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Abstract. In this paper, we introduce the notion of a grammatical labeling to describe

a recursive process of generating combinatorial objects based on a context-free gram-

mar. For example, by labeling the ascents and descents of a Stirling permutation, we

obtain a grammar for the second-order Eulerian polynomials. By using the grammar

for 0-1-2 increasing trees given by Dumont, we obtain a grammatical derivation of the

generating function of the André polynomials obtained by Foata and Schützenberger,

without solving a differential equation. We also find a grammar for the number T (n, k)

of permutations of [n] = {1, 2, . . . , n} with k exterior peaks, which was independently

discovered by Ma. We demonstrate that Gessel’s formula for the generating function

of T (n, k) can be deduced from this grammar. Moreover, by using grammars we show

that the number of the permutations of [n] with k exterior peaks equals the number

of increasing trees on [n] with 2k+ 1 vertices of even degree. A combinatorial proof of

this fact is also presented.
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1 Introduction

A context-free grammar G over an alphabet A is defined as a set of substitution rules

replacing a letter in A by a formal function over A. Chen [2] introduced the notion

of the formal derivative of a context-free grammar, and used this approach to derive

combinatorial identities including identities on generating functions and the Lagrange

inversion formula. The formal derivative with respect to a context-free grammar sat-

isfies the relations just like the derivative,

D(u+ v) = D(u) +D(v),

D(uv) = D(u)v + uD(v).
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So the Leibniz rule is valid,

Dn(uv) =
n∑
k=0

(
n

k

)
Dk(u)Dn−k(v).

As a consequence, we see that

D(w−1) = −w−2D(w),

since D(ww−1) = 0.

The formal derivatives are also connected with the exponential generating functions.

Let

Gen(w, t) =
∑
n≥0

Dn(w)
tn

n!

for any formal function w. Then we have the following relations

Gen′(w, t) = Gen(D(w), t), (1.1)

Gen(u+ v, t) = Gen(u, t) + Gen(v, t), (1.2)

Gen(uv, t) = Gen(u, t)Gen(v, t), (1.3)

where u, v and w are formal functions and Gen′(w, t) means the derivative of Gen(w, t)

with respect to t.

Dumont [3] introduced the following grammar

G : x→ xy, y → xy (1.4)

and showed that it generates the Eulerian polynomials An(x). For a permutation

π = π1π2 · · · πn, the index i ∈ [n−1] is an ascent of π if πi < πi+1, a descent if πi > πi+1.

Let asc(π) be the number of ascents of π and Sn denote the set of permutation on

[n] = {1, 2, . . . , n}. The Eulerian polynomial An(x) is defined by

An(x) =
∑
π∈Sn

xasc(π)+1. (1.5)

To give a grammatical interpretation of An(x), Dumont defined bivariate polynomials

An(x, y) based on cyclic permutations on [n]. For a cyclic permutation σ, an index

i (1 ≤ i ≤ n) is an ascent if i < σ(i) and a descent if i > σ(i). Let ascc(σ) be the

number of ascents of σ, and let desc(σ) be the number of descents of σ. We assume

that a cyclic permutation is oriented clockwise. For example, Figure 1.1 is a cyclic

permutation on [6]. Let Cn denote the set of cyclic permutations on [n]. For n ≥ 1,

Dumont defined a the polynomial An(x, y) as follows,

An(x, y) =
∑

σ∈Cn+1

xascc(σ)ydesc(σ). (1.6)
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Figure 1.1: a cyclic permutation of [6]

It should be noted that Dumont used the notation An+1(x, y) instead of An(x, y) for

the above polynomial. We choose the above notation for the reason of consistency with

the notation that we shall use in the next section.

Setting y = 1 in (1.6), we get that for n ≥ 1

An(x, y)|y=1 = An(x). (1.7)

For n ≥ 1, to obtain An+1(x, y) from An(x, y), Dumont observed that the insertion

of n + 1 into a cyclic permutation of [n] after i leads to a replacement of the arc

(i, σ(i)) with (i, n+ 1) followed by (n+ 1, σ(i)). If i is an ascent, (i, σ(i)) corresponds

to x with respect to the definition of An(x, y) and the insertion of n + 1 corresponds

to substitution of x by xy. If i is a descent, the insertion of n + 1 corresponds to

substitution of y by xy. Thus, An+1(x, y) can be obtained from An(x, y) by applying

the substitution rules of the grammar G, namely,

An+1(x, y) = D(An(x, y)).

It follows that

Dn(x) = An(x, y).

To demonstrate how to use a context-free grammar to generate combinatorial ob-

jects, we introduce the concept of a grammatical labeling. This idea is implicit in the

partition argument with respect to the grammar fi → fi+1g1, gi → gi+1 to generate par-

titions as given by Chen [2]. It turns out that a grammatical labeling serves a concrete

connection between a grammar and the corresponding combinatorial structure.

This paper is organized as follows. In Section 2, we use examples to illustrate the

notion of a grammatical labeling. We give an explanation of relation (1.7) by labeling

ascents and descents of a permutation instead of a cyclic permutation. Similarly, by

labeling ascents, descents and plateaux of a Stirling permutation, we obtain a gram-

matical interpretation of the second-order Eulerian polynomials. As another example,

we give a grammatical explanation of the Lah numbers by labeling the ascents and

descents of a partition into lists. We also demonstrate how to use the formal derivative

with respect to the grammar x → xy, y → xy to deduce an identity on the Eulerian

polynomials.
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Section 3 is devoted to the applications of the grammar x → xy, y → x found by

Dumont [3] for the André polynomials defined in terms of 0-1-2 increasing trees. As

shown in Chen [2], a context-free grammar can be rigorously used to derive combi-

natorial identities in the sense that a formal derivative plays a role analogous to the

derivative in calculus. We shall demonstrate how to use the grammar for 0-1-2 in-

creasing trees given by Dumont [3] to give a grammatical derivation of the generating

function of the André polynomials obtained by Foata and Schützenberger, without

solving a differential equation.

In Section 4, we use the grammatical labeling to concern permutations with exterior

peaks. We find that the following grammar

G : x→ xy, y → x2

can be used to generate permutations with respect to exterior peaks. This grammar was

independently discovered by Ma [11]. We show that Gessel’s formula for the generating

function of permutations on exterior peaks can be derived by using this grammar.

In Section 5, by specializing a grammar of Dumont [3] for increasing trees, we find

that this grammar also generates increasing trees with respect to the number of vertices

with even degree. To be more specific, the degree of a vertex in a rooted tree is meant

to be the number of its children. As a consequence, we obtain that the number of

permutations of [n] with k exterior peaks equals the number of increasing trees on [n]

with 2k + 1 vertices of even degree.

We conclude this paper with a bijection between permutations and increasing trees

which connects these two statistics. This bijection is an extension of a correspondence

between alternating permutations and even increasing trees given by Kuznetsov, Pak

and Postnikov [10].

2 Grammatical Labelings

In order to connect a context-free grammar to a combinatorial structure, we associate

the elements of a combinatorial structure with letters in a grammar. Such a labeling

scheme of a combinatorial structure is called a grammatical labeling.

For example, consider the following grammar given by Dumont [3],

G : x→ xy, y → xy. (2.1)

We shall use a grammatical labeling on permutations to show that the Eulerian poly-

nomial An(x) can be expressed in terms of the formal derivative with respect to the

grammar G. This labeling can be easily extended to Stirling permutations and parti-

tions into lists.
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Denote by A(n,m) the number of permutations of [n] with m − 1 ascents. The

generating function

An(x) =
n∑

m=1

A(n,m)xm

is known as the Eulerian polynomial.

We now give a grammatical labeling on permutations to generate the Eulerian poly-

nomials. Let π be a permutation of [n]. An index i (1 ≤ i ≤ n− 1), is called an ascent

if πi < πi+1, a descent if πi > πi+1. Set π0 = πn+1 = 0. For 0 ≤ i ≤ n, if πi < πi+1, we

label i by x, and if πi > πi+1, we label i by y. With this labeling, the weight of π is

defined as the product of the labels, that is,

w(π) = xasc(π)+1ydes(π)+1,

where asc(π) denotes the number of ascents in π and des(π) denotes the number of

descents in π. As will been seen, the polynomial An(x, y) defined in terms of the

descent number and the ascent number of a cyclic polynomial as given in (1.6) can also

be expressed in terms of the descent number and the ascent number of a permutation,

that is, for n ≥ 1,

An(x, y) =
∑
π∈Sn

xasc(π)+1ydes(π)+1.

A grammatical labeling plays a role of establishing a connection between the action

of the formal derivative D and the insertion of the element n+ 1 into a combinatorial

structure on [n]. For example, let n = 6 and π = 325641. The grammatical labeling of

π is given below
3 2 5 6 4 1

x y x x y y y.

If we insert 7 after 5, the resulting permutation and its grammatical labeling are as

follows,
3 2 5 7 6 4 1

x y x x y y y y.

It can be seen that the insertion of 7 after 5 corresponds to the differentiation on the

label x associated with 5. The same argument applies to the case when the new element

is inserted after an element labeled by y. Hence the action of the formal derivative D

on the set of weights of permutations in Sn gives the set of weights of permutations in

Sn+1. This yields the following grammatical expression for An(x, y).

Theorem 2.1 Let D be the formal derivative with respect to grammar (2.1). For

n > 1, we have

Dn(x) =
n∑

m=1

A(n,m)xmyn+1−m.

From Theorem 2.1, it follows that Dn(x)|y=1 = An(x). Here we give a grammatical

proof of the following classical recurrence for the Eulerian polynomials An(x).
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Proposition 2.2 For n ≥ 1, we have

An(x) =
n−1∑
k=0

(
n

k

)
Ak(x)(x− 1)n−1−k, (2.2)

where A0(x) = 1.

Proof. By the definition of grammar (2.1), we have D(x−1) = −x−2D(x) = −x−1y.

Hence

D(x−1y) = x−1D(y) + yD(x−1) = x−1y(x− y). (2.3)

Since (x− y) is a constant with respect to D, we see that

Dn(x−1y) = x−1y(x− y)n. (2.4)

By the Leibniz formula, we have for n ≥ 1,

Dn(x) = Dn(y) = Dn(xx−1y) =
n∑
k=0

(
n

k

)
Dk(x)Dn−k(x−1y). (2.5)

Substituting (2.4) into (2.5) we get

(x− y)x−1Dn(x) =
n−1∑
k=0

(
n

k

)
x−1yDk(x)(x− y)n−k.

Setting y = 1, we arrive at (2.2).

Next, we introduce a grammar to generate Stirling permutations. Let [n]2 denote

the multiset {12, 22, . . . , n2}, where i2 stands for two occurrences of i. A Stirling per-

mutation is a permutation π of the multiset [n]2 such that for each 1 ≤ i ≤ n the

elements between two occurrences of i are larger than i, see Gessel and Stanley [8]. For

example, 123321455664 is a Stirling permutation on [6]2.

For a Stirling permutation π = π1π2 · · · π2n, an index i (1 ≤ i ≤ 2n− 1), is called an

ascent if πi < πi+1, a descent if πi > πi+1 and a plateaux if πi = πi+1. We shall show

that the following grammar

G : x→ xy2, y → xy2 (2.6)

can be used to generate Stirling permutations. We now give a grammatical labeling

on Stirling permutations. Let π = π1π2 · · · π2n be a Stirling permutation on [n]2.

First, we add a zero at the beginning and a zero at the end of π. Then we label an

ascent of 0π1π2 · · · π2n0 by x and label a descent or a plateau by y. For example, let

π = 244215566133. The grammatical labeling of π is given below

2 4 4 2 1 5 5 6 6 1 3 3
x x y y y x y x y y x y y.
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If we insert 77 after the first occurrence of 4, we get

2 4 7 7 4 2 1 5 5 6 6 1 3 3
x x x y y y y x y x y y x y y.

If we insert 77 after the second occurrence of 1, we get

2 4 4 2 1 5 5 6 6 1 7 7 3 3
x x y y y x y x y y x y y y y.

Notice that each Stirling permutation on [n]2 can be obtained by inserting nn into

a Stirling permutation on [n − 1]2. Thus, we get a grammatical interpretation of

generating function of Stirling permutations with respect to the number of ascents.

Theorem 2.3 Let D be the formal derivative with respect to grammar (2.6). Then we

have

Dn(x) =
n∑

m=1

C(n,m)xmy2n+1−m, (2.7)

where C(n,m) denotes the number of Stirling permutations of [n]2 with m− 1 ascents.

We use the notation Cn(x) as used in Bóna [1] to denote the second-order Eulerian

polynomials

Cn(x) =
n∑

m=1

C(n,m)xm.

From Theorem 2.3, we see that Dn(x)|y=1 = Cn(x).

In general, we can use the grammar

G : x→ xyr, y → xyr

to generate r-Stirling permutations. An r-Stirling permutation is a permutation on

[n]r = {1r, 2r, . . . , nr} such that the elements between two occurrences of i are not

smaller than i.

To conclude this section, we give the following grammar

G : z → xyz, x→ xy, y → xy, (2.8)

and we show that this grammar can be used to generate partitions of [n] into lists. We

call the above grammar the Lah grammar. Recall that a partition of [n] into lists is a

partition of [n] for which the elements of each block are linearly ordered. For a partition

into lists, label the partition itself by z. Express a list σ1σ2 · · ·σm by 0σ1σ2 · · ·σm0 and

label an ascent and a descent of 0σ1σ2 · · ·σm0 by x and y respectively. For example,

let π = {325, 614, 7}. Below is the labeling of π:

z
3 2 5

x y x y
6 1 4

x y x y
7

x y

Using this labeling, it can be easily seen that grammar (2.8) generates partitions into

lists.
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Theorem 2.4 Let C(n, k,m) be the number of partitions of [n] into k lists with m

ascents. Then, we have

Dn(z) =
n∑
k=1

n∑
m=k

C(n, k,m)xmyk+n−mz.

In particular, setting y = x, we get the grammar

G : z → x2z, x→ x2, (2.9)

which generates the signless Lah numbers

L(n, k) =

(
n− 1

k − 1

)
n!

k!
.

Corollary 2.5 Let D be the formal derivative with respect to grammar (2.9). Then

Dn(z) = xnz
n∑
k=1

L(n, k)xk. (2.10)

3 The André Polynomials

In this section, we use the grammar found by Dumont [3] to give a proof of the generat-

ing function formula for the André polynomials without solving a differential equation.

This formula was first obtained by Foata and Schützenberger [7].

Recall that the André polynomials are defined in terms of 0-1-2 increasing trees. An

increasing tree on [n] is a rooted tree with vertex set {0, 1, 2, . . . , n} in which the labels

of the vertices are increasing along any path from the root. Note that 0 is the root. A

0-1-2 increasing tree is an increasing tree in which the degree of any vertex is at most

two. Recall that in this paper, the degree of a vertex in a rooted tree is meant to be

the number of its children. Given a 0-1-2 increasing tree T , let l(T ) denote the number

of leaves of T , and u(T ) denote the number of vertices of T with degree 1. Then the

André polynomial is defined by

En(x, y) =
∑
T

xl(T )yu(T ),

where the sum ranges over 0-1-2 increasing trees on [n− 1].

Setting x = y = 1, En(x, y) reduces to the n-th Euler number En, which counts

both 0-1-2 increasing trees on [n− 1] and alternating permutations of [n], see [5,7,10].

Foata and Schützenberger obtained the generating function of the André polynomi-

als in [7] by solving a differential equation. Later, Foata and Han [6] found a way to
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compute the generating function of En(x, 1) without solving a differential equation, or

equivalently, the generating function of En(x, y).

Dumont [3] introduced the grammar

G : x→ xy, y → x (3.1)

and showed that it generates the André polynomials En(x, y). This fact can be justified

intuitively in terms of the following grammatical labeling. Given a 0-1-2 increasing tree

T , a leaf of T is labeled by x, a vertex of degree 1 in T is labeled by y and a vertex

of degree 2 in T is labeled by 1. The following figure illustrates the labeling of a 0-1-2

increasing tree on {1, 2, 3, 4, 5}.

0(1)

2(y)

4(x)

1(1)

3(x) 5(x)

Figure 3.2: The labeling of a 0-1-2 increasing tree on {1, 2, 3, 4, 5}

If we add 6 as a child of 2, the resulting tree is as follows.

0(1)

2(1)

4(x) 6(x)

1(1)

3(x) 5(x)

After the vertex 6 is added, the label of 2 is changed from y to 1, and the vertex 6

gets a label x. This corresponds to the rule y → x of the grammar G. Similarly,

adding the vertex 6 to a leaf of the increasing tree in Figure 3.2 corresponds to the rule

x → xy. Let D be the formal derivative with respect to the grammar in (3.1). The

above grammatical labeling leads to the following relation

Dn(x) = En(x, y).

Now we demonstrate that one can use the grammar G in (3.1) to derive the gener-

ating function of En(x, y) without solving a differential equation.

9



Theorem 3.1 (Foata and Schützenberger) We have

∞∑
n=0

En(x, y)

n!
tn

=
x
√

2x− y2 + y(2x− y2) sin(t
√

2x− y2)− (x− y2)
√

2x− y2 cos(t
√

2x− y2)
(x− y2) sin(t

√
2x− y2) + y

√
2x− y2 cos(t

√
2x− y2)

.

(3.2)

Setting x = y = 1, we get
∞∑
n=0

En
n!
tn = sec t+ tan t. (3.3)

Proof. By the Leibniz rule, we have

Gen(x−1y, t) = Gen(x−1, t)Gen(y, t). (3.4)

Differentiating both sides of (3.4) with respect to t yields

Gen′(x−1y, t) = Gen′(x−1, t)Gen(y, t) + Gen(x−1, t)Gen′(y, t). (3.5)

Since D(x−1) = −x−1y, we have

Gen′(x−1, t) = Gen(D(x−1), t) = −Gen(x−1y, t). (3.6)

Using D(y) = x, we get

Gen(x−1, t)Gen′(y, t) = Gen(x−1, t)Gen(D(y), t) = Gen(x−1, t)Gen(x, t) = 1. (3.7)

Substituting (3.6) and (3.7) into (3.5), we deduce that

Gen′(x−1y, t) = 1−Gen(x−1y, t)Gen(y, t),

and hence

Gen(y, t) =
1−Gen′(x−1y, t)

Gen(x−1y, t)
. (3.8)

We now compute the generating function Gen(x−1y, t). It is easily verified that

D2m+1(x−1y) = (1− x−1y2)(y2 − 2x)m (3.9)

and

D2m(x−1y) = x−1y(y2 − 2x)m. (3.10)
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Using (3.9) and (3.10), we have

Gen(x−1y, t) =
∞∑
n=0

Dn(x−1y)

n!
tn

= (1− x−1y2)
∞∑
n=0

(y2 − 2x)n

(2n+ 1)!
t2n+1 + x−1y

∞∑
n=0

(y2 − 2x)n

(2n)!
t2n

=
1− x−1y2√

2x− y2

∞∑
n=0

(−1)n(t
√

2x− y2)2n+1

(2n+ 1)!
+ x−1y

∞∑
n=0

(−1)n(t
√

2x− y2)2n

(2n)!

=
1− x−1y2√

2x− y2
sin(t

√
2x− y2) + x−1y cos(t

√
2x− y2). (3.11)

Plugging (3.11) into (3.8), we arrive at (3.2), and hence the proof is complete.

4 Permutations with k Exterior Peaks

In this section, we introduce the following grammar

G : x→ xy, y → x2 (4.1)

and we show that G generates the number T (n, k) of permutations of [n] with k exterior

peaks. Let

Tn(x) =
∑
k≥0

T (n, k)xk.

The grammar G also leads to a recurrence relation of Tn(x). Moreover, we give a

grammatical proof of the formula for the generating function of Tn(x) due to Gessel,

see [12].

Recall that for a permutation π = π1π2 · · · πn ∈ Sn, the index i is called an exterior

peak if 1 < i < n and πi−1 < πi > πi+1, or i = 1 and π1 > π2. We shall use

a grammatical labeling of permutations to show that grammar (4.1) generates the

polynomial Tn(x).

For a permutation π of [n], we give a labeling as follows. First, we add an element

0 at the end of the permutation. If i is an exterior peak, then we label i and i + 1 by

x. In addition, the element 0 is labeled by x, and all other elements are labeled by y.

The weight w of a permutation is defined to be the product of all the labels. For a

permutation π with k exterior peaks, its weight is given by

w(π) = x2k+1yn−2k.

For example, let π = 325641. The labeling of π is as follows

3 2 5 6 4 1 0
x x y x x y x,
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and the weight of π is x5y2. If we insert 7 before 3, then the labeling of the resulting

permutation is
7 3 2 5 6 4 1 0
x x y y x x y x.

We see that the label of 2 changes from x to y and the label of 7 is x. So this insertion

corresponds to the rule x→ xy. If we insert 7 before 0, we get

3 2 5 6 4 1 7 0
x x y x x y y x,

where the label x of 0 remains the same and the label of 7 is y. In this case, the

insertion corresponds to the rule x→ xy. If we insert 7 before 5, we get

3 2 7 5 6 4 1 0
x x x x x x y x,

where the label of 5 changes from y to x and the label of 7 is x. This corresponds to

the rule y → x2 in grammar (4.1). In general, the above labeling leads to the following

theorem.

Theorem 4.1 Let D be the formal derivative with respect to grammar (4.1). For

n ≥ 1,

Dn(x) =

bn/2c∑
k=0

T (n, k)x2k+1yn−2k. (4.2)

The grammar (4.1) and relation (4.2) were announced at the International Confer-

ence on Designs, Matrices and Enumerative Combinatorics held at National Taiwan

University in 2011. Ma [11] independently discovered grammar (4.1) and gave an in-

ductive proof of relation (4.2).

By Theorem 4.1, we obtain the following recurrence relation.

Proposition 4.2 For n ≥ 1,

Tn(x) =
n∑
j=1

(
n

j

)
(−1)j−1(1− x)bj/2cTn−j(x). (4.3)

Proof. Note that

D(x−1) = −x−1y, D(−x−1y) = x−1(y2 − x2), D(y2 − x2) = 0.

Hence

D2m+1(x−1) = −x−1y(y2 − x2)m (4.4)

and

D2m(x−1) = x−1(y2 − x2)m. (4.5)
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Setting y = 1 in (4.4) and (4.5), we get

Dj(x−1)|y=1 = (−1)jx−1(1− x2)bj/2c.

By the Leibniz rule we have

Dn(x−1x)|y=1 = 0 =
n∑
j=0

(
n

j

)
Dj(x−1)|y=1D

n−j(x)|y=1

=
n∑
j=0

(
n

j

)
(−1)jx−1(1− x2)bj/2cDn−j(x)|y=1. (4.6)

According to Theorem 4.1, we see that

Dn(x)|y=1 = xTn(x2).

Hence (4.3) follows from (4.6).

With the aid of grammar (4.1), we give a derivation of the following generating

function of Tn(x) due to Gessel, see [12].

Theorem 4.3 (Gessel) We have

∞∑
n=0

Tn(x)

n!
tn =

√
1− x√

1− x cosh(
√

1− xt)− sinh(
√

1− xt)
. (4.7)

To prove Theorem 4.3, we need the following generating function. As will be seen,

this generating function is related to the generating function of T (n, k).

Theorem 4.4 For the the following grammar

G : u→ v2, v → v, (4.8)

we have

Gen(u−1v, t) =
v

u cosh(t) + (v2 − u) sinh(t)
. (4.9)

Proof. Let D be the formal derivative with respect to G. Since D(v) = v, we have

Gen(v, t) = vet.

By (1.3), we find that

Gen(u−1v2, t) = Gen(v, t)Gen(u−1v, t) = vetGen(u−1v, t). (4.10)

We proceed to compute (Gen(u−1v2, t))′ in two ways. It is easily checked that

D(u−1v2) = −(u−1v)2(v2 − 2u).
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Thus, from (1.1) and (1.3) we deduce that

(Gen(u−1v2, t))′ = Gen
(
D(u−1v2), t

)
= −Gen2(u−1v, t)Gen(v2 − 2u, t). (4.11)

On the other hand, since

D(u−1v) = u−1v(1− u−1v2),

from (4.10) we find that

(Gen(u−1v2, t))′ = (vetGen(u−1v, t))′

= vetGen(u−1v, t) + vetGen(D(u−1v), t)

= vetGen(u−1v, t) + vetGen(u−1v, t)Gen(1− u−1v2, t). (4.12)

Comparing (4.11) with (4.12), we obtain that

−Gen2(u−1v, t)Gen(v2 − 2u, t)

= vetGen(u−1v, t) + vetGen(u−1v, t)Gen(1− u−1v2, t),

or, equivalently,

−Gen(u−1v, t)Gen(v2 − 2u, t) = vet + vetGen(1− u−1v2, t). (4.13)

Since D(v2 − 2u) = 0, we get

Gen(v2 − 2u, t) = v2 − 2u.

Clearly, Gen(1− u−1v2, t) = 1−Gen(u−1v2, t). Thus (4.13) can be simplified to

− (v2 − 2u)Gen(u−1v, t) = 2vet − vetGen(u−1v2, t). (4.14)

Plugging (4.10) into (4.14), we arrive at

Gen(u−1v, t) =
2v

v2et − (v2 − 2u)e−t
,

which can be written in the form of (4.9), and so the proof is complete.

We proceed to show that Gen(u−1v, t) can be used to derive the generating function

of Tn(x) as given in Theorem 4.3. To this end, we consider the following grammar

G : x→ xy, y → wx2. (4.15)

For a permutation π of [n], we give a labeling which is essentially the same as the

labeling given before. First, add an element 0 at the end of the permutation. If i is

an exterior peak, then we label i by wx and i + 1 by x. In addition, the element 0 is
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labeled by x, and all other elements are labeled by y. For example, let π = 325641.

The labeling of π is as follows

3 2 5 6 4 1 0
wx x y wx x y x.

For the grammar in (4.15), we have

Dn(x) =

bn/2c∑
k=0

T (n, k)x2k+1yn−2kwk. (4.16)

Proof of Theorem 4.3. For the grammar (4.8) in Theorem 4.4, notice the relations

D(u−1v) = u−1v(1− u−1v2),

D(1− u−1v2) = (u−1v)2(v2 − 2u),

D(v2 − 2u) = 0.

Comparing the above relations with the rules of the grammar in (4.15) and making the

substitutions x = u−1v, y = 1 − u−1v2, w = v2 − 2u, we get the rules as in grammar

(4.15), namely, D(x) = xy, D(y) = wx2 and D(w) = 0. Hence relation (4.16) implies

that

Dn(u−1v) =

bn/2c∑
k=0

T (n, k)(u−1v)2k+1(1− u−1v2)n−2k(v2 − 2u)k,

that is,

Gen(u−1v, t) =
∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(u−1v)2k+1(1− u−1v2)n−2k(v2 − 2u)k. (4.17)

Comparing (4.9) with (4.17), we get

∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(u−1v)2k(1− u−1v2)n−2k(v2 − 2u)k =
u

u cosh(t) + (v2 − u) sinh(t)
.

Since the above relation is valid for indeterminates u and v, we can set v =
√
u− 1 to

deduce the following relation

∑
n≥0

tnu−n

n!

bn/2c∑
k=0

T (n, k)(1− u2)k =
u

u cosh(t)− sinh(t)
. (4.18)

Substituting t by ut in (4.18), we get

∑
n≥0

tn

n!

bn/2c∑
k=0

T (n, k)(1− u2)k =
u

u cosh(ut)− sinh(ut)
. (4.19)

Finally, by setting x = 1− u2 in (4.19), we reach (4.7). This completes the proof.
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5 Peaks in permutations and increasing trees

In this section, we use a grammatical approach to establish the following theorem on a

connection between permutations with a given number of exterior peaks and increasing

trees with a given number of vertices of even degree. Then we give a combinatorial

interpretation of this fact.

Theorem 5.1 The number of permutations σ of [n] with k exterior peaks equals the

number of increasing trees Tσ on [n] with 2k + 1 vertices which have even degree.

To prove the above theorem by using grammars, we first recall a grammar given by

Dumont [3],

G : xi → x0xi+1. (5.1)

Let D be the formal derivative with respect to G. Dumont [3] showed that

Dn(x0) =
∑
T

x
m0(T )
0 x

m1(T )
1 x

m2(T )
2 · · ·, (5.2)

where the sum ranges over increasing trees T on [n] and mi(T ) denotes the number of

vertices of degree i in T .

Relation (5.2) can be justified by labeling a vertex of degree i with xi in an increasing

tree. Here is an example.

0(x2)

2(x1)

4(x0)

1(x3)

3(x0)5(x0)6(x0)

Figure 5.3: A labeling on an increasing tree

Let T be an increasing tree on [n] with the above labeling. When adding the vertex

n + 1 to T as the child of a vertex v of degree i, the label of v changes from xi to

xi+1 and the label of n + 1 is x0. This corresponds to the rule xi → x0xi+1. Since the

increasing trees on [n+ 1] can be generated by adding n+ 1 to the increasing trees on

[n], the above labeling leads to (5.2).

By setting x2i = x and x2i+1 = y, we see that the grammar (5.1) becomes the

grammar (4.1) that generates the polynomial Tn(x) for permutations with a given
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number of exterior peaks. Intuitively, this leads to a grammatical reasoning of Theorem

5.1. Next we give a rigorous proof of this observation by a grammatical labeling with

respect to the parities of the vertices in an increasing tree.

Grammatical Proof of Theorem 5.1. We give the following grammatical labeling of an

increasing tree. We label a vertex of even degree with x and a vertex of odd degree

with y. For example, the labeling of the increasing tree in Figure 5.3 is given below.

0(x)

2(y)

4(x)

1(y)

3(x) 5(x) 6(x)

Let T be an increasing tree on [n] with the above labeling. When adding the vertex

n + 1 to T as a child of a vertex v of even degree, the label of v changes from x to y

and the label of n+ 1 is x. This corresponds to the rule x→ xy. Similarly, adding the

vertex n+ 1 to T as a child of a vertex of odd degree corresponds to the rule y → x2.

Thus, we obtain that

Dn(x) =
∑
T

xme(T )ymo(T ), (5.3)

where the sum ranges over increasing trees T on [n] and me(T ) denotes the number of

vertices of even degree in T , mo(T ) denotes the number of vertices of odd degree in T .

Comparing (4.2) with (5.3), we deduce that

bn/2c∑
k=0

T (n, k)x2k+1yn−2k =
∑
T

xme(T )ymo(T ),

where T ranges over increasing trees on [n]. This completes the proof.

To conclude this paper, we give a combinatorial proof of Theorem 5.1. More pre-

cisely, we provide a bijection Φ between permutations and increasing trees such that

a permutation of [n] with k exterior peaks corresponds to an increasing tree on [n]

with 2k+ 1 vertices of even degree. Recall that a permutation σ = σ1σ2 · · ·σn of [n] is

called a up-down permutation if σ1 < σ2 > σ3 < · · · . Similarly, σ is called a down-up

permutation if σ1 > σ2 < σ3 > · · · . When restricted to down-up permutations, Φ

reduces to the bijection between down-up permutations and even increasing trees. An

even increasing tree is meant to be an increasing tree such that each vertex possibly

except for the root is of even degree. Kuznetsov, Pak and Postnikov [10] gave a bi-

jection between up-down permutations and even increasing trees. So our bijection can

be considered as an extension of the bijection given by Kuznetsov, Pak and Postnikov,
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since there is an obvious correspondence between up-down permutations and down-up

permutations.

Before describing our bijection, we recall that the code of a permutation is defined as

follows. For a permutation σ = σ1σ2 · · ·σn of [n], let code(σ) = (c1, c2, . . . , cn) denote

the code of σ. In other words, ci is the number of elements σj such that j > i and

σi > σj. It is clear that cn = 0.

The increasing tree Φ(σ) can be constructed via n steps. At each step, a vertex

is added to a forest of increasing trees. More precisely, at the k-th step, we obtain a

forest of increasing trees with k vertices, and finally obtain an increasing tree Φ(σ) on

[n].

For k = 1, as the first step we start with an increasing tree F1 with a single vertex

i1 = n−c1. For k > 1, we assume that a forest Fk−1 has been obtained at the (k−1)-th

step. Denote by Ik−1 and Jk−1 the set of vertices and the set of roots of Fk−1. Let Īk−1
be the complement of Ik−1, that is, Īk−1 = [n] \ Ik−1. The goal of the k-th step is to

construct a forest Fk by adding an element from Īk−1 to Fk−1.

Let j1, j2, . . . , jl be the elements of Jk−1 listed in decreasing order. For notational

convenience, we assume that j0 = n+ 1, jl+1 = 0 and c0 = 0. Let

Uk = {m ∈ Īk−1 | j2p+2 < m < j2p+1 for some p ≥ 0}, (5.4)

Vk = {m ∈ Īk−1 | j2p+1 < m < j2p for some p ≥ 0}. (5.5)

It is clear that Uk ∩ Vk = ∅ and Īk−1 = Uk ∪ Vk.

Define Mk to be Uk if ck−2 ≤ ck−1 ≤ ck or ck−2 > ck−1 > ck; otherwise, define Mk

to be Vk. Let m1, . . . ,ms be the elements of Mk listed in increasing order. We define

ik to be mck+1 if ck−1 > ck, or mn−k+1−ck if ck−1 ≤ ck. By the following lemma, it can

be seen that it is feasible to choose such ik, that is,

|Mk| ≥ ck + 1 (5.6)

holds if ck−1 > ck and

|Mk| ≥ n− k + 1− ck (5.7)

holds if ck−1 ≤ ck. Now, we add ik to Fk−1 by setting each jp ∈ Jk−1 to be a child of

ik if jp > ik, and let the resulting forest by Fk.

When k < n, we may iterate the above process until we obtain a forest Fn on [n].

Setting each root of Fn to be a child of the vertex 0, we obtain an increasing tree T ,

which is set to be Φ(σ).

Here is an example for the above bijection. Let σ = 5346721. The code of σ is

code(σ) = (4, 2, 2, 2, 2, 1, 0). The increasing tree Φ(σ) is as follows.
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0

1

2

3 6 7

4

5

The values Ik, Jk, Mk, ik and the forests Fk are given in the following table.

k Mk ik Fk Ik, Jk

1 — i1 = 3 3 I1 = {3}
J1 = {3}

2 M2 = {4, 5, 6, 7} i2 = 6 3 6 I2 = {3, 6}
J2 = {3, 6}

3 M3 = {1, 2, 7} i3 = 7 3 6 7 I3 = {3, 6, 7}
J3 = {3, 6, 7}

4 M4 = {1, 2} i4 = 2

2

3 6 7

I4 = {2, 3, 6, 7}
J4 = {2}

5 M5 = {1} i5 = 1

1

2

3 6 7

I5 = {1, 2, 3, 6, 7}
J5 = {1}

6 M6 = {4, 5} i6 = 5

1

2

3 6 7

5
I6 = {1, 2, 3, 5, 6, 7}
J6 = {1, 5}

7 M7 = {4} i7 = 4

1

2

3 6 7

4

5 —

In the construction of Φ, at the k-th step (2 ≤ k ≤ n) conditions (5.6) and (5.7)

are needed to ensure the existence of the element ik. The following property implies

conditions (5.6) and (5.7).

Lemma 5.2 For 2 ≤ k ≤ n, at the k-th step of the construction of Φ, if ck−1 > ck, we

have that

|Mk| = ck−1, (5.8)

and if ck−1 ≤ ck,

|Mk| = n− k + 1− ck−1. (5.9)
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The proof of the above lemma is parallel to the construction of Φ. First, we show

that Lemma 5.2 holds for k = 2. When Lemma 5.2 holds for k, where k < n, then

(5.6) and (5.7) are valid for k, so the construction of Φ goes to the next step.

Proof. For 2 ≤ k ≤ n, we proceed to prove (5.8) and (5.9) step by step. It is clear

that |M2| = c1 if c1 > c2, and |M2| = n − 1 − c1 if c1 ≤ c2. In other words, (5.8) and

(5.9) hold for k = 2. Assume that (5.8) and (5.9) hold for k. To compute |Mk+1|, we

consider the following four cases:

Case 1: ck−2 > ck−1 > ck. Let j1, j2, . . . , jl be the elements of Jk−1 listed in decreasing

order, and let j0 = n + 1 and jl+1 = 0. By the assumption ck−2 > ck−1 > ck and the

definition of Mk, we get

Mk = Uk = {m ∈ Īk−1 | j2p+2 < m < j2p+1 for some p ≥ 0}.

Since ik ∈ Mk, there exists q ≥ 0 such that j2q+2 < ik < j2q+1. So the set of roots of

Fk is given by

Jk = {ik, j2q+2, . . . , jl}.

It follows that

Uk+1 = {m ∈ Īk | m < ik, j2p+2 < m < j2p+1 for some p ≥ q}

= {m ∈Mk | m < ik}.

Since ck−1 > ck, ik is the (ck + 1)-th smallest element in Mk. Hence

|Uk+1| = |{m ∈Mk | m < ik}| = ck.

If ck > ck+1, by the assumption ck−1 > ck, we have

|Mk+1| = |Uk+1| = ck.

If ck ≤ ck+1, we get

Mk+1 = Vk+1 = Īk \ Uk+1,

which implies that

|Mk+1| = n− k − ck.

So we have verified that in this case (5.8) and (5.9) are also valid for Mk+1.

Case 2: ck−2 > ck−1 ≤ ck. In this case, we have

Mk = Vk = {m ∈ Īk−1 | j2p+1 < m < j2p for some p ≥ 0}. (5.10)

Since ik ∈Mk, there exists q ≥ 0 such that j2q+1 < ik < j2q. It follows that

Jk = {ik, j2q+1, . . . , jl},

and hence

Vk+1 = {m ∈ Īk | ik < m < j0 or j2p+2 < m < j2p+1 for some p ≥ q}.
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Consequently,

Vk+1 ={m ∈ Īk−1 | j2p+2 < m < j2p+1 for some p ≥ 0}

+ {m ∈ Īk | m > ik, j2p+1 < m < j2p for some p ≤ q}. (5.11)

Notice that the first subset on the right hand side of (5.11) is exactly Uk as defined

by (5.4). To compute the cardinality of the second subset on the right hand side of

(5.11), we observe that j2q+1 < ik < j2q. Hence we have

{m ∈ Īk | m > ik, j2p+1 < m < j2p for some p ≤ q}

= {m ∈ Īk | m > ik, j2p+1 < m < j2p for some p ≥ 0}

= {m ∈Mk | m > ik}.

So we obtain that

|Vk+1| = |Uk|+ |{m ∈Mk | m > ik}|. (5.12)

Using the hypothesis and (5.10), we find that

|Vk| = |Mk| = n− k + 1− ck−1, (5.13)

so that

|Uk| = |Īk−1 \ Vk| = ck−1. (5.14)

Since ck−1 ≤ ck, ik is the (n−k+ 1− ck)-th smallest element in Mk, which implies that

|{m ∈Mk | m ≤ ik}| = n− k + 1− ck. (5.15)

From (5.13) and (5.15) we obtain that

|{m ∈Mk | m > ik}|

= |Mk| − |{m ∈Mk | m ≤ ik}|

= (n− k + 1− ck−1)− (n− k + 1− ck)

= ck − ck−1. (5.16)

Substituting (5.14) and (5.16) into (5.11), we get |Vk+1| = ck, and hence |Uk+1| =

n− k − ck.

If ck > ck+1, by the assumption ck−1 ≤ ck, we have |Mk+1| = |Vk+1| = ck. If

σk < σk+1, we get |Mk+1| = |Uk+1| = n− k− ck. This proves that in this case (5.8) and

(5.9) hold for Mk+1.

For the other two cases, ck−2 ≤ ck−1 ≤ ck and ck−2 ≤ ck−1 > ck, |Mk+1| can be

determined by the same argument. The details are omitted. Thus we have shown that

(5.8) and (5.9) hold for k+1. Hence (5.8) and (5.9) hold for 2 ≤ k ≤ n. This completes

the proof.

We now have shown that Φ is well-defined. To give a combinatorial proof of Theorem

5.1, we also need the following property.
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Lemma 5.3 Let σ = σ1σ2 · · ·σn be a permutation of [n] and code(σ) = (c1, c2, . . . , cn).

If cn−1 = 1, then the root of Φ(σ) is of even degree. If cn−1 = 0, then the root of Φ(σ)

is of odd degree.

Proof. Observe that for any rooted tree, there is an odd number of vertices of even

degree. Clearly, for a permutation σ on [n], cn−1 equals to 0 or 1. It is easily seen that

cn−1 = 1 is equivalent to σn−1 > σn and cn−1 = 0 is equivalent to σn−1 < σn. To prove

the lemma, we proceed to show that there are an odd number of non-rooted vertices

of even degree in Φ(σ) if σn−1 < σn, whereas there are an even number of non-rooted

vertices of even degree if σn−1 > σn.

Recall that an index 2 ≤ k ≤ n−1 is called a valley of a permutation σ = σ1σ2 · · ·σn
if σk−1 > σk < σk+1. It is clear that i1 is a leaf of Φ(σ). Moreover, by the construction

of Φ, for 2 ≤ k ≤ n, ik is a vertex of even degree if and only if ik ∈ Vk. Also by the

construction of Φ, it is easily seen that ik ∈ Vk if and only if σk−2 < σk−1 > σk or

σk−2 > σk−1 < σk. Hence, for 2 ≤ k ≤ n, ik is a vertex of even degree if and only if

k− 1 is either an exterior peak or a valley. From the above argument, we also see that

i1 does not correspond to any exterior peak or any valley.

We now consider the number of exterior peaks and the number of valleys in σ. Since

σ0 = 0, the elements of σ go up from σ0, then go down to certain position, and go up,

and so on. In other words, σ begins with an exterior peak, then the valleys and peaks

occur alternately. If σn−1 < σn, then σ ends up with a valley. Therefore, the number

of exterior peaks equals the number of valleys in σ. This implies that the total number

of exterior peaks and valleys is even. Since i1 is a leaf of Φ(σ), we see that there are an

odd number of non-rooted vertices in Φ(σ) that are of even degree. Hence the degree

of 0 must be odd.

When σn−1 > σn, σ ends with a peak. In this case, the number of exterior peaks

of σ exceeds the number of valleys of σ by one, so that the total number of exterior

peaks and valleys is odd. Thus Φ(σ) has an even number of non-rooted vertices of even

degree, since i1 is a leaf. It follows that the degree of 0 is even, and hence the proof is

complete.

We are now ready to finish the combinatorial proof of Theorem 5.1.

Combinatorial Proof of Theorem 5.1. We have shown that Φ is well-defined. To show

that Φ is a bijection, we construct the inverse map Ψ of Φ. Let T be an increasing tree

on [n]. Start with T , we construct a sequence (c1, c2, . . . , cn). Let σ be the permutation

on [n] such that code(σ) = (c1, c2, . . . , cn). Then we define Ψ(T ) to be σ.

First, let Fn be the forest obtained from T by deleting its root 0. Then from Fn, we

construct a sequence of forests Fn−1, . . . , F1. For k = n, n− 1, . . . , 2, Fk−1 is obtained

by deleting a vertex from Fk. More precisely, for k = n, n−1, . . . , 2, let ik be the largest

root of Fk, and let Fk−1 be the forest obtained from Fk by deleting ik. For k = 1, let

i1 be the largest root of F1. For 1 ≤ k ≤ n, let Ik denote the set of vertices in Fk and

let Jk denote the set of roots in Fk. As before, let Īk denote the complement of Ik in
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[n]. Given Ik and Jk, assume that Uk and Vk are defined the same as in (5.4) and (5.5),

namely,

Uk = {m ∈ Īk−1 | j2p+2 < m < j2p+1 for some p ≥ 0},

Vk = {m ∈ Īk−1 | j2p+1 < m < j2p for some p ≥ 0},

where j1, j2, . . . , jl are the elements of Jk−1 listed in decreasing order and j0 = n + 1,

jl+1 = 0. Note that ik ∈ Īk−1 and Īk−1 is the disjoint union of Uk and Vk. If ik ∈ Uk,
we set Mk = Uk. If ik ∈ Vk, we set Mk = Vk.

Based on ik and Mk, we can determine ck for 1 ≤ k ≤ n. For k = n, it is easily seen

that |Mn| = 1. We set cn = 0. For k = n− 1, we set

cn−1 =

{
1, if the degree of the root 0 in T is even,

0, if the degree of the root 0 in T is odd.
(5.17)

Moreover, for k = n− 2, n− 3, . . . , 1, we set

ck =


|Mk+1|, if Mk+2 = Uk+2 and ck+1 > ck+2,

n− k − |Mk+1|, if Mk+2 = Uk+2 and ck+1 ≤ ck+2,

n− k − |Mk+1|, if Mk+2 = Vk+2 and ck+1 > ck+2,

|Mk+1|, if Mk+2 = Vk+2 and ck+1 ≤ ck+2.

(5.18)

In this way, we obtain (c1, c2, . . . , cn). Next we aim to show that for 1 ≤ k ≤ n,

0 ≤ ck ≤ n− k. (5.19)

Since for 2 ≤ k ≤ n, ik ∈Mk and Mk ⊆ Īk−1, we have

1 ≤ |Mk| ≤ |Īk−1|. (5.20)

On the other hand, by the definition of Ik−1, we find that |Īk−1| = n− k+ 1. It follows

that for 2 ≤ k ≤ n,

1 ≤ |Mk| ≤ n− k + 1.

Clearly, for 1 ≤ k ≤ n−1, ck equals to |Mk+1| or n−k−|Mk+1|. Thus, for 1 ≤ k ≤ n−1,

we have

0 ≤ ck ≤ n− k.

Note that cn = 0, and so (5.19) is proved.

Let σ be the permutation of [n] with code (c1, c2, . . . , cn). We define Ψ(T ) to be σ.

By Lemma 5.2 and Lemma 5.3, it is straightforward to verify that every step of the

construction of Ψ is the inverse of the corresponding step of Φ. Hence Φ is a bijection.

It remains to show that Φ maps a permutation of [n] with m exterior peaks to an

increasing tree on [n] with 2m+ 1 vertices of even degree. Let σ be a permutation on
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[n]. Recall that in the proof of Lemma 5.3, we see that σ begins with an exterior peak,

then the valleys and peaks occur alternately and each peak or valley corresponds to a

vertex in [n] of even degree. Suppose that σ has m exterior peaks. We shall show that

Φ(σ) has 2m+ 1 vertices of even degree.

If σn−1 < σn, there are also m valleys in σ. These 2m indices correspond to 2m ver-

tices in [n] of even degree. As noted in the proof of Lemma 5.3, i1 does not correspond

to any peak or valley of σ. On the other hand, i1 is a vertex of even degree since i1
is a leaf of Φ(σ). Hence, there are 2m + 1 vertices in [n] of even degree in Φ(σ). By

Lemma 5.3, the degree of 0 is odd. So there are 2m+ 1 vertices of even degree in Φ(σ).

If σn−1 > σn, there are m − 1 valleys in σ. These 2m − 1 indices correspond to

2m− 1 vertices in [n] of even degree. Note that i1 does not correspond to any peak or

valley of σ, but i1 is a vertex in [n] of even degree. Hence there are 2m vertices in [n]

of even degree in Φ(σ). By Lemma 5.3, the degree of 0 is even. So there are 2m + 1

vertices of even degree in Φ(σ). This completes the proof.
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