The Method of Combinatorial Telescoping

William Y.C. Chen ${ }^{1}$, Qing-Hu Hou ${ }^{2}$, and Lisa H. Sun ${ }^{3}$
Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China
${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ hou@nankai.edu.cn, ${ }^{3}$ sunhui@nankai.edu.cn

Abstract

We present a method for proving q-series identities by combinatorial telescoping in the sense that one can transform a bijection or classification of combinatorial objects into a telescoping relation. We shall demonstrate this idea by giving a combinatorial reasoning of Watson's identity which implies the Rogers-Ramanujan identities.

Keywords. Watson's identity, Schur's identity, Rogers-Ramanujan identities, combinatorial telescoping

AMS Subject Classification. 05A17; 11P83

1 Introduction

The main objective of this paper is to present the method of combinatorial telescoping for proving q-series identities. The benchmark of this method is the classical identity of Watson which implies Rogers-Ramanujan identities.

There have been many combinatorial proofs of the Rogers-Ramanujan identities. Schur [9] provided an involution for the following identity which is equivalent to the first RogersRamanujan identity:

$$
\prod_{k=1}^{\infty}\left(1-q^{k}\right)\left(1+\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k-1) / 2} .
$$

Andrews [1] proved the Rogers-Ramanujan identities by introducing the notion of k-partitions. Garsia and Milne [7] gave a bijection by using the involution principle. Bressoud and Zeilberger $[4,5]$ provided a different involution principle proof based on an algebraic proof by Bressoud [3]. Boulet and Pak [2] found a combinatorial proof which relies on the symmetry properties of a generalization of Dyson's rank.

Let us consider a summation of the form

$$
\sum_{k=0}^{\infty}(-1)^{k} f(k) .
$$

Suppose that for each k,

$$
f(k)=\sum_{\alpha \in A_{k}} w(\alpha)
$$

is the weighted count, or the weight, of a set A_{k}. Inspired by the idea of the creative telescoping of Zeilberger [12], we aim to find sets B_{k} and G_{k} such that there is a bijection

$$
\begin{equation*}
\phi_{k}: A_{k} \longrightarrow B_{k} \cup G_{k} \cup G_{k+1}, \tag{1.1}
\end{equation*}
$$

which is weight preserving on $\phi_{k}^{-1}\left(G_{k} \cup G_{k+1}\right)$. Throughout this paper, \cup stands for the disjoint union. Since the weights of $\phi_{k}^{-1}\left(G_{k+1}\right)$ and $\phi_{k+1}^{-1}\left(G_{k+1}\right)$ are both equal to the weight of G_{k+1}, we obtain a telescoping relation. Suppose that $G_{0}=\emptyset$ and G_{k} vanishes for sufficient large k. Let

$$
A=\bigcup_{k=0}^{\infty} A_{k}, \quad \text { and } \quad B=\bigcup_{k=0}^{\infty} B_{k} .
$$

Then the bijections $\left\{\phi_{k}\right\}$ altogether lead to a bijection between A and B after certain cancelations. More precisely, we have a bijection

$$
\phi: A \backslash \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(G_{k} \cup G_{k+1}\right) \longrightarrow B
$$

and an involution

$$
\psi: \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(G_{k} \cup G_{k+1}\right) \longrightarrow \bigcup_{k=0}^{\infty} \phi_{k}^{-1}\left(G_{k} \cup G_{k+1}\right),
$$

given by $\phi(\alpha)=\phi_{k}(\alpha)$ if $\alpha \in A_{k}$ and

$$
\psi(\alpha)= \begin{cases}\phi_{k-1}^{-1} \phi_{k}(\alpha), & \text { if } \alpha \in \phi_{k}^{-1}\left(G_{k}\right), \\ \phi_{k+1}^{-1} \phi_{k}(\alpha), & \text { if } \alpha \in \phi_{k}^{-1}\left(G_{k+1}\right) .\end{cases}
$$

We call the bijections $\left\{\phi_{k}\right\}$ a combinatorial telescoping for A. Once the combinatorial telescoping is established, we can deduce that

$$
\sum_{k=0}^{\infty}(-1)^{k} f(k)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{\beta \in B_{k}} w\left(\phi^{-1}(\beta)\right) .
$$

In Section 2, we apply this method to prove the following formulation of Watson's identity [11] (see also [8, Section 2.7])

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} \frac{1-a q^{2 k}}{(q ; q)_{k}\left(a q^{k} ; q\right)_{\infty}} a^{2 k} q^{k(5 k-1) / 2}=\sum_{n=0}^{\infty} \frac{a^{n} q^{n^{2}}}{(q ; q)_{n}} \tag{1.2}
\end{equation*}
$$

where

$$
(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right), \quad \text { and } \quad(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

When $a=1$, Watson's identity becomes Schur's identity [2]

$$
\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(5 k-1) / 2}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}} .
$$

Applying Jacobi's triple product identity to the left hand side, we arrive at the first RogersRamanujan identity.

The idea of the combinatorial telescoping for Waston's identity can be described as follows. Assume that the k-th summand (without the sign) of the left hand side of (1.2) is the weight of a set P_{k} consisting of certain combinatorial objects. We further divide P_{k} into a disjoint union of subsets $P_{n, k}, n=0,1, \ldots$ by considering the expansion of the summand in the parameter a. For each positive integer n, we can construct a combinatorial telescoping

$$
\begin{equation*}
\phi_{n, k}: P_{n, k} \rightarrow P_{n, k} \cup P_{n-1, k} \cup G_{n, k} \cup G_{n, k+1} . \tag{1.3}
\end{equation*}
$$

The corresponding bijection ϕ_{n} leads to a recursion on

$$
F_{n}(a, q)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{\alpha \in P_{n, k}} w(\alpha)
$$

as follows

$$
F_{n}(a, q)=q^{n} F_{n}(a, q)+a q^{2 n-1} F_{n-1}(a, q), \quad n \geq 1 .
$$

By iteration of the above relation, we obtain that $F_{n}(a, q)=a^{n} q^{n^{2}} /(q ; q)_{n}$ and hence (1.2) holds.

As another example, we consider Sylvester's identity [10]

$$
\begin{equation*}
\sum_{k=0}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} x^{k} \frac{1-x q^{2 k+1}}{(q ; q)_{k}\left(x q^{k+1} ; q\right)_{\infty}}=1, \tag{1.4}
\end{equation*}
$$

which has been investigated by Andrews [1]. It turns out that the combinatorial telescoping for Sylvester's identity is easy to find. It is our belief that combinatorial telescoping is a general phenomenon for q-series identities.

2 The combinatorial telescoping for Watson's identity

In this section, we shall use Watson's identity as a benchmark to illustrate the idea of combinatorial telescoping. In principle, we can translate the combinatorial telescoping into a bijection. However, this aspect will not be emphasized. Notice our telescoping approach can be considered purely combinatorial since no manipulations on q-series is really involved.

A partition is a non-increasing finite sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$. The integers λ_{i} are called the parts of λ. The sum of parts and the number of parts are denoted by $|\lambda|=\lambda_{1}+\cdots+\lambda_{\ell}$ and $\ell(\lambda)=\ell$, respectively. For a specific part, we call it a λ_{i}-part. The number of k-parts is denoted by $\ell_{k}(\lambda)$. The special partition with no parts is denoted by \varnothing and we define $\ell_{0}(\varnothing)=+\infty$. We shall use diagrams to represent partitions with columns representing parts.

Let

$$
\begin{equation*}
P_{k}=\left\{(\tau, \lambda, \mu) \mid \tau=\left(k^{2 k}, k-1, \ldots, 2,1\right), \lambda_{\ell(\lambda)} \geq k, \lambda_{i} \neq 2 k, \mu_{1} \leq k\right\} \tag{2.5}
\end{equation*}
$$

where $k^{2 k}$ denotes $2 k$ occurrences of the part k. In other words, τ is a trapezoid partition with $|\tau|=k(5 k-1) / 2, \lambda$ is a partition with parts not less than k and not equal to $2 k, \mu$ is a partition with parts not more than k. It is clear that the k-th summand of the left hand side of (1.2) without the sign can be viewed as the weight of P_{k}, that is,

$$
\sum_{(\tau, \lambda, \mu) \in P_{k}} a^{\ell(\lambda)+2 k} q^{|\tau|+|\lambda|+|\mu|} .
$$

According to the exponent of a in the expansion, we divide P_{k} into a disjoint union of subsets

$$
\begin{equation*}
P_{n, k}=\left\{(\tau, \lambda, \mu) \in P_{k} \mid \ell(\lambda)=n-2 k\right\} . \tag{2.6}
\end{equation*}
$$

The elements in $P_{n, k}$ are illustrated by Figure 1.

Figure 1: The diagram $(\tau, \lambda, \mu) \in P_{n, k}$
We have the following combinatorial telescoping relation for $P_{n, k}$.

Theorem 2.1 Let

$$
\begin{equation*}
G_{n, k}=\left\{(\tau, \lambda, \mu) \in P_{n, k} \mid \ell_{k}(\lambda) \geq \ell_{k}(\mu)-1\right\} \tag{2.7}
\end{equation*}
$$

Then for any positive integer n, there is a combinatorial telescoping for $P_{n, k}$,

$$
\begin{equation*}
\phi_{n, k}: P_{n, k} \longrightarrow P_{n, k} \cup P_{n-1, k} \cup G_{n, k} \cup G_{n, k+1} . \tag{2.8}
\end{equation*}
$$

Proof. Let $(\tau, \lambda, \mu) \in P_{n, k}$. The bijection is essentially a classification of $P_{n, k}$ according to four cases.

Case 1. $\quad \ell_{k}(\lambda) \geq \ell_{k}(\mu)-1$. Then $(\tau, \lambda, \mu) \in G_{n, k}$. The image of (τ, λ, μ) remains unchanged.

Case $2 . \ell_{k}(\lambda)<\ell_{k}(\mu)-1$ and $\ell_{2 k+1}(\lambda)=0$. Denote the set of all such elements by $U_{n, k}$. Since $\ell_{k}(\mu) \geq \ell_{k}(\lambda)+2$, we can remove $\left(\ell_{k}(\lambda)+2\right) k$-parts from μ to obtain a partition μ^{\prime}. In the meantime, we change each k-part of λ into a $2 k$-part in order to obtain a partition λ^{\prime} whose minimal part is strictly greater than k.

Next, we decrease each part of λ^{\prime} by one in order to produce a partition $\lambda^{\prime \prime}$ whose minimal part is greater than or equal to k. Since λ contains no parts equal to $2 k+1$, we see that

Figure 2: The resulting partition under the bijection φ_{1}.
$\lambda^{\prime \prime}$ contains no parts equal to $2 k$. So we obtain a bijection $\varphi_{1}: U_{n, k} \rightarrow P_{n, k}$ defined by $(\tau, \lambda, \mu) \mapsto\left(\tau, \lambda^{\prime \prime}, \mu^{\prime}\right)$. This case is illustrated by Figure 2.

Case 3. $\ell_{k}(\lambda)<\ell_{k}(\mu)-1, \ell_{2 k+1}(\lambda)>0$ and $\ell_{k+1}(\lambda)+\ell_{2 k+2}(\lambda)=0$. Denote the set of all such elements by $V_{n, k}$. Let $\lambda^{\prime}, \mu^{\prime}$ be given as in Case 2. We can remove one $(2 k+1)$-part from λ^{\prime} and decrease each of the rest parts by two in order to obtain $\lambda^{\prime \prime}$. This leads to a bijection $\varphi_{2}: V_{n, k} \rightarrow P_{n-1, k}$ as given by $(\tau, \lambda, \mu) \mapsto\left(\tau, \lambda^{\prime \prime}, \mu^{\prime}\right)$. See Figure 3 for an illustration.

Figure 3: The resulting partition under the bijection φ_{2}.
Case 4. $\ell_{k}(\lambda)<\ell_{k}(\mu)-1, \ell_{2 k+1}(\lambda)>0$ and $\ell_{k+1}(\lambda)+\ell_{2 k+2}(\lambda)>0$. Denote the set of all such triples of partitions by $W_{n, k}$. Let $\lambda^{\prime}, \mu^{\prime}$ be given as in Case 2. We can change each $(2 k+2)$-part of λ^{\prime} into a $(k+1)$-part and add $\ell_{2 k+2}\left(\lambda^{\prime}\right)(k+1)$-parts to μ^{\prime}. Denote the resulting partitions by $\lambda^{\prime \prime}$ and $\mu^{\prime \prime}$. Then we have

$$
\begin{equation*}
\ell_{k+1}\left(\lambda^{\prime \prime}\right)=\ell_{k+1}(\lambda)+\ell_{(2 k+2)}(\lambda)>0, \quad \ell_{k+1}\left(\mu^{\prime \prime}\right)=\ell_{2 k+2}(\lambda) . \tag{2.9}
\end{equation*}
$$

Remove one $(k+1)$-part and one $(2 k+1)$-part from $\lambda^{\prime \prime}$ to obtain $\lambda^{\prime \prime \prime}$. By (2.9), we find

$$
\ell_{k+1}\left(\lambda^{\prime \prime \prime}\right)=\ell_{k+1}\left(\lambda^{\prime \prime}\right)-1 \geq \ell_{k+1}\left(\mu^{\prime \prime}\right)-1 .
$$

Moreover, it is clear that $|\lambda|+|\mu|=2 k+(k+1)+(2 k+1)+\left|\lambda^{\prime \prime \prime}\right|+\left|\mu^{\prime \prime}\right|$. Let τ^{\prime} be the trapezoid partition of size $k+1$. So we obtain a bijection $\varphi_{3}: W_{n, k} \rightarrow G_{n, k+1}$ defied by $(\tau, \lambda, \mu) \mapsto\left(\tau^{\prime}, \lambda^{\prime \prime \prime}, \mu^{\prime \prime}\right)$. This case is illustrated by Figure 4.

Figure 4: The resulting partition under the bijection φ_{3}.

Observe that the bijection φ_{1} decreases $|\tau|+|\lambda|+|\mu|$ by n and φ_{2} decreases $|\tau|+|\lambda|+|\mu|$ by $2 n-1$. The above combinatorial telescoping immediately leads to a recurrence relation.

Corollary 2.2 Let

$$
\begin{equation*}
F_{n}(a, q)=\sum_{k=0}^{\infty}(-1)^{k} \sum_{(\tau, \lambda, \mu) \in P_{n, k}} a^{n} q^{|\tau|+|\lambda|+|\mu|} . \tag{2.10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
F_{n}(a, q)=q^{n} F_{n}(a, q)+a q^{2 n-1} F_{n-1}(a, q), \quad n \geq 1 . \tag{2.11}
\end{equation*}
$$

Since $F_{0}(a, q)=1$, by iteration we deduce that

$$
F_{n}(a, q)=\frac{a q^{2 n-1}}{1-q^{n}} F_{n-1}(a, q)=\frac{a^{2} q^{4 n-4}}{\left(1-q^{n}\right)\left(1-q^{n-1}\right)} F_{n-2}(a, q)=\cdots=\frac{a^{n} q^{n^{2}}}{(q ; q)_{n}} .
$$

Summing over n, we arrive at Watson's identity (1.2).
As is well-known, taking $a=1$ and $a=q$ in Watson's identity and using Jacobi's triple product identity, one obtains the Rogers-Ramanujan identities:

$$
\left.\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}\left(-q^{2}\right)^{k} q^{5} \begin{array}{c}
k \\
2
\end{array}\right)=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}
$$

and

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{(q ; q)_{\infty}} \sum_{k=-\infty}^{\infty}\left(-q^{4}\right)^{k} q^{5}\binom{k}{2}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}
$$

3 The combinatorial telescoping for Sylvester's identity

In this section, we give the combinatorial telescoping for Sylvester's identity. Define

$$
Q_{n, k}=\left\{(\tau, \lambda): \tau=\left(k^{k+1}, k-1, \ldots, 2,1\right), \lambda_{i} \neq 2 k+1, \ell_{>k}(\lambda)=n-k\right\},
$$

where $\ell_{>k}(\lambda)$ denotes the number of parts of λ which are greater than k. It is straightforward to check that $Q_{n, k}$ is the disjoint union of three subsets:

$$
\begin{aligned}
G_{n, k} & =\left\{(\tau, \lambda) \in Q_{n, k}: \ell_{k+1}(\lambda) \geq \ell_{k}(\lambda)\right\}, \\
U_{n, k} & =\left\{(\tau, \lambda) \in Q_{n, k}: \ell_{k+1}(\lambda)<\ell_{k}(\lambda) \text { and } \ell_{2 k+2}(\lambda)=0\right\}, \\
V_{n, k} & =\left\{(\tau, \lambda) \in Q_{n, k}: \ell_{k+1}(\lambda)<\ell_{k}(\lambda) \text { and } \ell_{2 k+2}(\lambda)>0\right\} .
\end{aligned}
$$

Here we assume that $\ell_{0}(\lambda)=+\infty$. By an analogous argument to the proof of Theorem 2.1, we find that $U_{n, k}$ and $V_{n, k}$ are in one to one correspondence with $Q_{n, k}$ and $G_{n, k+1}$, respectively. Thus we have the combinatorial telescoping

$$
\phi_{n, k}: Q_{n, k} \rightarrow Q_{n, k} \cup G_{n, k} \cup G_{n, k+1} .
$$

Let

$$
I_{n}(q)=\bigcup_{k=0}^{\infty}(-1)^{k} \sum_{(\tau, \lambda) \in Q_{n, k}} q^{|\tau|+|\lambda|} .
$$

We see that $I_{n}(q)=q^{n} I_{n}(q)$, which implies that $I_{n}(q)=0$ for $n \geq 1$. Clearly $I_{0}(q)=1$ and hence Sylvester's identity holds.

To conclude this paper, we notice that both Watson's identity and Sylvester's identity can be verified by employing the q-Zeilberger algorithm for infinite q-series developed by Chen, Hou and Mu [6]. Let

$$
f(a)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(1-a q^{2 k}\right)}{(q ; q)_{k}\left(a q^{k} ; q\right)_{\infty}} a^{2 k} q^{k(5 k-1) / 2} .
$$

The q-Zeilberger algorithm gives that $f(a)=f(a q)+a q f\left(a q^{2}\right)$. It is easily checked that the right hand side of (1.2) satisfies the same recursion. By Theorem 3.1 of [6], one sees that (1.2) holds for arbitrary a provided that it holds for $a=0$. Similarly, let

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} x^{k} \frac{1-x q^{2 k+1}}{(q ; q)_{k}\left(x q^{k+1} ; q\right)_{\infty}} .
$$

The q-Zeilberger algorithm gives that $f(x)=f(x q)$, implying that $f(x)=1$.

Acknowledgments. This work was supported by the National Science Foundation, the PCSIRT project of the Ministry of Education, and the Ministry of Science and Technology of China.

References

[1] G.E. Andrews, Partially ordered sets and the Rogers-Ramanujan identities, Aequationes Math. 12 (1975) 94-107.
[2] C. Boulet and I. Pak, A combinatorial proof of the Rogers-Ramanujan and Schur identities, J. Combin. Theory Ser. A 113 (2006) 1019-1030.
[3] D.M. Bressoud, An easy proof of the Rogers-Ramanujan identities, J. Number Theory 16 (1983) 235-241.
[4] D.M. Bressoud and D. Zeilberger, A short Rogers-Ramanujan bijection, Discrete Math. 38 (1982) 313-315.
[5] D.M. Bressoud and D. Zeilberger, Generalized Rogers-Ramanujan bijections, Adv. Math. 78 (1989) 42-75.
[6] W.Y.C. Chen, Q.-H. Hou, and Y.-P. Mu, Nonterminating basic hypergeometric series and the q-Zeilberger algorithm, Proc. Edinb. Math. Soc., 51 (2008) 609-633.
[7] A.M. Garsia and S.C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981) 289-339.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Ed., Cambridge University Press, Cambridge, MA, 2004.
[9] I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006) 5-75.
[10] J.J. Sylvester, A constructive theory of partitions, arranged in three acts, an interact, and an exodion, Amer. J. Math. 5 (1882) 251-330.
[11] G.N. Watson, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (1929) 4-9.
[12] D. Zeilberger, The method of creatvie telescoping, J. Symbolic Comput. 11 (1991) 195204.

