Fw: arXiv New submission -> 1312.2170 in math.CO from chen@nankai.edu.cn   
�����ˣ�	chen@nankai.edu.cn 
ʱ   �䣺	2013��12��11�� 22:35:25 (������)
�ռ��ˣ�	
kevin@nankai.edu.cn




-----ԭʼ�ʼ�-----
������: e-prints@arxiv.org
����ʱ��: 2013-12-10 09:21:27 (���ڶ�)
�ռ���: chen@nankai.edu.cn
����: 
����: arXiv New submission -> 1312.2170 in math.CO from chen@nankai.edu.cn

Your submission submit/0864712 has been assigned the permanent arXiv
identifier 1312.2170 and is available at:

http://arxiv.org/abs/1312.2170

 
The paper password for this article is: z7tcz
Please share this with your co-authors. They may use it to claim
ownership.


Abstract will appear in today's mailing as:
------------------------------------------------------------------------------
\\
arXiv:1312.2170
From: William Y. C. Chen <chen@nankai.edu.cn>
Date: Sun, 8 Dec 2013 03:39:09 GMT   (8kb)

Title: A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers
Authors: William Y.C. Chen, Neil J.Y. Fan, Peter L. Guo, and Michael X.X. Zhong
Categories: math.CO
Comments: 11 pages
MSC-class: 05E15, 20F55
License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
\\
  Let $S_n$ denote the symmetric group on $\{1,2,\ldots,n\}$. For two
permutations $u, v\in S_n$ such that $u\leq v$ in the Bruhat order, let
$R_{u,v}(q)$ and $\R_{u,v}(q)$ denote the Kazhdan-Lusztig $R$-polynomial and
$\R$-polynomial, respectively. Let $v_n=34\cdots n\, 12$, and let $\sigma$ be a
permutation such that $\sigma\leq v_n$. We obtain a formula for the
$\R$-polynomials $\R_{\sigma,v_n}(q)$ in terms of the $q$-Fibonacci numbers
depending on a parameter determined by the reduced expression of $\sigma$. When
$\sigma$ is the identity $e$, this reduces to a formula obtained by Pagliacci.
In another direction, we obtain a formula for the $\R$-polynomial
$\R_{e,\,v_{n,i}}(q)$, where $v_{n,i} = 3 4\cdots i\,n\, (i+1)\cdots (n-1)\,
12$. In a more general context, we conjecture that for any two permutations
$\sigma,\tau\in S_n$ such that $\sigma\leq \tau\leq v_n$, the $\R$-polynomial
$\R_{\sigma,\tau}(q)$ can be expressed as a product of $q$-Fibonacci numbers
multiplied by a power of $q$.
\\


Contains:
 q-Fibonacci-s.tex: 32183 bytes