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Abstract. There are many reasons for the Gaussian coefficients (or the
q-binomial coefficients) to be polynomials. We show that the divisibility di-
rectly follows from the basic properties of cyclotomic polynomials. Writing
the Gaussian coefficient with numerator n and denominator k in a form such
that 2k ≤ n by the symmetry in k, we find the coefficient has exactly k
factors if one carries out the divisibility computation without further factor-
ization (or as done by Maple). We further deduce the fact that the Gaussian
coefficents have no multiple roots. For the n-th q-Catalan number, we show
that it has exactly n − 1 factors after the divisibility computation.
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The q-multinomial coefficients are defined by
[

n

n1, n2, . . . , nr

]

=
(q; q)n

(q; q)n1
(q; q)n2

· · · (q; q)nr

,

where n1 + n2 + · · · + nr = n and

(q; q)m = (1 − q)(1 − q2) · · · (1 − qm).

For r = 2, they are usually called the q-binomial coefficients or the Gaussian

coefficients and are written as
[

n

k

]

=
(q; q)n

(q; q)k(q; q)n−k
=

(1 − qn−k+1)(1 − qn−k+2) · · · (1 − qn)

(1 − q)(1 − q2) · · · (1 − qk)
. (1)
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The factorization of q-binomial coefficients plays an important role in the
study of divisibility properties of generalized Euler numbers [1, 2, 8]. While
there are many reasons for the Gaussian coefficients to be polynomials, we
find that there is still more to be said. From the point of view of cyclotomic
polynomials, the divisibility for the Gaussian coefficients turns out to be
a rather natural fact. The only point that seems to be neglected is the
condition 2k ≤ n under which the Gaussian coefficients have k factors after
the straightforward computation (as done by Maple).

Let Φn(x) be the n-th cyclotomic polynomial defined by

Φn(x) =
∏

1≤j≤n

gcd(j, n)=1

(x − ζj
n),

where ζn = e2π
√
−1/n is the n-th root of unity and gcd(j, n) denotes the

great common divisor of j and n. It is well-known that Φn(x) ∈ Z[x] is the
irreducible polynomial for ζn (see, for example, [9]). The polynomial xn − 1
has the following factorization into irreducible polynomials over Z:

xn − 1 =
∏

j |n
Φj(x). (2)

We give the following factorization of q-multinomial coefficients, where
the notation bxc denotes the largest integer less than or equal to x.

Lemma 1 The q-multinomial cofficients
[

n
n1,n2,...,nr

]

are polynomials in q and

can be factored as

n
∏

i=1

(

Φi(q)
)bn

i c−b
n1
i c−b

n2
i c−···−bnr

i c. (3)

Proof. By Equation (2), we have

(−1)m(q, q)m =
m
∏

j=1

∏

i | j
Φi(q) =

m
∏

i=1

Φ
bm

i c
i (q) =

∞
∏

i=1

Φ
bm

i c
i (q).

Therefore,

[

n

n1, n2, . . . , nr

]

=

n
∏

i=1

Φ
bn

i c
i (q)

∞
∏

i=1

Φ
bn1

i c
i (q) ·

∞
∏

i=1

Φ
bn2

i c
i (q) · · ·

∞
∏

i=1

Φ
bnr

i c
i (q)

=
∞
∏

i=1

(

Φi(q)
)bn

i c−b
n1
i c−b

n2
i c−···−bnr

i c.
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Since
∑r

j=1 nj = n and bac + bbc ≤ ba + bc, all the power indices in (3) are
non-negative, which implies that the q-multinomial coefficients are polyno-
mials in q.

We have the following observation.

Theorem 2 The Gaussian coefficients
[

n
k

]

have no multiple roots.

Proof. It is sufficient to prove that the factorization of
[

n
k

]

into irreducible
factors contains no repeated factors. Using the following inequality for real
numbers a and b

bac + bbc + 1 ≥ ba + bc ,

and the factorization (3), we obtain

⌊n

i

⌋

−

⌊

k

i

⌋

−

⌊

n − k

i

⌋

≤ 1, for 1 ≤ i ≤ n.

Since Φi are pair-wise relatively prime, it follows that
[

n
k

]

have no multiple
roots.

Combining Lemma 1 and Theorem 2, we have

Corollary 3 The total number of irreducible factors of
[

n
k

]

is given by

k
∑

`=1

(

ν(n − ` + 1) − ν(`)
)

where ν(m) is the number of divisors of m.

The number of irreducible factors of
[

n
k

]

has the following bounds:

Theorem 4 The Gaussian coefficient
[

n
k

]

has at most n − 1 irreducible fac-

tors. It has at least k irreducible factors if n ≥ 2k.

Proof. It is obvious that Φ1(q) = q − 1 is not a divisor of
[

n
k

]

. Hence, (3)
implies that

[

n
k

]

has at most n − 1 irreducible factors. Assume that n ≥ 2k
and n−k+1 ≤ i ≤ n. Then we have 2i ≥ 2n−n+2 > n, i ≥ 2k−k+1 = k+1
and i ≥ n − k + 1. Hence,

⌊n

i

⌋

= 1 and

⌊

k

i

⌋

=

⌊

n − k

i

⌋

= 0,

which implies that Φi(q) is an irreducible factor of
[

n
k

]

. Thus,
[

n
k

]

has at least
k irreducible factors: Φn−k+1, Φn−k+2, . . . , Φn.
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Remark. Theorem 4 implies that the Gaussian coefficient can be written as
the product of exactly k non-trivial factors if one carries out the divisibility
computation without further factorization (or as done by Maple). In fact,
we may factorize

[

n
k

]

into k factors by the following procedure. Let Si =
{j : j divides n − i + 1}, i = 1, . . . , k. Then

(1 − qn−k+1)(1 − qn−k+2) · · · (1 − qn) = (−1)k
k

∏

i=1

∏

j∈Si

Φj(q).

Similarly,

(1 − q)(1 − q2) · · · (1 − qk) = (−1)k
k

∏

i=1

∏

j∈Ti

Φj(q),

where Ti = {j : j divides i}, i = 1, . . . , k. Cancelling the common elements
in Si and Tj, we get subsets Ri of Si such that

[

n

k

]

=
k

∏

i=1

∏

j∈Ri

Φj(q).

Note that n − i + 1 ∈ Si, but it does not belong to any Tj. It follows that
n− i+1 ∈ Ri, which implies that

∏

j∈Ri
Φj(q) are non-constant polynomials

in q.

The irreducible factors of
[

n
k

]

can be characterized as follows, where {x}
denotes the fractional part of x.

Theorem 5 Φi(q) is a factor of
[

n
k

]

if and only if
{

k
i

}

>
{

n
i

}

.

Proof. By definition,

⌊n

i

⌋

−

⌊

k

i

⌋

−

⌊

n − k

i

⌋

= 1

⇐⇒
{n

i

}

−

{

k

i

}

−

{

n − k

i

}

= −1

⇐⇒

{

k

i

}

=
{n

i

}

+ 1 −

{

n − k

i

}

>
{n

i

}

.

Note that Φ1(1) = 0, and for n > 1,

Φn(1) =







p, if n = pm for some prime number p,

1, otherwise,
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which follows immediately from the construction of Φn(x):

Φp(x) =
xp − 1

x − 1
and Φnp(x) =







Φn(xp)
Φn(x)

, if p - n,

Φn(xp), if p |n,

where p is a prime number (see [7]). We obtain Kummer’s theorem from
Theorem 5.

Corollary 6 (Kummer’s Theorem) The power of prime p dividing
(

n
m

)

is given by the number of integers j > 0 for which {m/pj} > {n/pj}.

Remark. Let [n]! = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1). From the
following factorization

[n]! =

n
∏

i=2

(Φi(q))
bn

i c,

one obtains the power of a prime p dividing n! by taking q = 1 (see [4]):

εp(n) =
∑

r≥0

⌊

n

pr

⌋

.

As a q-generalization of the Catalan numbers, the q-Catalan numbers
have been extensively investigated (see [3, 5, 6]). Based on Theorem 4, we
derive the following divisibility properties of the q-Catalan numbers.

Corollary 7 The q-Catalan numbers 1−q
1−qn+1

[

2n
n

]

are polynomials in q and

have at least n − 1 irreducible factors.

Proof. Since Φn+2, Φn+3, . . . , Φ2n are irreducible factors of
[

2n
n

]

and are co-
prime with 1−qn+1, they are also irreducible factors of the q-Catalan number
provided that it is a polynomial. In fact, for each factor Φi(i ≥ 2) of 1−qn+1,
we have i |n + 1, namely, n = ki − 1. Therefore,

{n

i

}

=
i − 1

i
>

{

2n

i

}

=
i − 2

i
.

From Theorem 4, it follows that Φi is a factor of
[

2n
n

]

.

As a generalization of Theorem 4, we have

Theorem 8 Let M = max{n1, n2, . . . , nr}. Then
[

n
n1,n2,...,nr

]

has at least

n − M irreducible factors.
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Proof. For any M + 1 ≤ i ≤ n, we have
⌊n

i

⌋

−
⌊n1

i

⌋

−
⌊n2

i

⌋

− · · · −
⌊nr

i

⌋

=
⌊n

i

⌋

≥ 1.

Thus Φi(q) is an irreducible factor of
[

n
n1,n2,...,nr

]

by (3).

Except for the following special cases, the q-multinomial coefficient con-
tains more irreducible factors.

Theorem 9 The q-multinomial coefficients
[

n
n1,n2,...,nr

]

can be factored into

exactly n − M irreducible factors only for the following special cases:
[

p

1

]

(p is prime),

[

4

2

]

,

[

5

2

]

,

[

7

3

]

,

[

8

4

]

,

[

11

5

]

,

[

3

1, 1, 1

]

,

[

5

2, 2, 1

]

.

Proof. Suppose
[

n
n1,...,nr

]

can be factored into exactly n − M irreducible
factors. Then

⌊n

i

⌋

=

r
∑

j=1

⌊nj

i

⌋

, for 1 ≤ i ≤ M, and
⌊n

i

⌋

= 1, for M + 1 ≤ i ≤ n.

Therefore M < n < 2M + 2.

If n = M +1, we have
[

n
1

]

=
∏

j |n
j 6=1

Φj. Hence it has only one factor if and

only if n is prime. From now on, we may assume that M + 2 ≤ n ≤ 2M + 1.

Suppose r ≥ 3 and M = n1 ≥ n2 ≥ n3 ≥ · · · . If n2 + 1 ≤ M , then for
i = n2 + 1,

⌊n2

i

⌋

+
⌊n3

i

⌋

= 0 < 1 =

⌊

n2 + n3

i

⌋

,

which implies that Φi is an extra factor
[

n
n1,...,nr

]

. Hence we have n2 +1 > M ,
which implies that n2 = M and n3 = 1. Suppose M = 2a · b, where b is an
odd integer.

(1) b = 1. For i = 2a−1 + 1, we have 2
⌊

M
i

⌋

= 2 < 3 =
⌊

2M+1
i

⌋

if a > 1. It

follows that a = 0 or 1, leading to the two cases
[

3
1,1,1

]

and
[

5
2,2,1

]

.

(2) b > 1. For i = 2a+1, we have 2
⌊

M
i

⌋

= 2
⌊

b
2

⌋

< b =
⌊

2M+1
i

⌋

, which
implies that Φi is an extra factor.

It remains to consider the case r = 2. Suppose that M = n1 ≥ n2. If
n2 + 1 > M , then n2 = M . Using a similar argument for the above case
r ≥ 3, we get the special cases

[

4
2

]

,
[

8
4

]

. Otherwise, we have n2 + 1 ≤ M and
⌊

M

n2 + 1

⌋

+

⌊

n2

n2 + 1

⌋

=

⌊

M + n2

n2 + 1

⌋

,

which implies (n2 + 1) |M . Finally, we are left with two cases.
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(1) M = 2m. Taking i = m + 1, we have
⌊

M
i

⌋

= 1 and

⌊n2

i

⌋

=







1, if n2 = M − 1,

0, if n2 = M
r
− 1, r ≥ 2.

Since
⌊

M+n2

i

⌋

≥ 2 for n2 ≥ 2 and
⌊

M+n2

i

⌋

≥ 3 for n2 = M − 1 and
m ≥ 4, we have n2 = M − 1 and m = 2, 3. So we get the two cases
[

7
3

]

,
[

11
5

]

.

(2) M = 2m + 1. Taking i = m + 1, we get
[

5
2

]

by a similar argument.
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