Fw: arXiv New submission -> 1312.2170 in math.CO from chen@nankai.edu.cn �����ˣ� chen@nankai.edu.cn ʱ �䣺 2013��12��11�� 22:35:25 (������) �ռ��ˣ� kevin@nankai.edu.cn -----ԭʼ�ʼ�----- ������: e-prints@arxiv.org ����ʱ��: 2013-12-10 09:21:27 (���ڶ�) �ռ���: chen@nankai.edu.cn ����: ����: arXiv New submission -> 1312.2170 in math.CO from chen@nankai.edu.cn Your submission submit/0864712 has been assigned the permanent arXiv identifier 1312.2170 and is available at: http://arxiv.org/abs/1312.2170 The paper password for this article is: z7tcz Please share this with your co-authors. They may use it to claim ownership. Abstract will appear in today's mailing as: ------------------------------------------------------------------------------ \\ arXiv:1312.2170 From: William Y. C. Chen <chen@nankai.edu.cn> Date: Sun, 8 Dec 2013 03:39:09 GMT (8kb) Title: A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers Authors: William Y.C. Chen, Neil J.Y. Fan, Peter L. Guo, and Michael X.X. Zhong Categories: math.CO Comments: 11 pages MSC-class: 05E15, 20F55 License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/ \\ Let $S_n$ denote the symmetric group on $\{1,2,\ldots,n\}$. For two permutations $u, v\in S_n$ such that $u\leq v$ in the Bruhat order, let $R_{u,v}(q)$ and $\R_{u,v}(q)$ denote the Kazhdan-Lusztig $R$-polynomial and $\R$-polynomial, respectively. Let $v_n=34\cdots n\, 12$, and let $\sigma$ be a permutation such that $\sigma\leq v_n$. We obtain a formula for the $\R$-polynomials $\R_{\sigma,v_n}(q)$ in terms of the $q$-Fibonacci numbers depending on a parameter determined by the reduced expression of $\sigma$. When $\sigma$ is the identity $e$, this reduces to a formula obtained by Pagliacci. In another direction, we obtain a formula for the $\R$-polynomial $\R_{e,\,v_{n,i}}(q)$, where $v_{n,i} = 3 4\cdots i\,n\, (i+1)\cdots (n-1)\, 12$. In a more general context, we conjecture that for any two permutations $\sigma,\tau\in S_n$ such that $\sigma\leq \tau\leq v_n$, the $\R$-polynomial $\R_{\sigma,\tau}(q)$ can be expressed as a product of $q$-Fibonacci numbers multiplied by a power of $q$. \\ Contains: q-Fibonacci-s.tex: 32183 bytes