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Abstract. In this paper, we introduce the notion of a grammatical labeling to describe
a recursive process of generating combinatorial objects based on a context-free gram-
mar. For example, by labeling the ascents and descents of a Stirling permutation, we
obtain a grammar for the second-order Eulerian polynomials. By using the grammar
for 0-1-2 increasing trees given by Dumont, we obtain a grammatical derivation of the
generating function of the André polynomials obtained by Foata and Schiitzenberger,
without solving a differential equation. We also find a grammar for the number 7'(n, k)
of permutations of [n] = {1,2,...,n} with k exterior peaks, which was independently
discovered by Ma. We demonstrate that Gessel’s formula for the generating function
of T'(n, k) can be deduced from this grammar. Moreover, by using grammars we show
that the number of the permutations of [n] with k exterior peaks equals the number
of increasing trees on [n]| with 2k + 1 vertices of even degree. A combinatorial proof of
this fact is also presented.
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1 Introduction

A context-free grammar GG over an alphabet A is defined as a set of substitution rules
replacing a letter in A by a formal function over A. Chen [2] introduced the notion
of the formal derivative of a context-free grammar, and used this approach to derive
combinatorial identities including identities on generating functions and the Lagrange
inversion formula. The formal derivative with respect to a context-free grammar sat-
isfies the relations just like the derivative,

D(u+v) = D(u) + D(v),
D(uv) = D(u)v 4+ uD(v).
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So the Leibniz rule is valid,

n

D" (uv) = (k)Dk( ) D" *(v).

k=0

As a consequence, we see that
D(w™") = —w?D(w),

since D(ww™!) = 0.

The formal derivatives are also connected with the exponential generating functions.
Let

Gen(w, t) ZD”

n>0

for any formal function w. Then we have the following relations
Gen'(w, t) = Gen(D(w

Gen(u + v,t) = Gen(u,t

Gen(uv,t) = Gen(u,t

): 1),
+ Gen(v, t), (1.2)

)
)Gen(v, 1), (1.3)
where u, v and w are formal functions and Gen'(w, t) means the derivative of Gen(w, t)
with respect to t.

Dumont [3] introduced the following grammar
G: x—uwy, y—axy (1.4)

and showed that it generates the Eulerian polynomials A,(x). For a permutation
T = MMy Ty, the index i € [n—1] is an ascent of 7 if m; < m;41, a descent if m; > ;4.
Let asc(m) be the number of ascents of = and S,, denote the set of permutation on
[n] ={1,2,...,n}. The Eulerian polynomial A, (z) is defined by

= Z gase(m+1 (1.5)

TESH

To give a grammatical interpretation of A, (x), Dumont defined bivariate polynomials
A, (x,y) based on cyclic permutations on [n]. For a cyclic permutation o, an index
i (1 <i<n)isan ascent if i < (i) and a descent if i > o(i). Let asc.(c) be the
number of ascents of ¢, and let des.(c) be the number of descents of 0. We assume
that a cyclic permutation is oriented clockwise. For example, Figure 1.1 is a cyclic
permutation on [6]. Let C,, denote the set of cyclic permutations on [n]. For n > 1,
Dumont defined a the polynomial A, (x,y) as follows,

Z mascc(a)ydesc(ﬁ)‘ (16)

O'ECn+1
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Figure 1.1: a cyclic permutation of [6]

It should be noted that Dumont used the notation A, ;(x,y) instead of A, (x,y) for
the above polynomial. We choose the above notation for the reason of consistency with
the notation that we shall use in the next section.

Setting y = 1 in (1.6), we get that for n > 1
Az, y)ly=1 = An(2). (1.7)

For n > 1, to obtain A,1(x,y) from A, (x,y), Dumont observed that the insertion
of n 4+ 1 into a cyclic permutation of [n] after i leads to a replacement of the arc
(1,0(1)) with (i,n + 1) followed by (n+ 1,0(i)). If ¢ is an ascent, (i,0(i)) corresponds
to x with respect to the definition of A,(z,y) and the insertion of n + 1 corresponds
to substitution of x by xy. If ¢ is a descent, the insertion of n + 1 corresponds to
substitution of y by zy. Thus, A,+1(x,y) can be obtained from A,(z,y) by applying
the substitution rules of the grammar G, namely,

Ana(z,y) = D(An(7,y)).

It follows that
D"(x) = An(z,y).

To demonstrate how to use a context-free grammar to generate combinatorial ob-
jects, we introduce the concept of a grammatical labeling. This idea is implicit in the
partition argument with respect to the grammar f; — f;1191, gi — ¢i1+1 to generate par-
titions as given by Chen [2]. It turns out that a grammatical labeling serves a concrete
connection between a grammar and the corresponding combinatorial structure.

This paper is organized as follows. In Section 2, we use examples to illustrate the
notion of a grammatical labeling. We give an explanation of relation (1.7) by labeling
ascents and descents of a permutation instead of a cyclic permutation. Similarly, by
labeling ascents, descents and plateaux of a Stirling permutation, we obtain a gram-
matical interpretation of the second-order Eulerian polynomials. As another example,
we give a grammatical explanation of the Lah numbers by labeling the ascents and
descents of a partition into lists. We also demonstrate how to use the formal derivative
with respect to the grammar x — zy, y — zy to deduce an identity on the Eulerian
polynomials.



Section 3 is devoted to the applications of the grammar x — xy, y — x found by
Dumont [3] for the André polynomials defined in terms of 0-1-2 increasing trees. As
shown in Chen [2], a context-free grammar can be rigorously used to derive combi-
natorial identities in the sense that a formal derivative plays a role analogous to the
derivative in calculus. We shall demonstrate how to use the grammar for 0-1-2 in-
creasing trees given by Dumont [3] to give a grammatical derivation of the generating
function of the André polynomials obtained by Foata and Schiitzenberger, without
solving a differential equation.

In Section 4, we use the grammatical labeling to concern permutations with exterior
peaks. We find that the following grammar

G: z—ay, y—

can be used to generate permutations with respect to exterior peaks. This grammar was
independently discovered by Ma [11]. We show that Gessel’s formula for the generating
function of permutations on exterior peaks can be derived by using this grammar.

In Section 5, by specializing a grammar of Dumont [3] for increasing trees, we find
that this grammar also generates increasing trees with respect to the number of vertices
with even degree. To be more specific, the degree of a vertex in a rooted tree is meant
to be the number of its children. As a consequence, we obtain that the number of
permutations of [n| with &k exterior peaks equals the number of increasing trees on [n]
with 2k + 1 vertices of even degree.

We conclude this paper with a bijection between permutations and increasing trees
which connects these two statistics. This bijection is an extension of a correspondence
between alternating permutations and even increasing trees given by Kuznetsov, Pak
and Postnikov [10].

2 Grammatical Labelings

In order to connect a context-free grammar to a combinatorial structure, we associate
the elements of a combinatorial structure with letters in a grammar. Such a labeling
scheme of a combinatorial structure is called a grammatical labeling.

For example, consider the following grammar given by Dumont [3],
G: z—uzy, y—ay. (2.1)

We shall use a grammatical labeling on permutations to show that the Eulerian poly-
nomial A, (z) can be expressed in terms of the formal derivative with respect to the
grammar (. This labeling can be easily extended to Stirling permutations and parti-
tions into lists.



Denote by A(n,m) the number of permutations of [n] with m — 1 ascents. The
generating function

A, (x) = Z A(n,m)z™

is known as the Eulerian polynomial.

We now give a grammatical labeling on permutations to generate the Eulerian poly-
nomials. Let 7 be a permutation of [n]. An index ¢ (1 <i <n—1), is called an ascent
if m; < my1, a descent if m; > w1y, Set mp = 71 = 0. For 0 < i < mn, if m; < m1q, we
label ¢ by x, and if m; > m;11, we label ¢ by y. With this labeling, the weight of 7 is
defined as the product of the labels, that is,

'lU(’YT) — xasc(w)+1ydes(w)+17
where asc(m) denotes the number of ascents in 7 and des(m) denotes the number of
descents in w. As will been seen, the polynomial A, (x,y) defined in terms of the
descent number and the ascent number of a cyclic polynomial as given in (1.6) can also
be expressed in terms of the descent number and the ascent number of a permutation,

that is, for n > 1,
An(x,y) _ Z xasc(w)—l—lydes(w)—l-l'

TI'GSn

A grammatical labeling plays a role of establishing a connection between the action
of the formal derivative D and the insertion of the element n + 1 into a combinatorial
structure on [n]. For example, let n = 6 and 7 = 325641. The grammatical labeling of
7 is given below

325 6 41
Ty r Ty y y.
If we insert 7 after 5, the resulting permutation and its grammatical labeling are as
follows,
325 76 41
Ty rxTyyyy.
It can be seen that the insertion of 7 after 5 corresponds to the differentiation on the
label x associated with 5. The same argument applies to the case when the new element
is inserted after an element labeled by y. Hence the action of the formal derivative D
on the set of weights of permutations in .S,, gives the set of weights of permutations in
Sp+1. This yields the following grammatical expression for A, (x,y).

Theorem 2.1 Let D be the formal derivative with respect to grammar (2.1). For
n > 1, we have

D"(x) = Z A(n, m)z™y"
m=1

From Theorem 2.1, it follows that D"(z)|,=1 = A, (z). Here we give a grammatical
proof of the following classical recurrence for the Eulerian polynomials A, (x).
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Proposition 2.2 Forn > 1, we have

where Ag(x) = 1.

Proof. By the definition of grammar (2.1), we have D(z ') = —272D(x) = —a~ly.
Hence
D(z™'y) = 27'D(y) + yD(a™") = a7 'y(z — y). (23)

Since (z — y) is a constant with respect to D, we see that
D"(zly) = a7 y(z —y)". (2.4)

By the Leibniz formula, we have for n > 1,

D'(a) = D(y) = D) = X () D00 R (29)

Substituting (2.4) into (2.5) we get

i
L

(e D) = 3 (})a upH @ -

i

Setting y = 1, we arrive at (2.2). |

Next, we introduce a grammar to generate Stirling permutations. Let [n]y denote
the multiset {12,22, ... n?}, where % stands for two occurrences of i. A Stirling per-
mutation is a permutation 7 of the multiset [n]y such that for each 1 < i < n the
elements between two occurrences of i are larger than i, see Gessel and Stanley [8]. For
example, 123321455664 is a Stirling permutation on [6]s.

For a Stirling permutation m = my7mg - + - T, an index @ (1 <4 < 2n—1), is called an
ascent if m; < w41, a descent if m; > 711 and a plateaux if m; = m; ;. We shall show
that the following grammar

G: z—=axy, y— oy’ (2.6)

can be used to generate Stirling permutations. We now give a grammatical labeling
on Stirling permutations. Let m = mmy---m, be a Stirling permutation on [n]s.
First, we add a zero at the beginning and a zero at the end of 7. Then we label an
ascent of Omymy - - - 7,0 by x and label a descent or a plateau by y. For example, let
m = 244215566133. The grammatical labeling of 7 is given below

244215566 133
rryyyryryyxryry.
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If we insert 77 after the first occurrence of 4, we get

2 4774215566 133
rT ryyyyrxyryyryly
If we insert 77 after the second occurrence of 1, we get
2 4421556617733
rT yyyryrxyyxxyyyy

Notice that each Stirling permutation on [n]s can be obtained by inserting nn into
a Stirling permutation on [n — 1]. Thus, we get a grammatical interpretation of
generating function of Stirling permutations with respect to the number of ascents.

Theorem 2.3 Let D be the formal derivative with respect to grammar (2.6). Then we
have

D"(x) = D Cln,m)a™y™ 1, (2.7)
m=1

where C'(n,m) denotes the number of Stirling permutations of [n]s with m — 1 ascents.

We use the notation C),(x) as used in Béna [1] to denote the second-order Eulerian
polynomials

Cn(z) = Z C(n,m)x™.

From Theorem 2.3, we see that D"(z)|,=1 = Cy(z).
In general, we can use the grammar
G: x—uzy, y—ay

to generate r-Stirling permutations. An r-Stirling permutation is a permutation on
[n], = {1",2",...,n"} such that the elements between two occurrences of i are not
smaller than 1.

To conclude this section, we give the following grammar
G: z—ouxyz, T—TYy, Y— Y, (2.8)

and we show that this grammar can be used to generate partitions of [n] into lists. We
call the above grammar the Lah grammar. Recall that a partition of [n] into lists is a
partition of [n] for which the elements of each block are linearly ordered. For a partition
into lists, label the partition itself by z. Express a list o105 - - - 0,,, by 0c109 - - - 0,0 and
label an ascent and a descent of Ooy05 - --0,,0 by = and y respectively. For example,
let m = {325,614, 7}. Below is the labeling of =

3 2 5 6 1 4 7
z T Yy Ty xT Yy Ty x Yy

Using this labeling, it can be easily seen that grammar (2.8) generates partitions into
lists.



Theorem 2.4 Let C(n,k,m) be the number of partitions of [n] into k lists with m
ascents. Then, we have

D"(z) = Z Z C(n, k,m)z™y" " "z,
k=1 m=k
In particular, setting y = x, we get the grammar

G: z—a2, x— 2% (2.9)

which generates the signless Lah numbers

n—1\n!

Corollary 2.5 Let D be the formal derivative with respect to grammar (2.9). Then

D"(z) =a"z Z L(n, k)a*. (2.10)

3 The André Polynomials

In this section, we use the grammar found by Dumont [3] to give a proof of the generat-
ing function formula for the André polynomials without solving a differential equation.
This formula was first obtained by Foata and Schiitzenberger [7].

Recall that the André polynomials are defined in terms of 0-1-2 increasing trees. An
increasing tree on [n] is a rooted tree with vertex set {0, 1,2,...,n} in which the labels
of the vertices are increasing along any path from the root. Note that 0 is the root. A
0-1-2 increasing tree is an increasing tree in which the degree of any vertex is at most
two. Recall that in this paper, the degree of a vertex in a rooted tree is meant to be
the number of its children. Given a 0-1-2 increasing tree T, let {(T") denote the number
of leaves of T', and u(T") denote the number of vertices of T" with degree 1. Then the
André polynomial is defined by

Ey(z,y) =) o'y ™),
T

where the sum ranges over 0-1-2 increasing trees on [n — 1.

Setting * = y = 1, E,(z,y) reduces to the n-th Euler number E,, which counts
both 0-1-2 increasing trees on [n — 1] and alternating permutations of [n], see [5,7,10].

Foata and Schiitzenberger obtained the generating function of the André polynomi-
als in [7] by solving a differential equation. Later, Foata and Han [6] found a way to



compute the generating function of E,(x, 1) without solving a differential equation, or
equivalently, the generating function of E,(z,y).

Dumont [3] introduced the grammar
G: z—xy, y—zo (3.1)

and showed that it generates the André polynomials F, (z,y). This fact can be justified
intuitively in terms of the following grammatical labeling. Given a 0-1-2 increasing tree
T, a leaf of T is labeled by x, a vertex of degree 1 in T is labeled by y and a vertex
of degree 2 in T is labeled by 1. The following figure illustrates the labeling of a 0-1-2
increasing tree on {1,2,3,4,5}.

Figure 3.2: The labeling of a 0-1-2 increasing tree on {1,2,3,4,5}

If we add 6 as a child of 2, the resulting tree is as follows.

After the vertex 6 is added, the label of 2 is changed from y to 1, and the vertex 6
gets a label x. This corresponds to the rule y — z of the grammar G. Similarly,
adding the vertex 6 to a leaf of the increasing tree in Figure 3.2 corresponds to the rule
x — xy. Let D be the formal derivative with respect to the grammar in (3.1). The
above grammatical labeling leads to the following relation

D"(z) = En(z,y).

Now we demonstrate that one can use the grammar G in (3.1) to derive the gener-
ating function of E,(x,y) without solving a differential equation.
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Theorem 3.1 (Foata and Schiitzenberger) We have

Z‘” En(,Y) .n
|
0 n'

/22 — 42 + y(2x — y?) sin(t\/2x — y2) — (x — y?)\/2x — 42 cos(tr\/2x — y?
— y Ty y y Y y y
(x —y?)sin(ty/22 — y?) + y/2x — y? cos(t\/ 2z — y?)

(3.2)
Setting x =y =1, we get N
Z %t” = sect + tant. (3.3)
n=0
Proof. By the Leibniz rule, we have
Gen(z ™'y, t) = Gen(z ™', t)Gen(y, t). (3.4)
Differentiating both sides of (3.4) with respect to ¢ yields
Gen'(x 'y, t) = Gen'(27 !, t)Gen(y, t) + Gen(z ™', t)Gen/(y, t). (3.5)
Since D(z™') = —z~ 'y, we have
Gen'(z7',t) = Gen(D(z71),t) = —Gen(z 'y, t). (3.6)

Using D(y) = z, we get
Gen(z ™', t)Gen'(y,t) = Gen(xz ™', t)Gen(D(y),t) = Gen(z ', t)Gen(z,t) = 1. (3.7)
Substituting (3.6) and (3.7) into (3.5), we deduce that
Gen'(z 7'y, t) = 1 — Gen(x 'y, t)Gen(y, t),
and hence

1 — Gen'(z 71y, 1)
Gen(z~ty,t)

Gen(y,t) = (3.8)

We now compute the generating function Gen(z 'y, t). It is easily verified that
D Hamhy) = (1— a7 'y")(y* — 22)" (3.9)

and
D*™(z7Yy) = 2 y(y? — 22)™. (3.10)
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Using (3.9) and (3.10), we have

A )
-1 _ n
Gen(z™ y,t) = ; oy t
= (y? — 22) y - 2x
— (1 — 12 (y—t2n+1 -1
(1- y)nz:o@nﬂ)! T yz
L—a™'y? - (21" (/22 — y2)* ! g i (=1)"(ty/ 22 — y?)*
—_= T y
| |
20 — y2 0 (27’L + 1) =0 (2”)
1— -1,,2
- Y sin(ty/2x — y2) + x~ 'y cos(t\/2x — y2). (3.11)
2x — 1
Plugging (3.11) into (3.8), we arrive at (3.2), and hence the proof is complete. ]

4 Permutations with & Exterior Peaks

In this section, we introduce the following grammar
G: z—ay, y-— (4.1)

and we show that G generates the number T'(n, k) of permutations of [n] with k exterior
peaks. Let
= ZT (n, k)xk

The grammar G also leads to a recurrence relation of T,,(z). Moreover, we give a
grammatical proof of the formula for the generating function of 7, (x) due to Gessel,
see [12].

Recall that for a permutation m = mymy - - - 7, € S, the index i is called an exterior
peak if 1 < i < n and m_1 < m > mWq, or ¢ = 1 and m > me. We shall use
a grammatical labeling of permutations to show that grammar (4.1) generates the
polynomial T, (x).

For a permutation 7 of [n], we give a labeling as follows. First, we add an element
0 at the end of the permutation. If ¢ is an exterior peak, then we label ¢ and 7 + 1 by
x. In addition, the element 0 is labeled by z, and all other elements are labeled by .
The weight w of a permutation is defined to be the product of all the labels. For a
permutation m with k exterior peaks, its weight is given by

w(ﬂ') — x2k+1yn72k.

For example, let m = 325641. The labeling of 7 is as follows

3256 410
T r Yy T T Y T

11



and the weight of 7 is 2°y?. If we insert 7 before 3, then the labeling of the resulting

permutation is
7325 6 410
T xr Yy r xry T
We see that the label of 2 changes from x to y and the label of 7 is . So this insertion
corresponds to the rule x — zy. If we insert 7 before 0, we get

3 2 6 4 0
T x r x x

17
vy

< Ot

Y

where the label x of 0 remains the same and the label of 7 is y. In this case, the
insertion corresponds to the rule x — zy. If we insert 7 before 5, we get
32756 410
rx xr T T T Yy
where the label of 5 changes from y to x and the label of 7 is x. This corresponds to
the rule y — z? in grammar (4.1). In general, the above labeling leads to the following

theorem.

Theorem 4.1 Let D be the formal derivative with respect to grammar (4.1). For
n>1,
[n/2]
D"(z) =Y T(n,k)a*y 2, (4.2)

k=0

The grammar (4.1) and relation (4.2) were announced at the International Confer-
ence on Designs, Matrices and Enumerative Combinatorics held at National Taiwan
University in 2011. Ma [11] independently discovered grammar (4.1) and gave an in-
ductive proof of relation (4.2).

By Theorem 4.1, we obtain the following recurrence relation.

Proposition 4.2 Forn > 1,

Hence
D (a7l = —ay(y® — 2" (4.4)

and
D*™(z7 1) = a7 (y* — 2H)™. (4.5)
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Setting y = 1 in (4.4) and (4.5), we get
DI et = (1P (1= 22)72,

By the Leibniz rule we have

I
3
/‘3
~__
—~
|
—_
S~—
<
&
N
Yy
—
|
8
no
N—
[
~
N
3
J
—
8
-
MR
—~
=~
=)
N~—

According to Theorem 4.1, we see that
DM@)lyer = T (?).

Hence (4.3) follows from (4.6). ]

With the aid of grammar (4.1), we give a derivation of the following generating
function of T, (z) due to Gessel, see [12].

Theorem 4.3 (Gessel) We have

> Tn(a:)tn: Vi—zx (A7)

—~ nl V1 =z cosh(v/1 — at) — sinh(y/1 — xt)

To prove Theorem 4.3, we need the following generating function. As will be seen,
this generating function is related to the generating function of T'(n, k).

Theorem 4.4 For the the following grammar
G: u—vY v, (4.8)

we have
)

Gen(u™v, ) = wcosh(t) + (v2 — ) sinh(¢)

(4.9)

Proof. Let D be the formal derivative with respect to G. Since D(v) = v, we have
Gen(v,t) = ve'.
By (1.3), we find that
Gen(u 0%, t) = Gen(v, t)Gen(u v, t) = ve'Gen(u v, t). (4.10)
We proceed to compute (Gen(u™v? t))" in two ways. It is easily checked that
D(u'v?) = —(u )% (v? — 2u).
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Thus, from (1.1) and (1.3) we deduce that
(Gen(u'v?%,1))" = Gen (D(u'0?%),t) = —Gen®(u'v, t)Gen(v* — 2u, t). (4.11)
On the other hand, since
D(u ') = u (1l —u"?),
from (4.10) we find that

(Gen(u™'v?,t)) = (ve'Gen(u v, t))
= ve'Gen(utv,t) + ve'Gen(D(u"tv), t)
= ve'Gen(u v, t) + ve'Gen(u™'v, t)Gen(1 — u 02 1). (4.12)

Comparing (4.11) with (4.12), we obtain that

— Gen?(u v, t)Gen(v? — 2u, t)
= ve'Gen(u v, t) + ve'Gen(u™ v, t)Gen(1 — v 'v? 1),

or, equivalently,

— Gen(u™'v,t)Gen(v? — 2u,t) = ve' + ve'Gen(1 —u™'v? t). (4.13)
Since D(v? — 2u) = 0, we get

Gen(v® — 2u,t) = v* — 2u.
Clearly, Gen(1 — u™'v? t) = 1 — Gen(u~'v?t). Thus (4.13) can be simplified to
— (v* — 2u)Gen(u 'v,t) = 2ve’ — ve'Gen(u 'v?, t). (4.14)

Plugging (4.10) into (4.14), we arrive at
2v

1 -
Gen(u™"v,t) = o e

which can be written in the form of (4.9), and so the proof is complete. |

We proceed to show that Gen(u~'v,t) can be used to derive the generating function
of T,,(z) as given in Theorem 4.3. To this end, we consider the following grammar

G: z—ay, y— wr (4.15)

For a permutation 7w of [n], we give a labeling which is essentially the same as the
labeling given before. First, add an element 0 at the end of the permutation. If i is
an exterior peak, then we label ¢ by wx and 2 + 1 by z. In addition, the element 0 is

14



labeled by x, and all other elements are labeled by y. For example, let 7 = 325641.

The labeling of 7 is as follows

3 2
x

6 4
wT x

5 0
Yy wzr x.

1
Yy
For the grammar in (4.15), we have

Ln/2]
D" (x) = Z T(n, k)z?Ttyn=2kyk, (4.16)
k=0

Proof of Theorem 4.3. For the grammar (4.8) in Theorem 4.4, notice the relations
D(u'v) = u (1 —u 'v?),
D(1 —u %) = (u')*(v* — 2u),
D(v* —2u) = 0.

Comparing the above relations with the rules of the grammar in (4.15) and making the
substitutions z = v~ v, y =1 — v "2, w = v? — 2u, we get the rules as in grammar
(4.15), namely, D(x) = zy, D(y) = wz?® and D(w) = 0. Hence relation (4.16) implies

that

[n/2]
D”(u_lv) _ Z T(n, k)(u_lv)2k+1(1 _ u_lv2)"_2k(z]2 _ QU)k,
k=0
that is,
n n/2]
Gen(u'v,t) = — T(n, k) (™ 0) (1 — u™0?)" 2 (02 — 2u). (4.17)

Comparing (4.9) with (4.17), we get

n /2]

V)% w1022 (2 _ o)k — u _
Z ! Z e ) 2u) ucosh(t) 4+ (v? — u) sinh(?)

n>0

Since the above relation is valid for indeterminates u and v, we can set v = v/u — 1 to
deduce the following relation

>

n>0

ng—n /2

n! Z T(n,k)(1 = )" = ucosh(t)u— sinh(t) (4.18)

Substituting ¢ by ut in (4.18), we get

n /2] u
)(1—u?)r = : 4.19
Z ! Z w) wcosh(ut) — sinh(ut) (4.19)

n>0

Finally, by setting z = 1 — u? in (4.19), we reach (4.7). This completes the proof. 1
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5 Peaks in permutations and increasing trees

In this section, we use a grammatical approach to establish the following theorem on a
connection between permutations with a given number of exterior peaks and increasing
trees with a given number of vertices of even degree. Then we give a combinatorial
interpretation of this fact.

Theorem 5.1 The number of permutations o of [n] with k exterior peaks equals the
number of increasing trees T, on [n] with 2k + 1 vertices which have even degree.

To prove the above theorem by using grammars, we first recall a grammar given by
Dumont [3],
G: T, — ToXiy1- (51)

Let D be the formal derivative with respect to G. Dumont [3] showed that

Dn(x()) _ ngm(T)ITﬂT)l,;nz(T) . (5.2)
T

where the sum ranges over increasing trees 7' on [n] and m;(T") denotes the number of
vertices of degree 7 in T

Relation (5.2) can be justified by labeling a vertex of degree i with x; in an increasing
tree. Here is an example.

Figure 5.3: A labeling on an increasing tree

Let T be an increasing tree on [n] with the above labeling. When adding the vertex
n 4+ 1 to T as the child of a vertex v of degree i, the label of v changes from z; to
x;11 and the label of n + 1 is xg. This corresponds to the rule x; — xox; 1. Since the
increasing trees on [n + 1] can be generated by adding n + 1 to the increasing trees on
[n], the above labeling leads to (5.2).

By setting xo; = x and 9,47 = y, we see that the grammar (5.1) becomes the
grammar (4.1) that generates the polynomial T, (z) for permutations with a given
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number of exterior peaks. Intuitively, this leads to a grammatical reasoning of Theorem
5.1. Next we give a rigorous proof of this observation by a grammatical labeling with
respect to the parities of the vertices in an increasing tree.

Grammatical Proof of Theorem 5.1. We give the following grammatical labeling of an
increasing tree. We label a vertex of even degree with z and a vertex of odd degree
with y. For example, the labeling of the increasing tree in Figure 5.3 is given below.

Let T be an increasing tree on [n] with the above labeling. When adding the vertex
n+ 1 to T as a child of a vertex v of even degree, the label of v changes from x to y
and the label of n+ 1 is x. This corresponds to the rule z — zy. Similarly, adding the
vertex n + 1 to T as a child of a vertex of odd degree corresponds to the rule y — 2.
Thus, we obtain that

D"(x) = meff(T)ym"(T), (5.3)
T

where the sum ranges over increasing trees T' on [n| and m.(T') denotes the number of
vertices of even degree in T', m,(T') denotes the number of vertices of odd degree in T.
Comparing (4.2) with (5.3), we deduce that

[n/2]
Z T(n, k‘)l’2k+1yn_2k _ mee(T)ymo(T)’
k=0 T
where T ranges over increasing trees on [n]. This completes the proof. ]

To conclude this paper, we give a combinatorial proof of Theorem 5.1. More pre-
cisely, we provide a bijection ® between permutations and increasing trees such that
a permutation of [n] with k& exterior peaks corresponds to an increasing tree on [n]
with 2k + 1 vertices of even degree. Recall that a permutation o0 = 105 - - 0, of [n] is
called a up-down permutation if oy < 09 > 03 < ---. Similarly, o is called a down-up
permutation if oy > 09 < 03 > ---. When restricted to down-up permutations, ®
reduces to the bijection between down-up permutations and even increasing trees. An
even increasing tree is meant to be an increasing tree such that each vertex possibly
except for the root is of even degree. Kuznetsov, Pak and Postnikov [10] gave a bi-
jection between up-down permutations and even increasing trees. So our bijection can
be considered as an extension of the bijection given by Kuznetsov, Pak and Postnikov,
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since there is an obvious correspondence between up-down permutations and down-up
permutations.

Before describing our bijection, we recall that the code of a permutation is defined as
follows. For a permutation ¢ = o109 - -0, of [n], let code(o) = (¢4, ¢a, ..., ¢,) denote
the code of 0. In other words, ¢; is the number of elements o; such that j > ¢ and
o; > 0. It is clear that ¢, = 0.

The increasing tree ®(o) can be constructed via n steps. At each step, a vertex
is added to a forest of increasing trees. More precisely, at the k-th step, we obtain a
forest of increasing trees with k vertices, and finally obtain an increasing tree ®(o) on
[n].

For k = 1, as the first step we start with an increasing tree F; with a single vertex
iy = n—cy. For k > 1, we assume that a forest Fj,_; has been obtained at the (k—1)-th
step. Denote by I,_; and J;_; the set of vertices and the set of roots of Fj,_y. Let I_;
be the complement of I, that is, I,_; = [n] \ Ix_1. The goal of the k-th step is to
construct a forest Fj, by adding an element from I;,_; to Fj,_;.

Let j1,72,...,7; be the elements of J;_; listed in decreasing order. For notational
convenience, we assume that jo =n+1, 5,1 = 0 and ¢y = 0. Let
U ={m € Iy_1 | japr2 < m < japi1 for some p > 0}, (5.4)

Vi ={m € Iy_1 | jops1 < m < jy, for some p > 0}. (5.5)

It is clear that U, NV, =0 and I,_; = Uy U V.

Define M, to be Uy if ¢j_o < ¢_1 < ¢ Or ¢p_o > Ccr_1 > ¢; otherwise, define M,
to be Vi. Let mq,...,mg be the elements of M, listed in increasing order. We define
i to be me, 41 if cp_1 > cx, or my_p11-¢, if ck—1 < g By the following lemma, it can
be seen that it is feasible to choose such i, that is,

| M| > e +1 (5.6)
holds if ¢,y > ¢, and

holds if ¢;—; < ¢. Now, we add i, to Fj_; by setting each j, € Jy—; to be a child of
iy, if j, > 15, and let the resulting forest by Fj.

When k < n, we may iterate the above process until we obtain a forest F), on [n].
Setting each root of F}, to be a child of the vertex 0, we obtain an increasing tree T,
which is set to be ®(o).

Here is an example for the above bijection. Let o = 5346721. The code of o is
code(o) = (4,2,2,2,2,1,0). The increasing tree ®(o) is as follows.
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The values I, Jy, My, i, and the forests F} are given in the following table.

k‘ Mk ik Fk Ik,Jk
I, = {3
1 — i1=3 3 =13
Ji = {3}
I, ={3,6}
2| My=1{4,5,6,7} | iy =6 3 6
2 { } L2 o . JQ:{3,6}
I;=1{3,6,7
3| My={1,27} |ig=7| 3 6 7 s =18,6,7)
J3:{37677}
2
I, ={2,3,6,7
4| My ={1,2} iy =2 /[\ ;_{2 J
£ & s =12}
1
2 15 = {1727376a 7}
51 Ms=1{1 is =1
»={l > /6\ Js = {1}
36 7
1 5
Is = {1,2,3,5,6,7
6 | Ms={4,5} is =5 2 J()’_il 5) J
3 6 7 6 — )
1 4
7| M, = {4} ir =4 2 IE’) —
3 6 .7

In the construction of ®, at the k-th step (2 < k < n) conditions (5.6) and (5.7)
are needed to ensure the existence of the element ;. The following property implies
conditions (5.6) and (5.7).

Lemma 5.2 For 2 < k < n, at the k-th step of the construction of ®, if c,_1 > cx, we
have that
| M| = ci1, (5.8)

and Zf Ck—1 < Ck,
|Mk| :n—k—l—l—ck_l. (59)
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The proof of the above lemma is parallel to the construction of ®. First, we show
that Lemma 5.2 holds for £ = 2. When Lemma 5.2 holds for k, where k£ < n, then
(5.6) and (5.7) are valid for k, so the construction of ® goes to the next step.

Proof. For 2 < k < n, we proceed to prove (5.8) and (5.9) step by step. It is clear
that |Ms| = ¢; if ¢1 > ¢, and |[Ms| =n — 1 — ¢ if ¢; < ¢o. In other words, (5.8) and
(5.9) hold for k = 2. Assume that (5.8) and (5.9) hold for k. To compute |Mj1|, we
consider the following four cases:

Case 1: ¢_9 > cx_1 > . Let ji, ja, ..., 51 be the elements of J,_; listed in decreasing
order, and let jo = n + 1 and 7,1 = 0. By the assumption c;_o > cx_1 > ¢, and the
definition of My, we get

My, =Uy={m € I | jopra < m < jops for some p > 0},

Since i, € My, there exists ¢ > 0 such that jogo < i < jag41. So the set of roots of
Fy, is given by

i = Ltk Jogr2s - - -5 Ji}
It follows that

U1 = {m € Iy | m <'ig, joprz < m < jopi1 for some p > ¢}

={m e M | m < i}.
Since cg_1 > ¢, i is the (¢, + 1)-th smallest element in M. Hence
|Ups1] = {m € My | m < ig}| = c.
If ¢, > ciy1, by the assumption c;_; > ¢, we have
|Mii1| = |Ukia| = cx.

If e < cpyq, we get
Mk+1 = V;c+1 = [k \ Uk+1a

which implies that
|Mk+1‘ =n—k— Cl.

So we have verified that in this case (5.8) and (5.9) are also valid for Mj..

Case 2: ¢p_9 > ¢p_1 < ¢;. In this case, we have
My, =Vi={m € I_1 | jopr1 <m < ja, for some p > 0}. (5.10)
Since iy, € My, there exists ¢ > 0 such that jag11 < i < joq. It follows that
Je = {ik, Jogris -5 i}
and hence

Vigr = {m € I | i, <m < jo or japra < m < jopi1 for some p > q}.
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Consequently,
Virr ={m € Iy_1 | jopra < m < jopy1 for some p > 0}
+{m € I} | m > i, jopi1 < m < ja, for some p < g}. (5.11)

Notice that the first subset on the right hand side of (5.11) is exactly U as defined
by (5.4). To compute the cardinality of the second subset on the right hand side of
(5.11), we observe that jo,+1 < i) < jo,. Hence we have

{m € I, | m > iy, jopr1 < m < ja, for some p < ¢}
={m € I | m > iy, jopsr1 < M < ja, for some p > 0}
={m € M | m > ix}.

So we obtain that

Using the hypothesis and (5.10), we find that
Vil =Myl =n—k+1—c, (5.13)
so that
|Uk| = [I—1 \ Vi| = cx—1. (5.14)

Since ¢ < ¢, i is the (n — k41 — ¢ )-th smallest element in My, which implies that
Hme My |m<it}|=n—k+1—c. (5.15)
From (5.13) and (5.15) we obtain that

{m € My | m > i}
= [My| = {m € My [ m < iy}
=n—k+1l—c1)—(n—k+1—-c)
o (5.16)
Substituting (5.14) and (5.16) into (5.11), we get |Vii1| = ¢k, and hence |Ugiq| =
n—=k—c.

If ¢ > ¢ry1, by the assumption c¢x_; < ¢, we have |Myy| = |Vig]| = ¢ If
o < Ot1, we get |My1| = |Uks1| = n— k — ¢x. This proves that in this case (5.8) and
(5.9) hold for M.

For the other two cases, cx_o < ¢p1 < ¢ and ¢x2 < cx_1 > ¢k, |Mygy1| can be
determined by the same argument. The details are omitted. Thus we have shown that
(5.8) and (5.9) hold for k4 1. Hence (5.8) and (5.9) hold for 2 < k < n. This completes
the proof. |

We now have shown that @ is well-defined. To give a combinatorial proof of Theorem
5.1, we also need the following property.
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Lemma 5.3 Let 0 = 0109 - 0, be a permutation of [n| and code(o) = (¢1, ¢z, ..., Cn).
If c,_1 =1, then the root of ®(o) is of even degree. If c,_1 = 0, then the root of ®(o)
s of odd degree.

Proof. Observe that for any rooted tree, there is an odd number of vertices of even
degree. Clearly, for a permutation o on [n], ¢,—; equals to 0 or 1. It is easily seen that
¢n—1 = 1 is equivalent to o,,_1 > 0, and ¢,,_1 = 0 is equivalent to o,,_1 < g,. To prove
the lemma, we proceed to show that there are an odd number of non-rooted vertices
of even degree in ®(o) if 0,1 < 0, whereas there are an even number of non-rooted
vertices of even degree if o,_1 > o,.

Recall that an index 2 < k < n—1 is called a valley of a permutation o = o105 -- -0,
if o)1 > 0 < ok41. It is clear that iy is a leaf of ®(0). Moreover, by the construction
of @, for 2 < k < n, i is a vertex of even degree if and only if 7;, € Vj. Also by the
construction of ®, it is easily seen that ¢, € V) if and only if 045 < o1 > o0 or
Ok_9 > 0p_1 < 0. Hence, for 2 < k < n, 1 is a vertex of even degree if and only if
k — 1 is either an exterior peak or a valley. From the above argument, we also see that
11 does not correspond to any exterior peak or any valley.

We now consider the number of exterior peaks and the number of valleys in ¢. Since
o9 = 0, the elements of o go up from oy, then go down to certain position, and go up,
and so on. In other words, ¢ begins with an exterior peak, then the valleys and peaks
occur alternately. If 0,1 < 0, then ¢ ends up with a valley. Therefore, the number
of exterior peaks equals the number of valleys in ¢. This implies that the total number
of exterior peaks and valleys is even. Since 7; is a leaf of ®(o), we see that there are an
odd number of non-rooted vertices in ® (o) that are of even degree. Hence the degree
of 0 must be odd.

When 0,1 > 0,, 0 ends with a peak. In this case, the number of exterior peaks
of o exceeds the number of valleys of ¢ by one, so that the total number of exterior
peaks and valleys is odd. Thus ®(¢) has an even number of non-rooted vertices of even
degree, since 77 is a leaf. It follows that the degree of 0 is even, and hence the proof is
complete. 1

We are now ready to finish the combinatorial proof of Theorem 5.1.

Combinatorial Proof of Theorem 5.1. We have shown that ® is well-defined. To show
that ® is a bijection, we construct the inverse map W of . Let T" be an increasing tree
on [n|. Start with 7', we construct a sequence (¢, ¢a, ..., ¢,). Let o be the permutation
on [n] such that code(o) = (¢1,¢2,...,¢,). Then we define U(T') to be o.

First, let F}, be the forest obtained from T by deleting its root 0. Then from F},, we
construct a sequence of forests F,,_1,...,F. For k=n,n—1,...,2, F;_; is obtained
by deleting a vertex from Fj. More precisely, for k =n,n—1,...,2, let i be the largest
root of Fy, and let F;_; be the forest obtained from Fj, by deleting i;. For k = 1, let
11 be the largest root of Fy. For 1 < k < n, let I} denote the set of vertices in F} and
let J, denote the set of roots in Fj,. As before, let I;, denote the complement of I, in
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[n]. Given I and Ji, assume that Uy and V}, are defined the same as in (5.4) and (5.5),
namely,

Up={m e Iy | jopta < m < jopt1 for some p > 0},

Vi = {m € I_kfl | Jopr1 < m < Jgp for some p > O}7
where 71, jo, ..., J; are the elements of J,_; listed in decreasing order and j, = n + 1,

jis1 = 0. Note that i € I, and I_, is the disjoint union of U, and V;. If i}, € Uy,
we set My, = Uy. If iy, € V, we set M, = V.

Based on 7 and My, we can determine ¢ for 1 < k < n. For k = n, it is easily seen
that |M,| = 1. We set ¢, = 0. For k =n — 1, we set

1, if the degree of the root 0 in T is even, (5.17)
Cpn—1 = . . . .
' 0, if the degree of the root 0 in T is odd.
Moreover, for k=n—2,n—3,...,1, we set
| M1, if Myio = Uit and cpp1 > Cpyo,
n—k — M|, if Myyo = Upyo and ¢ < Cryo,
n—k— M|, if Myio=Viyo and cgi1 > Cpyo,
| M1l if Myto = Vigo and cpq1 < Cpyo.
In this way, we obtain (ci, ¢a, ..., ¢,). Next we aim to show that for 1 < k <mn,
0<¢c, <n-—k. (5.19)
Since for 2 < k < n, i € M}, and M, C I_;, we have
1< [ M| < |Tjal. (5.20)

On the other hand, by the definition of I;_;, we find that |I,_1| = n—k + 1. It follows
that for 2 < k < n,
Clearly, for 1 < k < n—1, ¢ equals to | My 1| or n—k—|Mj.41|. Thus, for 1 <k <n-—1,
we have

0<¢c, <n-—k.
Note that ¢, = 0, and so (5.19) is proved.

Let o be the permutation of [n] with code (1, ¢, ..., c,). We define U(T') to be o.
By Lemma 5.2 and Lemma 5.3, it is straightforward to verify that every step of the
construction of ¥ is the inverse of the corresponding step of ®. Hence & is a bijection.

It remains to show that ® maps a permutation of [n| with m exterior peaks to an
increasing tree on [n] with 2m + 1 vertices of even degree. Let o be a permutation on
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[n]. Recall that in the proof of Lemma 5.3, we see that o begins with an exterior peak,
then the valleys and peaks occur alternately and each peak or valley corresponds to a
vertex in [n] of even degree. Suppose that o has m exterior peaks. We shall show that
® (o) has 2m + 1 vertices of even degree.

If 0,1 < 0,, there are also m valleys in o. These 2m indices correspond to 2m ver-
tices in [n] of even degree. As noted in the proof of Lemma 5.3, i; does not correspond
to any peak or valley of o. On the other hand, i; is a vertex of even degree since i
is a leaf of ®(o). Hence, there are 2m + 1 vertices in [n] of even degree in ®(o). By
Lemma 5.3, the degree of 0 is odd. So there are 2m+ 1 vertices of even degree in ®(o).

If 0,,_1 > 0,, there are m — 1 valleys in 0. These 2m — 1 indices correspond to
2m — 1 vertices in [n] of even degree. Note that 7; does not correspond to any peak or
valley of o, but i; is a vertex in [n] of even degree. Hence there are 2m vertices in [n]
of even degree in ®(0). By Lemma 5.3, the degree of 0 is even. So there are 2m + 1
vertices of even degree in ®(o). This completes the proof. ]
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