

4 4 4 4 4 3 2 2 1 1
4 4 4 3 3 2 2 1 1

3 3 3 3 2 1 1 0
3 3 2 2 1 1 0

3 2 1 1 1 0
2 1 1 0 0

1 1 0 0
1 0 0

0 0
0

−→

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

+

2 2 2 2 2
2 2 2 2

2 2 2
2 2

2

T (λ) R(8, 1) R(5, 2)

+

1 1 1 1 1 2 1 1
1 1 1 0 2 1 1

0 0 0 2 1 0
0 0 1 1 0

0 1 0 0
1 0 0

0 0
0

+

0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0

0 0 0 0 1 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

S T (λ(2))

4 The case when k is odd

The objective of this section is to provide two proofs of the following theorem which is the
case of an odd upper bound 2k − 3 of Theorem 1.2. The first is analogous to the proof of the
even case. The second requires a Rogers-Ramanujan type identity of Andrews, a bijection of
Corteel and Savage, and a refined version of a bijection also due to Corteel and Savage. The
approach of the second proof does not seem to apply to the even case, namely, Theorem 3.1.

Theorem 4.1 For k ≥ 2 and a positive integer n, we have

|F2k−3(n)| = |H2k−1(n)|. (4.23)

The first proof relies on the following generating function formula for anti-lecture hall
compositions in F2k−3(n). The proof of this formula is analogous to that of Theorem 3.2.
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Theorem 4.2 For k ≥ 2,

∞
∑

n=0

|F2k−3(n)|qn =
∑

N1≥N2≥···≥Nk−1≥0

q(N1+1)N1/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q; q)N1−N2 · · · (q; q)Nk−2−Nk−1
(q; q)Nk−1

(−q; q)Nk−1

.

(4.24)

Proof of Theorem 4.2. Let λ be an anti-lecture hall composition with λ1 ≤ 2k − 3. We
consider the A-Triangular representation T (λ) of λ. Let Ni be the number of diagonal entries
tjj in T (λ) which are greater than or equal to 2i − 1 for 1 ≤ i ≤ k − 1. Then we have
N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ 0. Let F2k−3(N1, . . . , Nk−1;n) denote the set of anti-lecture hall
compositions λ for which there are Ni diagonal entries in T (λ) that are greater than or equal
to 2i − 1 and λ1 ≤ 2k − 3.

Let λ(1) = (λ1, . . . , λN1), λ(2) = (λN1+1, . . . , λl). It is immediately verified that λ(2) is
a partition whose first part does not exceed N1. Hence the generating function for possible
choices of λ(2) equals 1/(q; q)N1 .

Now consider λ(1) and its A-Triangular representation T (λ(1)). We can split T (λ(1)) into k
triangular arrays to compute the generating function for possible choices of λ(1).

Step 1. Let T (1) = T (λ(1)). Extract 1 from each entry in the first N1 columns of T (1) to form
a triangular array of size N1 with all entries equal to 1, denoted by R(N1, 1).

Step 2. For i = 2, . . . , k − 1, extract 2 from each entry in the first Ni columns of the remaining
array T (1) to form a triangular array of size Ni with all entries equal to 2, denoted by R(Ni, 2).

Step 3. Let S be the remaining triangular array T (1).

After the above procedures, T (λ(1)) is decomposed into k triangular arrays, including an
A-Triangle R(N1, 1) of size N1 with all entries being 1, (k − 2) A-Triangles R(Ni, 2) of sizes
N2, . . . , Nk−1 respectively with all entries being 2 and a triangular array S = (si,j) of size N1

satisfying the following conditions:

(1) All the entries in the diagonals of S are equal to 1 or 0. Note that S has N1 diagonal
elements s1,1, s2,2, . . . , sN1,N1 . These diagonal elements can be divided into k−1 segments
such that the first segment contains n1 = N1 − N2 elements sN2+1,N2+1, . . . , sN1,N1 , the
second segment contains n2 = N2 −N3 elements sN3+1,N3+1, . . . , sN2,N2 , and so on, while
the last segment contains nk−1 = Nk−1 elements s1,1, . . . , sNk−1,Nk−1

. Moreover, the i-th
segment contains mi 1’s followed by 0’s.

(2) The entries in the j-th column are non-increasing, and they are equal to either tj,j or
tj,j + 1.

(3) If sj,j = sj+1,j+1, then si,j ≥ si,j+1.

(4) The entries in the first Nk−1 columns of S are equal to 0, that is, mk−1 = 0.

Let us write S(N1, N2, · · · , Nk−1) for the set of triangular arrays possessing the above
four properties. We proceed to compute the generating function for the triangular arrays in
S(N1, N2, · · · , Nk−1).
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We may partition a triangular array S ∈ S(N1, N2, . . . , Nk−1) into k − 1 blocks of columns,
where the i-th block consists of the (Ni+1 +1)-th column to the Ni-th column of S. We denote
the i-th block by Si. According to the above four properties, we infer that the first mi diagonal
entries of Si must be 1 and the entries in the first mi columns of Si are either 1 or 2 for
i = 1, . . . k − 2 and Sk−1 is a triangular array of size Nk−1 with all entries eqaul to 0.

We shall split Si into three trapezoidal arrays S
(1)
i , S

(2)
i and S

(3)
i for i = 1, . . . k − 2. First,

we may form a trapezoidal array S
(1)
i of the same size as Si and with the entries in the first

mi columns equal to 1 and the other entries equal to 0. Let S
′

i denote the trapezoidal array
obtained from Si by subtracting 1 from every entry in the first mi columns. It is seen that every

entry in S
′

i is either 1 or 0, and S
(1)
i can be regarded as the Ferrers diagram of the conjugate

of the partition
α(1) = (Ni+1 + mi, Ni+1 + mi − 1, . . . , Ni+1 + 1).

Furthermore, S
′

i satisfies the following conditions for i = 1, . . . , k − 2:

(1) All the entries in S
′

i equal 0 or 1, but the diagonal entries must be 0.

(2) The entries in the j-th column must be non-increasing.

(3) The first mi entries in the j-th row must be non-increasing, and the remaining entries in
the j-th row are also non-increasing.

We continue to consider the trapezoidal array formed by the first mi columns of S
′

i , and

denote it by S
(2)
i . Again, we see that S

(2)
i can be regarded as the Ferrers diagram of the

conjugate of a partition α(2), where

α
(2)
1 ≤ Ni+1, and l(α(2)) ≤ mi.

Notice that there are still some columns to be dealt with. Define S
(3)
i to be the trapezoidal

array formed by the (mi + 1)-th column to the (Ni − Ni+1)-th column of S
′

i . Once more, S
(3)
i

can be regarded as the Ferrers diagram of the conjugate of a partition α(3), where

α
(3)
1 ≤ Ni+1 + mi and l(α(3)) ≤ Ni − Ni+1 − mi.

As a consequence, the generating function for possible choices of the i-th block Si for
i = 1, . . . , k − 2 equals

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni+1+mi

(q; q)mi
(q; q)Ni+1

(q; q)Ni

(q; q)Ni+1+mi
(q; q)Ni−Ni+1−mi

which can be rewritten as

(q; q)Ni

(q; q)Ni+1(q; q)Ni−Ni+1

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni−Ni+1

(q; q)mi
(q; q)Ni−Ni+1−mi

.
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Evidently, the sum in the above expression is the generating function for partitions with distinct
parts between Ni+1 + 1 and Ni. So we deduce that

Ni−Ni+1
∑

mi=0

q
(Ni+1+1+Ni+1+mi)mi

2
(q; q)Ni−Ni+1

(q; q)mi
(q; q)Ni−Ni+1−mi

= (−qNi+1+1; q)Ni−Ni+1 .

Since the generating function for Sk−1 equals 1, the generating function for possible choices of
S is the product of the generating functions for Si for i = 1, . . . , k − 2, that is,

k−2
∏

i=1

(q; q)Ni

(q; q)Ni+1(q; q)Ni−Ni+1

(−qNi+1+1; q)Ni−Ni+1 =
(q)N1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−q; q)Nk−1

.

Recall that the generating function for possible choices of T (λ(2)) equals 1/(q; q)N1 and the
generating functions for R(N1, 1), R(N2, 2), . . . , R(Nk−1, 2) are equal to q(N1+1)N1/2, qN2

2+N2 , . . .

, qN2
k−1+Nk−1 respectively. We also observe that the generating function for anti-lecture hall

compositions in F2k−2(N1, . . . , Nk−1, n) is the product of the generating functions for T (λ(2)),
R(N1, 1), R(N2, 2), . . . , R(Nk−1, 2) and S. Hence it equals

q(N1+1)N1/2+N2
2 +···+N2

k−1+N2+···+Nk−1

(q)N1

(q)N1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−q; q)Nk−1

=
q(N1+1)N1/2+N2

2 +···+N2
k−1+N2+···+Nk−1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−q; q)Nk−1

.

Summing up the generating functions for anti-lecture hall compositions in F2k−3(N1, . . . , Nk−1, n)
yields the generating function for F2k−3(n),

∑

n≥0

|F2k−3(n)|qn =
∑

N1≥···≥Nk−1≥0

q(N1+1)N1/2+N2
2 +···+N2

k−1+N2+···+Nk−1(−q; q)N1

(q)N1−N2 · · · (q)Nk−2−Nk−1
(q)Nk−1

(−q; q)Nk−1

. (4.25)

This completes the proof.

For example, the composition λ = (5, 10, 14, 17, 18, 20, 18, 15, 12, 3) can decomposed into
the following triangular arrays

5 5 5 5 4 4 3 2 2 1
5 5 4 4 4 3 2 2 1

4 4 4 3 3 2 2 1
4 3 3 3 2 1 0

3 3 2 2 1 0
3 2 2 1 0

2 2 1 0
1 1 0

1 0
0

−→

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1
1 1

1

+

2 2 2 2 2 2
2 2 2 2 2

2 2 2 2
2 2 2

2 2
2

+

2 2
2

T (λ) R(9, 1) R(6, 2) R(3, 2)
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+

0 0 2 2 1 1 2 1 1
0 2 1 1 1 2 1 1

1 1 1 0 2 1 1
1 0 0 2 1 0

0 0 1 1 0
0 1 1 0

1 1 0
0 0

0

+

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

S λ(2)

In virtue of (2.12), Theorem 4.1 immediately follows from Theorem 4.2, since the generating
function for overpartitions in H2k−1(n) is given by

(−q; q)∞(q; q2k−1)∞(q2k−2; q2k−1)∞(q2k−1; q2k−1)∞
(q; q)∞

. (4.26)

We now come to the second proof of Theorem 4.1. In their proof of anti-lecture hall theorem,
Corteel and Savage [5] established two bijections. The first is a bijection between the set E(n)
of anti-lecture hall compositions µ of n such that bµi/ic is even and the set P (n) of partitions of
n with each part greater than one. The second bijection is between the set A(n) of anti-lecture
hall compositions of n and the set D × E(n) of pairs (λ, µ) such that |λ| + |µ| = n and λ ∈ D,
µ ∈ E, where D is the set of partitions into distinct parts. Then the anti-lecture hall theorem
can follows from the correspondence between A(n) and D × P (n).

We shall present a bijection between a subset of P (n) and a subset of E(n). Together with
the second bijection of Corteel and Savage, we arrive at the assertion in Theorem 4.1.

To be more specific, let Qk(n) be the subset of E(n) consisting of anti-lecture hall compo-
sitions λ such that λ1 ≤ k and let Rk(n) be the subset of P (n) consisting of partitions having
at most k − 1 successive N × (N + 1) Durfee rectangles such that there is no part below the
last Durfee rectangle. Then we have the following correspondence, which can be considered as
a refined version of the first bijection of Corteel and Savage.

Theorem 4.3 There is a bijection between the set Rk(n) and the set Q2k−2(n).

Proof. We proceed to give a construction of the bijection θ from Rk(n) to Q2k−2(n). Consider
the A-triangular representation T (µ) of an anti-lecture hall composition µ of n such that b µi

i c
are even for all i and µ1 ≤ 2k − 2. By definition, all the diagonal entries of T (µ) are even and
t1,1 ≤ 2k − 2.

Now we define the map θ from a partition λ in P with exactly k − 1 successive Durfee
rectangles to an anti-lecture hall composition µ of n.

Step 1. We break the Ferrers diagram of λ into k − 1 blocks such that the i-th block contains
the i-th Durfee rectangle and the dots on the right of the i-th Durfee rectangle.

Step 2. Change the i-th Durfee rectangle in the i-th block into a triangular array with all
entries being 2, and the rest dots in the i-th block into entries equal to 1. Then these k − 1
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blocks become k − 1 A-triangles with all the diagonal entries equal to 0 or 2 where 0’s are
omitted.

Step 3. Put the k − 1 A-triangles obtained in Step 2 together to form an A-triangle T .

The resulting A-triangle corresponds to an anti-lecture hall composition µ such that µ1 =
2k − 2 and bλi/ic are even for all i.

It is easily verified that the map θ is reversible. This completes the proof.

For example, let
λ = (10, 10, 9, 8, 7, 7, 7, 7, 5, 4, 3)

be a partition in R4(77). Then the corresponding anti-lecture hall composition in Q6(77) equals

µ = (6, 12, 13, 11, 12, 14, 4, 3, 2).

The successive Durfee rectangles of λ are exhibited as follows.

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦ →

2 2 2 2 2 2 1 1 1
2 2 2 2 2 1 1 1

2 2 2 2 1 1
2 2 2 1

2 2
2

→

6 6 5 3 3 3 1 1 1
6 4 3 3 3 1 1 1

4 3 2 2 1 1
2 2 2 1

2 2
2

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦

2 2 2 1 1 1
2 2 1 1 1

2 1

◦ ◦ ◦
◦ ◦ ◦

◦ 2 2 1
2

Second Proof of Theorem 4.1. Examining Corteel and Savage’s second bijection γ from A to
D × E, we see that it maps an anti-lecture hall composition of n in A with the first part not
exceeding 2k − 1 to a pair (α, β) in D ×E such that β is an anti-lecture hall composition in E
with the first part β1 not exceeding 2k − 2 and the sum of parts of α and β equals n. In other
words, γ is a bijection between F2k−1 and D × Q2k−2. Together with Theorem 4.3, we are led
to a bijection between F2k−1 and D × Rk.

On the other hand, there is a combinatorial interpretation of the left hand side of (1.5) in
terms of the Durfee dissection of a partition, given by Andrews [3]. We observe that technique
of Andrews easily extends to Durfee rectangle dissection of a partition. In this way, we find
that the generating function of partitions in Rk(n) is given by

∞
∑

n=0

|Rk(n)|qn =
∑

N1≥N2≥...≥Nk−1≥0

qN2
1 +...+N2

k−1+N1+...+Nk−1

(q)N1−N2 . . . (q)Nk−2−Nk−1
(q)Nk−1

. (4.27)

Setting a = 1 in the generalization of the Rogers-Ramanujan identity (1.5) gives

∑

N1≥N2≥···≥Nk−1≥0

qN2
1+···+N2

k−1+N1+···+Nk−1

(q)N1−N2 . . . (q)Nk−2−Nk−1
(q)Nk−1

=
(q, q2k, q2k+1; q2k+1)∞

(q; q)∞
.
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Hence the generating function of partitions in Rk(n) can be expressed as follows

∞
∑

n=0

|Rk(n)|qn =
(q, q2k, q2k+1; q2k+1)∞

(q; q)∞
. (4.28)

By the bijection between F2k−1(n) and D × Rk(n) we conclude that

∞
∑

n=0

|F2k−1(n)|qn =
(−q; q)∞(q, q2k, q2k+1; q2k+1)∞

(q; q)∞
. (4.29)

It is easy to see that the right hand side of the above identity is the generating function of
overpartitions in H2k+1(n). This completes the proof.
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