The Method of Combinatorial Telescoping

William Y.C. Chen', Qing-Hu Hou?, and Lisa H. Sun®

Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China

! chen@nankai.edu.cn, 2hou@nankai.edu.cn, ®sunhui@nankai.edu.cn

Abstract. We present a method for proving g-series identities by combinatorial telescoping
in the sense that one can transform a bijection or classification of combinatorial objects into
a telescoping relation. We shall demonstrate this idea by giving a combinatorial reasoning of
Watson’s identity which implies the Rogers-Ramanujan identities.

Keywords. Watson’s identity, Schur’s identity, Rogers-Ramanujan identities, combinatorial
telescoping

AMS Subject Classification. 05A17; 11P83

1 Introduction

The main objective of this paper is to present the method of combinatorial telescoping for
proving g¢-series identities. The benchmark of this method is the classical identity of Watson
which implies Rogers-Ramanujan identities.

There have been many combinatorial proofs of the Rogers-Ramanujan identities. Schur [9]
provided an involution for the following identity which is equivalent to the first Rogers-
Ramanujan identity:
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Andrews [1] proved the Rogers-Ramanujan identities by introducing the notion of k-partitions.
Garsia and Milne [7] gave a bijection by using the involution principle. Bressoud and Zeil-
berger [4,5] provided a different involution principle proof based on an algebraic proof by
Bressoud [3]. Boulet and Pak [2] found a combinatorial proof which relies on the symmetry
properties of a generalization of Dyson’s rank.

Let us consider a summation of the form



Suppose that for each k,

a€Ay

is the weighted count, or the weight, of a set Aj. Inspired by the idea of the creative
telescoping of Zeilberger [12], we aim to find sets By and Gy such that there is a bijection

Gk Ap — Br UG UGy, (1.1)

which is weight preserving on qﬁ,;l(Gk U Gg+1). Throughout this paper, U stands for the
disjoint union. Since the weights of gzﬁ,;l(GkH) and ¢;41_1(Gk+1) are both equal to the weight
of G411, we obtain a telescoping relation. Suppose that Gy = () and G, vanishes for sufficient
large k. Let

A= GAk, and B = GBk.
k=0 k=0

Then the bijections {¢y} altogether lead to a bijection between A and B after certain cance-
lations. More precisely, we have a bijection

¢: A\ | ¢, (G UGrya) — B
k=0

and an involution
(UK U ¢; (G U Grpq) — U ¢ H(Gr U Grp),
k=0 k=0

given by ¢(«o) = ¢i(a) if a € Ay and
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We call the bijections {¢x} a combinatorial telescoping for A. Once the combinatorial tele-
scoping is established, we can deduce that
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In Section 2, we apply this method to prove the following formulation of Watson’s identity
[11] (see also [8, Section 2.7])
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where -
(a;9)r = (1 —a)(1—aq)---(1—agd®), and (a;¢)e = H(l — aq").
i=0



When a = 1, Watson’s identity becomes Schur’s identity [2]
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Applying Jacobi’s triple product identity to the left hand side, we arrive at the first Rogers-
Ramanujan identity.

The idea of the combinatorial telescoping for Waston’s identity can be described as follows.
Assume that the k-th summand (without the sign) of the left hand side of (1.2) is the weight of
a set P consisting of certain combinatorial objects. We further divide Py into a disjoint union
of subsets P, ;,n = 0,1,... by considering the expansion of the summand in the parameter
a. For each positive integer n, we can construct a combinatorial telescoping

¢n,k: Pn,k - Pn,k U Pn—l,k U Gn,k U Gn,k-‘,—l- (13)
The corresponding bijection ¢,, leads to a recursion on
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as follows
F(a,q) = q"Fy(a,q) + a¢*" 'F,_1(a,q), n>1.

By iteration of the above relation, we obtain that Fy,(a,q) = a”¢" /(¢;q)n and hence (1.2)
holds.

As another example, we consider Sylvester’s identity [10]
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which has been investigated by Andrews [1]. It turns out that the combinatorial telescoping
for Sylvester’s identity is easy to find. It is our belief that combinatorial telescoping is a
general phenomenon for g-series identities.

2 The combinatorial telescoping for Watson’s identity

In this section, we shall use Watson’s identity as a benchmark to illustrate the idea of com-
binatorial telescoping. In principle, we can translate the combinatorial telescoping into a
bijection. However, this aspect will not be emphasized. Notice our telescoping approach can
be considered purely combinatorial since no manipulations on g-series is really involved.

A partition is a non-increasing finite sequence of positive integers A = (A1,...,Ar). The
integers A; are called the parts of A\. The sum of parts and the number of parts are denoted
by |A| = A1 + -+ A and £(\) = £, respectively. For a specific part, we call it a \;-part.
The number of k-parts is denoted by £x(\). The special partition with no parts is denoted by
@ and we define {((&) = +o0o. We shall use diagrams to represent partitions with columns
representing parts.



Let
Po={(r,\p)|7=FE" k=1,...,2,1), Ny >k, A; # 2k, 1 <k}, (2.5)

where k2 denotes 2k occurrences of the part k. In other words, 7 is a trapezoid partition
with |7] = k(5k — 1)/2, X is a partition with parts not less than & and not equal to 2k, p is
a partition with parts not more than k. It is clear that the k-th summand of the left hand
side of (1.2) without the sign can be viewed as the weight of Py, that is,

Z QZ(A)+2kq\T|+\A|+|ul_
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According to the exponent of a in the expansion, we divide P, into a disjoint union of
subsets

Pop={(1,\ 1) € Py |t(\) =n —2k}. (2.6)

The elements in P, j are illustrated by Figure 1.
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Figure 1: The diagram (7, A, ) € Py
We have the following combinatorial telescoping relation for P, j.

Theorem 2.1 Let
Gr ={(1, A\ 1) € Py | €p(N) > £ () — 1} (2.7)

Then for any positive integer n, there is a combinatorial telescoping for Py, i,

¢n,k: Pn,k I Pn,k U Pn—l,k U Gn,k U Gn,k-‘,—l- (28)

Proof. Let (1,\, ) € P, ;. The bijection is essentially a classification of P, ; according to
four cases.

Case 1. fi(\) > ly(n) — 1. Then (1,A\,u) € G, . The image of (7,A, 1) remains
unchanged.

Case 2. {;(\) < £i(p) — 1 and fo1(A) = 0. Denote the set of all such elements by U, .
Since (1) > £k(N) + 2, we can remove ({(\) + 2) k-parts from p to obtain a partition p'.
In the meantime, we change each k-part of \ into a 2k-part in order to obtain a partition \’
whose minimal part is strictly greater than k.

Next, we decrease each part of A’ by one in order to produce a partition \” whose minimal
part is greater than or equal to k. Since A\ contains no parts equal to 2k + 1, we see that
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Figure 2: The resulting partition under the bijection 1.

A" contains no parts equal to 2k. So we obtain a bijection ¢i: U, — P, defined by
(r, A\, ) — (7, A", p’). This case is illustrated by Figure 2.

Case 3. £k (N) < li(p) — 1, Log1(N) > 0 and £ 1(A) + Lor12(X) = 0. Denote the set of all
such elements by V;, ;. Let X', i/ be given as in Case 2. We can remove one (2k +1)-part from
X and decrease each of the rest parts by two in order to obtain A”. This leads to a bijection
02: Vi, — Pa_1 as given by (7, A\, p) — (7, X", 1t). See Figure 3 for an illustration.
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Figure 3: The resulting partition under the bijection 5.

Case 4. (i (N) < lp(p) — 1, Logr1(A) > 0 and Li11(N) + lagy2(A) > 0. Denote the set of
all such triples of partitions by W, ;. Let X, 1’ be given as in Case 2. We can change each
(2k + 2)-part of X into a (k + 1)-part and add for2()\) (k + 1)-parts to p/. Denote the
resulting partitions by A" and p”. Then we have

U1t (N) = Leg1(N) + Loy (N) > 0, Lgr (1) = Lopga(N). (2.9)
Remove one (k + 1)-part and one (2k + 1)-part from \” to obtain \”’. By (2.9), we find
Uit (N") = L (V') = 1 2> L (p7) — 1.

Moreover, it is clear that |\| + |u] = 2k + (K + 1) + (2k + 1) + [\| 4 |u”|. Let 7" be the
trapezoid partition of size k 4+ 1. So we obtain a bijection p3: W, — G 41 defied by

(1, A\, ) — (7', N, 1"). This case is illustrated by Figure 4. |
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Figure 4: The resulting partition under the bijection 3.



Observe that the bijection ¢; decreases |7|+ |A|+ || by n and @2 decreases |7]+ ||+ |y
by 2n — 1. The above combinatorial telescoping immediately leads to a recurrence relation.

Corollary 2.2 Let

o0
a,q) = Z(—l)k Z alq Tk, (2.10)
k=0 (T’)‘nu')epn,k
Then we have
Fu(a,q) = ¢"Fu(a,q) + ag® 'F,_1(a,q), n>1. (2.11)

Since Fy(a,q) = 1, by iteration we deduce that
2n—1 agin—4 n n?
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Summing over n, we arrive at Watson’s identity (1.2).

Fn(&, Q) =

As is well-known, taking a = 1 and a = ¢ in Watson’s identity and using Jacobi’s triple
product identity, one obtains the Rogers-Ramanujan identities:

oo n2 1 0 0
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3 The combinatorial telescoping for Sylvester’s identity

In this section, we give the combinatorial telescoping for Sylvester’s identity. Define
Qui = {(r, N 7= (KT E—1,...,2,1),\ # 2k + 1,655(\) = n — k},

where £~ () denotes the number of parts of A which are greater than k. It is straightforward
to check that @, ; is the disjoint union of three subsets:

Gni ={(1,\) € Qi g1 (N) > (N},
Un,k = {(T, /\) S Qn,k: €k+1()\) E ()\) and €2k+2()\) = 0},
Vi ={(1,A) € Quit L1 (A) < Li(A) and lop10(A) > 0}

Here we assume that £o(\) = +o0o. By an analogous argument to the proof of Theorem 2.1, we
find that U, ; and V, ;, are in one to one correspondence with @,, , and G, i1, respectively.
Thus we have the combinatorial telescoping

¢n,k: Qn,k - Qn,k U Gn,k U Gn,k-‘,—l-



Let
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We see that I,,(q) = ¢"I,(q), which implies that I,,(q) = 0 for n > 1. Clearly Io(q) =1 and
hence Sylvester’s identity holds.

To conclude this paper, we notice that both Watson’s identity and Sylvester’s identity can
be verified by employing the ¢-Zeilberger algorithm for infinite g-series developed by Chen,
Hou and Mu [6]. Let

i q%) 2qu(5k—1)/2.
= (aq Qoo

The g-Zeilberger algorithm gives that f(a) = f(aq) + aqf(ag?). It is easily checked that the
right hand side of (1.2) satisfies the same recursion. By Theorem 3.1 of [6], one sees that
(1.2) holds for arbitrary a provided that it holds for a = 0. Similarly, let

2k+1

o
Z 1)k gFBh1)/2 b 1 —xq
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The ¢-Zeilberger algorithm gives that f(z) = f(zq), implying that f(z) =
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