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Abstract. We present a simple iteration for the Lebesgue identity on partitions, which leads
to a refinement involving the alternating sums of partitions.
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We find a simple iterated map for the classical Lebesgue identity on partitions. As an
application of this iterated map, we give a refinement of the partition interpretation of this
identity involving alternating sums of partitions. Recall that the q-shifted factorials are
defined by

(a; q)∞ =

∞
∏

k=0

(1 − aqk) and (a; q)n =
(a; q)∞

(aqn; q)∞
, n ∈ Z,

where |q| < 1. The Lebesgue identity reads

∞
∑

k=0

(−aq; q)k

(q; q)k
q(

k+1

2 ) = (−aq2; q2)∞(−q; q)∞, (1)

see, for example, Andrews [2]. There are several combinatorial proofs of the Lebesgue identity.
Ramamani and Venkatachaliengar [8] found a bijection for the following generalization of (1),

∞
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∞
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.

Bessenrodt [3] gave a combinatorial interpretation in terms of 2-modular diagrams. Alladi
and Gordon [1] provided another bijection which implies the Lebesgue identity. Pak modified
the construction of Alladi and Gordon to give a direct correspondence by using standard
MacMahon diagrams [7]. Fu [5] discovered a bijective proof of the following extension of (1)
by applying the insertion algorithm of Zeilberger:
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Rowell [9] presented a combinatorial proof which leads to the following finite form of (1):
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q2

(−q; q)L−ka
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Recently, Little and Sellers [6] have established the relation (1) by using weighted Pell tilings.

To describe our bijection, we follow the terminology in [2]. A partition is meant to be a
non-increasing finite sequence of positive integers λ = (λ1, . . . , λ`). The entries λi are called
the parts of λ. The number of parts of λ is denoted by `(λ), and sum of parts is denoted by
|λ| = λ1 + · · · + λ`. The conjugate partition of λ is denoted by λ′. The partition with no
parts is denoted by ∅.

Denote the left hand side of the Lebesgue identity (1) by f(a, q). It is easily seen that

f(a, q) =
∑

(α,β)∈P

a`(β)q|α|+|β|,

where P denotes the set of pairs (α, β) of partitions with distinct parts such that `(α) is not
less than the largest part of β. The corresponding diagram is illustrated by Figure 1.

α β′

a

Figure 1: A pair (α, β) ∈ P

Clearly, the right hand side of (1) has the following combinatorial interpretation

∑

(µ,ν)∈Q

a`(ν)q|µ|+|ν|,

where Q is the set of pairs (µ, ν) of partitions with distinct parts such that ν has only even
parts.

For a triple of partitions (α, β, γ) where (α, β) ∈ P and γ is a partition with even parts
such that `(γ) ≥ `(β) or γ = φ, we define a map φ : (α, β, γ) → (µ, λ, ν) as follows:

Case 1: The smallest part of β equals 1. Decrease each part of α by 1 to form a partition µ.
Change the 1-part of β to an (`(α)+1)-part and decrease each part of the resulting partition
by 2 to generate a partition λ. Then add two `(β)-parts to the conjugate partition γ ′ to
produce a conjugate partition ν ′. This operation can be visualized as moving the rightmost
square of β ′ to the bottom of α, then shifting the diagram below the x-axis to the right by one
column, and finally moving up the diagram on the right side of the y-axis by two rows. See
Figure 2 for an illustration, where α = (6, 5, 3, 1), β = (4, 3, 1), γ = (2, 2, 2, 2), µ = (5, 4, 2),
λ = (3, 2, 1), and ν = (4, 4, 4, 2).
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Figure 2: An example

Case 2: The smallest part of β is larger than 1. Set µ = α and move up the diagram of
β′ by two rows to generate the two conjugate partitions λ′ and ν ′.

To recover (α, β, γ) from (µ, λ, ν), we first move down the diagram on the right side of the
y-axis by two rows to obtain a triple (ᾱ, β̄, γ̄). If β̄1 ≤ `(ᾱ), we then have (α, β, γ) = (ᾱ, β̄, γ̄).
Otherwise, we further shift the diagram below the x-axis to the left by one column and move
the bottom square to the right of β̄′. Thus, φ is invertible.

Starting from (α, β, ∅), we can iterate the above map until λ becomes empty. This gives
a pair (µ, ν) of partitions that belongs to Q. This completes the combinatorial proof of the
Lebesgue identity.

The above map leads to a refinement of the Lebesgue identity (1). Define the alternating
sum of a partition λ by

|λ|a = λ1 − λ2 + λ3 − λ4 + · · · .

This statistic has occurred in the study of refinements of Euler’s partition theorem, see [4].
Notice that when the parts of α are distinct, the alternating sum of α equals to the number of
odd parts of its conjugate partition. Denote by no(λ) the number of odd parts of a partition
λ. It is straightforward to check that the map φ preserves the difference no(α

′) − no(β).
Therefore, our bijection leads to the following refinement of the combinatorial interpretation
of the Lebesgue identity.

Theorem 1 Let P denote the set of pairs (α, β) of partitions with distinct parts such that

`(α) is not less than the largest part of β, and let Q denote the set of pairs (µ, ν) of partitions

with distinct parts such that ν has only even parts. Then for each nonnegative integer k, the

number of pairs (α, β) ∈ P with |α|a − no(β) = k is equal to the number of pairs (µ, ν) ∈ Q

with |µ|a = k.

We notice that Bessenrodt’s bijection [3] also keeps the difference |α|a − no(β). We also
note that our map can be viewed as a direct correspondence in the sense that it does not
require Sylvester’s bijection for Euler’s identity, see the remark in [7].
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