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Abstract

Let p(n) denote the partition function. Desalvo and Pak proved the log-

concavity of p(n) for n > 25 and the inequality % (1+1)> p(péi)l) for n > 1.

Let r(n) = {/p(n)/n and A be the difference operator respect to n. Desalvo and
Pak pointed out that their approach to proving the log-concavity of p(n) may be
employed to prove a conjecture of Sun on the log-convexity of {r(n)},>61, as long
as one finds an appropriate estimate of A%2logr(n — 1). In this paper, we obtain
a lower bound for A%?logr(n — 1), leading to a proof of this conjecture. From
the log-convexity of {r(n)}n,>¢1 and {{/n},>4, we are led to a proof of another
conjecture of Sun on the log-convexity of {{/p(n)}n>27. Furthermore, we show

that lirf ns A2 log ¥/p(n) = 3w/+v/24. Finally, by finding an upper bound of
n—-—+0oo

n—1/ _
A?log "/p(n — 1), we prove an inequality on the ratio % analogous to
p(n

the above inequality on the ratio %.
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1 Introduction

In this paper, we study the log-behavior of the sequences {/p(n) and {/p(n)/n, where
p(n) is the number of partitions of n. Recently, by using the Hardy-Ramanujan-Rademacher

formula of p(n) (see [0, [7, 10]) and Lehmer’s error bound (see [8, [Q]), Desalvo and Pak
[5] gave an estimate for —A2logp(n — 1), and then found an upper and lower bound for
this estimate, finally proved that p(n) is log-concave for n > 25. They also proved the
following inequality conjectured by Chen [2].

Theorem 1.1 Forn > 1,

pn—1) (1 N l) > pfﬂ (1.1)



Desalvo and Pak [5] showed that

lim —n2A? logp(n —1) = 7/v/24, (1.2)

n—-+o0o

and proposed the following conjecture.

Conjecture 1.1 Forn > 45,

p(n—1) p(n)

p(n) <1 i \/2_2713/2) bt 1)

(1.3)

In view of (1.2)), the coefficient \/Lﬂ in (1.3]) is the best possible. Chen, Wang and Xie
[] proved the above conjecture by showing that for n > 5000,

247 241 2
~A?logp(n —1) < Ay ((24n)3/2> . (1.4)

The proof of (1.4]) requires Desalvo and Pak’s upper bound of —A?log p(n—1) for n > 50,
247 N 288m(—3 + my/24(n — 1) — 1)
(24(n —1) —1)3/2 (24(n — 1) — 1)3/2(=6 + w1 /24(n — 1) — 1)2

864 ™ 2n
- 2eH5VE 15
Qin+1)—1p ¢ (1.5)

—A?logp(n —1) <

For n > 50, the upper bound in (1.5 can be relaxed to

24 241 \? 1+3+2_%%ﬂ
(24n)3/2 (24n)3/2 n2 g T '

By using the Lambert W function, it can be shown that —# + # + 2 TVE < 0
when n > 5000, and therefore we arrive at the upper bound in the form of . Let
r(n) = {/p(n)/n. Desalvo and Pak also considered the log-behavior of r(n). A positive
sequence {a,} is log-convex if it satisfies that for n > 1,

a; — ap_1an41 < 0.
Conversely, a positive sequence {a,} is log-concave if it satisfies that for n > 1,
al — ap_1an41 > 0.

Desalvo and Pak noticed that the log-convexity of {r(n)},>¢ conjectured by Sun [I1]
can be derived from an estimate for A?logr(n—1), see [5, Final Remark 7.7]. They also
remarked that their approach to bounding —A%logp(n — 1) does not seem to apply to
A?logr(n — 1). In this paper, we obtain a lower bound for A?logr(n — 1), leading to a
proof of the log-convexity of {r(n)},>e1.



Theorem 1.2 The sequence {r(n)}n>¢1 is log-conver.

The log-convexity of {r(n)},>¢1 implies the log-convexity of {{/p(n)},>a7, because
the sequence {/n},>4 is log-convex [II]. It is known that lim {/p(n) = 1. For a

—+00
combinatorial proof of this fact, see Andrews [I]. The log-convexity of { {/p(n)},>27 was

conjectured by Sun [I1]. He also proposed the conjecture that {{/p(n)},>¢ is strictly
decreasing, which has been proved by Wang and Zhu [12]. It is easy to see that the

log-convexity of { {/p(n)},>27 implies the decreasing property.

It should be noted that there is another approach to proving the log-convexity of
{{/p(n)}n>27. Chen, Guo and Wang [3] introduced the notion of a ratio log-convex
sequence and showed that ratio log-convexity implies log-convexity under an initial con-
dition. A sequence {a,}n>k is called ratio log-convex if {a,11/a,}n>k is log-convex, or,
equivalently, for n > k,

log a, 1o — 3logay,1 + 3loga, —loga, 1 > 0.

Chen, Wang and Xie [4] showed that that for any » > 1, one can determine a number
n(r) such that for n > n(r), (=1)""'A"log p(n) is positive. For r = 3, it can be shown
that for n > 116,

Allogp(n —1) > 0.

Since
A?logp(n — 1) = logp(n + 2) — 3log p(n + 1) + 3log p(n) — log p(n — 1),

it is evident that {p(n)},>116 is ratio log-convex. So we are led to the following assertion.

Theorem 1.3 The sequence {{/p(n)}n>or is log-convez.

In the spirit of the inequality ([1.3) on £ (;z;)l) , we obtain the following inequality on

"=3/p(n—1)
p(n)

Theorem 1.4 Forn > 2, we have

V/p(n) 3T "p(n—1)
T <1+ \/ﬂnf’/?) > — o (1.6)

Desalvo and Pak [5] have shown that the limit of —n3A?log p(n) is m/v/24, see (1.2)).
By bounding A?log {/p(n), we derive the following limit of ns A2 log {/p(n), which is
analogous to ((1.2)),

lim n?A2log {/p(n) = 3 /V/24. (1.7)

n—-+o0o



From the above relation (1.7]), it can be seen that the coefficent 3—72%1 in (|1.6) is the best
possible.

This paper is organized as follows. In Section 2, we show that {r(n)},>¢ is log-
convex. In Section 3, we find the limit of n3 A2 log {/p(n) and give the inequality ((1.6]).

2 The Log-convexity of r(n)

In this section, we obtain a lower bound of A%logr(n — 1) and prove the log-convexity
of {r(n)},>e1. First, we follow the approach of Desalvo and Pak to give an expression

of A%logr(n —1) as a sum of A?B(n — 1) and A?E(n — 1), where A?B(n — 1) makes
a major contribution to A2logr(n — 1) with A2E(n — 1) being the error term, that is,
A2B(n—1) converges to A2logr(n—1). The expressions for B(n) and E(n) will be given
later. In this setting, we derive a lower bound of A?B (n—1). By Lehmer’s error bound,
we give an upper bound for |A2E(n — 1)|. Combining the lower bound for A2B(n — 1)

and the upper bound for A?2E(n—1), we are led to a lower bound for A%logr(n—1). By
proving the positivity of this lower bound for A?logr(n — 1), we reach the log-convexity

of {r(n)}n>61-

The strict log-convexity of {r(n)},>¢ can be restated as the following relation for
n > 61,
logr(n+1)+logr(n—1) —2logr(n) > 0,

that is, for n > 61,
A?logr(n —1) > 0.

For n > 1 and any positive integer /N, the Hardy-Ramanujan-Rademacher formula

reads
p(n) = %é@(n) {(1 - S) ek + (1 + %) eil + Ro(n, N), (2.1)

where d = %, pu(n) = 5v24n — 1, Ag(n) = k™2 Ay(n), Ap(n) is a sum of 24th roots
of unity with initial values A;(n) = 1 and As(n) = (—1)", Ry(n, N) is the remainder.
Lehmer’s error bound for Ry(n, V) is given by

i < N2 () kb ()] ey

Let us give an outline of Desalvo and Pak’s approach to proving the log-concavity of
{p(n)}n>25. Setting N =2 in (22.1)), they expressed p(n) as

p(n) = T(n) + R(n), (2.3)



r = i () - S s (1) ] )
They have shown that -
[A%log p(n — 1) — A2log T(n — 1)| = ‘N log (1 + %) <e WA, (26)
and
A?log T(n — 1) — A?log ﬁ (1 - ﬁ) H D <TG (27)

It follows that A%log Wflp (1 - ﬁ) et~ converges to A%logp(n — 1). Finally,

they use —AZ?log ﬁ (1 —
log-concavity of {p(n)},>25.

—u(n1—1)> =1 to estimate —A?log p(n— 1), leading to the

In this paper, we use an alternative decomposition of p(n). Setting N = 2 in (2.1)),
we can express p(n) as

p(n) = T(n) + R(n), (2.8)
where
Foy = 4 (L e
o0 = e (1= 70 ) 2
By — R O S Gt ) A ST A
R = | (4 )+ (- )
(=" i e’@ n
+ 7 (1+ M(n)> } + Ry(n, 2). (2.10)
Based on the decomposition for p(n), one can express A%logr(n — 1) as follows:
A?logr(n—1) = A’B(n—1) + A’E(n — 1), (2.11)
where
Bn) = %log Tn) — %logn, (2.12)
U = R(n)/T(n), (2.13)
B(n) = %log(l 7). (2.14)

The following lemma will be used to give a lower bound and an upper bound of

A?B(n —1).



Lemma 2.1 Suppose f(x) has a continuous second derivative for x € [n — 1,n + 1].
Then there exists ¢ € (n — 1,n + 1) such that

"

A’f(n—1)= f(n+1)+ f(n—1) =2f(n) = f (c). (2.15)
If f(x) has an increasing second derivative, then
f'ln—1) < A?f(n—1) < f"(n+1). (2.16)
Conversely, if f(x) has a decreasing second derivative, then
f"in+1) < A?f(n—1) < f’(n—1). (2.17)

Proof. Set p(z) = f(z + 1) — f(z). By the mean value theorem, there exists a number
€ € (n—1,n) such that

/

fln+1)+ f(n—=1) =2f(n) = ¢(n) — p(n — 1) = ¢ (£).

Again, applying the mean value theorem to ¢ (&), there exists a number 6 € (0,1) such
that

e =FfE+1) - =rf(E+0).

Let ¢ = & + 6. Then we get (2.15]), which yields (2.16]) and (2.17)). |

In order to give a lower bound for A%log r(n—1) and obtain the limit of n2 A2 log /p(n),
we need the following lower and upper bounds for A%—L-logT(n — 1).

Lemma 2.2 Let

B 27 4log(p(n — 1))
A S ) TG Y R P VO (2.18)
B 721 4log(pu(n + 1)) 5
Ba(n) T (n—1)(24n—25)32  (n+1)3 * (n—1)3 (2.19)
For n > 40, we have
Bi(n) < Nn — log T(n — 1) < By(n). (2.20)

Proof. By the definition ([2.9)), we may write

n

log T'(n) !
- fi?



where

fl(n) = @7

foln) = 310gnu( ),

fa(n) 10g(u(;l) 1),

fi(n) 1O§d
Thus

Anlllong—l ZA2fln—1 (2.21)
Since
wo n 216 864 @ 1
Ji(n) = n(24n — 1)3/2 < n  24n—1 n3)

we see that for n > 1, f," (n) < 0. Similarly, it can be checked that for n > 4, f, (n) > 0,
fs (n) <0, and f,"(n) > 0. Consequently, for n > 4, f/'(n) and f; (n) are decreasing,
whereas f;(n) and f, (n) are increasing. Using Lemma , for each 7, we can get a lower
bound and an upper bound for A%f;(n — 1) in terms of f; (n — 1) and f; (n + 1). For
example,

fiin+1) < A%fi(n—1) < f{ (n—1).
So, by we find that

N ogT(n—1)> f{(n+ V) foln— D+ font D)+ fn—1), (222
and
AP i SogT(n—1) < fi(n=1)+ f(n+ 1)+ fn =D+ fi(n+1),  (223)
where
" 72w 127 ™
fin) :”(24” — 1)3/2 - n?(24n — 1)3/2 * 3n3(24n — 1)3/2’ (2:24)
v, Glogu(n) 72 864
f2(n) == n3 (24n — 1)n? + n(24n — 1)’ (2.25)
" (n) = dm? 2log(ju(n) — 1)
e T B V7 s i
_ Ar B 247 2.26)

(u(n) = V24 —1n2  (u(n) —1)(24n — 1)*2n’
7



~ 2logd

fi(n)= e (2.27)
According to (2.24]), one can check that for n > 2,
" 72 12
flin+1)> u - T (2.28)

(n+1)(24n + 2332 (n + 1)2(24n + 23)3/2°

An easy computation shows that for n > 3,

2
p(n) —1> g,u(n —2). (2.29)
Substituting (2.29)) into (2.26)) yields that
" 2log(pu(n+1) —1) 540 36
. _ - (230
Js(nt1)> (n+1)3 (24n —25)2(n—1)  (24n —25)(n — 1)? (2:30)

Using ([2.25)) and ([2.30]), we find that
fr(n=1)+ f5(n+1)
2log(pu(n+1) —1)  6log(u(n — 1))
CESIE (n—1F

324 36
* (n —1)(24n — 25)2 t (n —1)2(24n — 25) (2.31)

Apparently, for n > 2,

2 _ 2 o 12
(m+1P (=12 (n—-1*
so that
2log(p(n +1) —1)  6log(u(n — 1))
(n+1)3 (n—1)3
2log(p(n+1) = 1)  2log(u(n+1) —1)  4log(u(n —1))
(n+1)3 (n—1)3 (n—1)3
12log(p(n+1) —1)  4log(pu(n —1))
> — (n—1) — (n—1)° . (2.32)
Since, for n > 2,
324 36 2
(n—1)2dn —25)°  (n —12@2dn—25)  (n 19 (2:33)
utilizing and yields that for n > 3,
v an _4log(p(n —1)) 2 12log(p(n+1)—1)
foln—=1)+ f3(n+1) > (1) =1 (n—1) . (2.34)



Using (2.27)), (2.28]) and ([2.34)), we deduce that
A+ + fy(n =1+ f;(n+1) + f(n —1) = Bi(n)

2(1 +logd) 127 _ 12log(p(n+1) —1) (2.35)
(n—1)3 (n+1)2(24n + 23)3/2 (n—1)* ' '
Let C(n) be the right hand side of (2.35). To prove (2.22)), it is enough to show that
C(n) > 0 when n > 40. Since logx < z for x > 0, and for n > 3

pn+1)—1< %\/2471 — 24, (2.36)
we get
121 1)—1 12 1)—1 3v24
_ L2log(u(n+1)—1) = 12(u(n+1)-1) V24m | (2.37)
(n— 1)1 (1)1 CENE
Note that for n > 2,
12 24
- u S G, (2.38)
(n + 1)%(24n + 23)3/2 48(n —1)7/2
Combining (2.37)) and ([2.38)) gives for n > 2,
2(1+logd 3+1/48)v24
Cln) > 2 tloed)  (3+1/ )V24r. (2.39)

(n—1)>3 (n—1)7/2

It is straightforward to show that the right hand side of (2.39)) is positive if n > 490.
For 40 < n < 489, it is routine to check that C'(n) > 0, and so C(n) > 0 for n > 40. It
follows from ([2.35)) that for n > 40,

AQ

1 ~
. logT'(n —1) > By(n).

To derive the upper bound for AQﬁ log f(n —1), we obtain the following upper bounds
which can be verified directly. The proofs are omitted. For n > 2,

72w

filn=1) < (n — 1)[24n — 25/
y 6log p(n +1) 9
fo(n+1)<— CEE 2(n — 1)3’
oo 472 2log(pu(n — 1))
f3(n—1) < (u(n — 1))2(24n — 25)(n — 1) (n—1)3
Art 24w

T un—1)v24n —25(n— 12 p(n —1)(24n — 25)32(n — 1)’

3 N 12log(p(n +1))  4log(u(n +1))

f2(n+1)+f3(n—1)<<n_1)3 (n— 1)1 CESICE




fi(n+1)<o0.
Combining the above upper bounds, we conclude that for n > 40,
fn=1)+fy(n+1)+ f3(n=1) + f (n+1) < By(n).

This completes the proof. 1

The following lemma gives an upper bound for |A2E(n — 1)].

Lemma 2.3 Forn > 40,

D -mEEE (2.40)

IA2E(n —1)| <

n—1

Proof. By ([2.14]), we find that for n > 2,

~ _ - 2 .
A’E(n—1) = log(1 + ¥n—1) + log(1 +Yn+1) — —log(1 +5n),  (241)

n—1 n-+1

where B B
Yn = R(n)/T'(n).

To bound |A2E (n — 1)], it is necessary to bound y,. For this purpose, we first consider

R(n), as defined by ([2.10)). Since d < 1 and u(n) > 2, for n > 1 we have

o () S (i) 5 (i)

1 .
< <1+e“T)+1) .
p(n)

For N =2 and n > 1, Lehmer’s bound (2.2)) reduces to

4w
R 2 4({14 ——=e 2z ).
| Q(nv )I < ( + u(ﬂ)ge 2 )

By the definition of R(n),

~ 1 u(n) 4 9  uw
R(n <—(1+e2+1)+4(1+—62><5+—62. 2.42
ROl Ly o o 242
Recalling the definition ([2.9) of T(n), it follows from ([2.42)) that for n > 1,
~ p(n) o _2u(n) _um)\ s
|Un| < ——"—= <5,u(n) e 3 +9 6 )e 5. (2.43)
d(p(n) —1)

10



Observe that for n > 2,

and

Since

) oo d(u(40) — 1
52(40)e- 242 4 et A0 = 1)

using (2.44) and (2.45)), we deduce that for n > 40,
_2utn) wm)d(p(n)

5ut(n)e” "3 +9 6 <

Now, it is clear from (2.43]) and (2.46|) that for n > 40,

p(n)

[Un| < e 5.

In view of (2.47)), for n > 40,
~ 1
Gl < e < 2.

It is known that log(1 + z) < x for 0 < z < 1 and —log(l + z) < —z/(1 +

—1 < x <0. Thus, for |z| < 1,

i
log(1 <
flog(1+0)] < 1

see also [5], and so it follows from ([2.48)) and (2.49) that for n > 40,

Un 5 -
| ,|V S _‘ynl'
1 - ’yn| 4

[log(1 4 4n)| <

Because of (2.41]), we see that for n > 2,

1 1
log(14+7,_
n_1|og( +7 1)|+n+1

~ " 2 »
A?E(n-1)| < log(1+Fs1)|+ log(1+7)] -

Applying (2.50) to (2.51)), we obtain that for n > 40,

T 5 |gn—1| |'37n+1| 2|§n|
A’E(n —1 ’ <=
‘ (n )_4{n—1+n+1+ n

11

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

x) for

(2.49)

(2.50)

(2.51)

(2.52)



Plugging ([2.47) into (2.52)), we infer that for n > 40,

5 [e- u(n3—1) o M(”3+1) 26_@
AE(n—1)| <7 2.53
‘ (n—1) 4 [ n—1 N n+1 * n ( )
But %6_% is decreasing for n > 1, it follows from ([2.53) that for n > 40,
~ 5 n—1
‘A2E(n - 1)‘ <= le_u(3 ’
This proves (2.40)). |

With the aid of Lemmas Lemma [2.2] and 2.3, we are ready to prove the log-convexity
of {T(n)}nzm.

Proof of Theorem . To prove the strict log-convexity of {r(n)},>¢1, we proceed to
show that for n > 61,
A?logr(n —1) > 0.

( logn)//l
— > 0.

Evidently, for n > 40,

By Lemma [2.7]
_Azlog(n —1) - log(n—1) "7
n—1 n—1
that is,
log(n — 1) 2log(n —1) 1
— A? — : 2.54
n—1 =17 (=17 (2:54)
It follows from (2.12)) that
~ 1 ~ log(n — 1)
A’B(n—1)=A® logT(n — 1) — A?
(n-1)= a2 Lo T 1) - 228"
Applying Lemma [2.2] and (2.54]) to the above relation, we deduce that for n > 40,
~ ~ 2log(n —1) 3
A’B(n—1) > Bi(n) —
(n=1)> Bifm) - T P
that is,
~ 27 4loglu(n —1)]  2log(n —1) 3
A’B(n—1 — - . (2.55
(=1 > TR + 237 (n—1)y n-17 T wmonp %
By (2.11)) and Lemma we find that for n > 40,
- 5 o/ TT=TE
A’logr(n—1) > A’B(n—1) — 16—;’1‘8 (2.56)
n p—

12



It follows from (2.55)) and ([2.56) that for n > 40,
A?logr(n —1)

- 27 _ dloglp(n —1)]  2log(n —1) n 3 5 e
(n + 1)[24n + 23]3/2 (n—1)3 (n—1)3 (n—1)3 n-1 '

Let D(n) denote the right hand side of the above relation. Clearly, for n > 5505,

2T - 37 - 1
(n+ 1)[2471—1—23]3/2 Vv24(n + 1)5/2 (n— 1)5/2'

(2.57)

To prove that D(n) > 0 for n > 5505, we wish to show that for n > 5505,

4loglu(n —1)]  2log(n —1) 3 5 _mveamss 1
B e i e ey MR e 1

Using the fact that for = > 5504, logz < z'/*, we deduce that for n > 5505,

dloglu(n —1)]  4¢/un—1) 4/ 1v24n—24 6
=17 (=1 ~ (n-1p " (n-1)Bs

(2.59)

and

2log(n —1)  2(n—1)"/4 9
=1 = (n—1p " (n— I (2.60)

Since e* > x°/720 for z > 0, we see that for n > 2,

1 67«\/241157—25< 1 677“%;7< 2094 - 2094 (2.61)
n—1 n—1 nd(n—1)  (n—1)*% '

Combining (2.59)), (2.60) and (2.61]), we find that for n > 5505,

_ dloglp(n —1)]  2log(n —1) N 3 5 R
(n—1)3 (n—1)3 (n—1)3 n-1
6 2 3 10470
(n—1)2/8 N (n—1)11/4 T (n—1)3 - (n— 1)
6 2
(n—1)23/8 N (n—1)11/4
1
m'

This proves the inequality (2.58). By (2.58) and (2.57), we obtain that D(n) > 0 for
n > 5505. Verifying that A?logr(n — 1) for 61 < n < 5504 completes the proof. |

>_

>_

>_

13



3 An inequality on the ratio

In this section, we employ Lemma 2land Lemmato find the limit of n3 A2 log /p
Then we give an upper bound for A%log "+/p(n — 1). This leads to an inequality anal—
ogous to the inequality ([1.3)).

Theorem 3.1 Let o = 3w /+/24. We have

lim n3A2log {/p(n) = a. (3.1)

n—-+o0o

Proof. Using (12.8)), that is, the N = 2 case of the Hardy-Ramanujan-Rademacher
formula for p(n), we find that

log V/p 711 log[T(n) + R(n)]
= %logf(n) + % log (1 + M)

T(n)
Log T(n) + L log(1 + )
= —logT(n)+ —1lo ),
n g n g Y
where f(n) and y, are given by (2.9) and (2.13). By the definition (2.14]) of E (n), we
get
A?log "V/p(n —1) =

Applying Lemma [2.2] we obtain that for n > 40,

i -log T(n—1)+ A2E(n—1). (3.2)

Bi(n) < A% i 1 log T(n — 1) < Ba(n), (3:3)
where
- 791 4log[p(n — 1)]
Bi(n) " (n+ 1)[24n + 23]3/2 B (n—1)% ~
- o 4log[u(n + 1)] D
Ba(n) T(n—DAn—25PR2 T (n+1)3 (n—1)*

It is easily seen that

727m(n — 1)%/2

I - 4

nrieo (n+ 1)[24n + 232 (3:4)
1

lim — 8 . (3.5)

n—-+00 (n — 1)1/2
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By (3.4) and ({3.5]), we see that

lim (n—1)2B;(n) = lim (n—1)2Bs(n) = a. (3.6)

n—-+4o0o n—-4o0o

Combining (3.3)) and (3.6]) gives

1
lim (n — 1)3A2
n—

n—-+o00

0 logT(n—1) = a. (3.7)

From Lemma we know that for n > 40,

_0 e A2E(n -1)< o oA
n—1 n—1
By the fact that
lim (n — 1>%6_m{2847 =0,
n—-+00
we get
lim (n—1)2A%E(n—1) = 0. (3.8)
n—-+00

Using (3.2)), (3.7) and (3.8)), we deduce that
lim n2A210g Vp(n) = a,

n—-+o0o
as required. |

To prove Theorem , we need the following upper bound for A?log "+/p(n — 1).

Theorem 3.2 For n > 2095,

A?lo - 1) 3.9
g "Vl \/_n5/2+37r (39)

Proof. By the upper bound of A2 L 7 log T (n—1) given in Lemma the upper bound

of AZE(n — 1) given in Lemma [2 H and the relation , we get the following upper
bound of A?log "%/p(n — 1) for n > 40,

_ 27 5 4loglu(n+1)] b _avem=ss
A’log "/p(n —1 - -
I g Y T VC I ey pre Ry L

To prove (3.9, we claim that for n > 2095,

27 N 5 Aloglu(n+1)] N 5 N 3
(n—1)[24n — 25]3/2  (n—1)3 (n+41)3 n—1 V24n5/2 4+ 31

(3.10)

15



First, we show that for n > 60,

2T 3m - 1 (3.11)
(n—1)[24n — 2532 \/24n3/2 + 37 (n—1)3 '
ForO0<a < ﬁ, it can be checked that
3 3 3
In the notation oo = 37/+/24, we have
72
T - a (3.13)

(n—1)(24n —25)%/2  (n — 1)n3/2(1 — 22)3/%

Setting © = %, we have x < ﬁ for n > 60. Applying (3.12) to the right hand side of
(3-13), we find that for n > 60,

3

@ o’ 75 3/ 25\2
I+ ——+2 50 14
m—nmmu—§9w<%n—nwm[+4m+e(zm)]v (314)

so that for n > 60,

72w _ 3m
(n—1)[24n — 25]3/2  \/24n5/2 + 37

__a .« o3 (25 5.15)
(n—1)n32  /24n5/2 +3r  (n—1)n32 |48n 8 \ 24n ’ '

To prove (3.11)), we proceed to show that the right hand side of (3.15)) is bounded by

ﬁ. For n > 2, we obtain that

«Q 3
(n — 1)n3/2 B \V/24n5/2 + 37
o) Q
T n-1nd2 2 ta

an’/? +a?
(52 +a)(n — 1)n3/?

a o?

T a)(n—1) (@5 a)n— Dt

Since n°/? + a > (n — 1)*? and n*? > (n — 1)%? for n > 2, in this case we have

o _ 3 - « n o
(n— 1)713/2 V/24n5/2 + 31 (n — 1)7/2 (n— 1)5'

(3.16)

16



Applying (3.16) to (3.15]), we obtain that for n > 60,

72w 3T
(n—1)[24n — 25]3/2  \/24n5/2 4 31
o % o 75325\
< el . 3.17
(n—1)7/2 * (n—1)° * (n — 1)n3/2 [4871 - 8 (24n> ] (3:17)
3
Since 12 < 25 and 2 (22)° < m for n > 2, it follows from (3.17)) that for n > 60,
2T 3T

(n—1)[24n — 25]>/2 /24052 + 31

«Q o? 2x o

R R S A S  UER R P )

Using the fact that o < 2, we see that

3 o? o 6 4 2
=07 =1p =1 =107 —1p (-1

(3.18)

For n > 60, it is easily checked that the right hand side of (3.18)) is bounded by ﬁ
This confirms (3.11).

To prove the claim (3.10)), it is enough to show that for n > 2095,

1 4log[p(n + 1)] 5 5 _xvzEmn—ss
— — [ . 1
m—1F " (1P (1P a-1¢ " (3.19)

From (12.61)) it can be seen that for n > 2095,

5  xyoam=25 5

. 3.20
n_1 = (n—1)3 (3:20)
Since 4 log[u(n + 1)] > 18 for n > 2095, it follows from ({3.20) that for n > 2095,
dloglp(n+1)] 5 5 TS
(n+1)3 (n—1)3 n-1
- 18 10 - 1
(m+1)3 (n—1)3" (n—1)3
So we obtain (3.19)). This completes the proof. |

We are now in a position to finish the proof of Theorem [I.4]
Proof of Theorem[1.4 It is known that for z > 0,

s
< log(l + ),
T < loell+)
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so that for n > 1,
3T

3
—— <log |1+ —|.
V24n5/2 + 3¢ s ( vV 24n5/2>

In light of the above relation, Theorem implies that for n > 2095,

A?log "/p(n —1) <log<1+\/_5/2),

that is,

"pn+1)"V/pn—1) < (1 + %) (V/p(n))*.

It can be checked that the above inequality holds for 2 < n < 2095. This completes the
proof of the theorem. 1

We remark that o = 37/v/24 is the smallest possible number for the inequality in
Theorem [I.4] Suppose that 0 < § < a. By Theorem there exists an integer N so as

to for n > N,
n®2A?%log "/p(n — 1) > B.

s
A?log "~/p(n —1) > 5/2>10g<1—|—T/2

which implies that for n > N,

(1) 2 )< AT

Yo+ 0 p(n)

It follows that

n
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