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Abstract
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berger’s algorithm terminates. The special case for the rational functions has been

solved by Abramov and Le.
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1 Introduction

Zeilberger’s algorithm [6, 8, 12], also known as the method of creative telescoping, is a
useful tool for proving identities of the form

∞
∑

k=−∞

F (n, k) = f(n),

where F (n, k) is a double hypergeometric term and f(n) is a given function (for most cases
a hypergeometric term plus a constant). Given a double hypergeometric term F (n, k),
the algorithm tries to construct a Z-pair (L, G) which consists of a linear difference
operator L with coefficients in the ring of polynomials in n

L = a0(n)N0 + a1(n)N1 + · · · + ar(n)Nr

and a double hypergeometric term G(n, k) such that

LF (n, k) = (E − 1)G(n, k),

where N is the shift operator with respect to n, defined by NF (n, k) = F (n + 1, k) and
E is the shift operator with respect to k, defined by EF (n, k) = F (n, k + 1). Therefore,
the existence of Z-pairs ensures the termination of Zeilberger’s algorithm.

While Zeilberger’s algorithm has been widely used as a powerful tool to verify and
discover hypergeometric identities, it remains an open problem to determine whether the
algorithm terminates. An important progress has been made by Abramov and Le for
the special case of rational functions F (n, k). In this paper we provide a solution in the
general case.

A well known class of double hypergeometric terms for which Zeilberger’s algorithm
terminates are called the proper hypergeometric terms [6, 8, 10, 11]:

F (n, k) = P (n, k)

∏l

i=1(αin + βik + γi)!
∏m

i=1(α
′
in + β′

ik + γ′
i)!

unvk ,
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where P (n, k) ∈ C[n, k], αi, βi, α
′
i, β

′
i ∈ Z, l, m are non-negative integers, and γi, γ

′
i, u, v ∈

C. (The factorial of a complex number is considered as the value of the gamma function,
i.e., z! = Γ(z+1).) However, it is possible to construct a non-proper hypergeometric term
for which Zeilberger’s algorithm also terminates. For example, F (n, k) = (E−1) 1

nk+1 [3,
Example 6].

Applying any of the algorithms given in [1,2,9], one can represent a rational function
F (n, k) in the form

F (n, k) = (E − 1)S(n, k) + T (n, k),

where S, T are rational functions such that the denominator of T (n, k) has the minimal
possible degree in k. Based on this decomposition, Abramov and Le [3] prove that for a
rational function F (n, k), it has a Z-pair if and only if T (n, k) is a proper hypergeometric
term.

In this article, we solve this problem for general double hypergeometric terms by
using the properties of the canonical representation. For any hypergeometric term
T (n), Abramov and Petkovšek [5] give an algorithm to construct hypergeometric terms
T1(n), T2(n) such that

T (n) = T1(n + 1) − T1(n) + T2(n) (1.1)

and T2(n) is minimal in some sense. We show that a double hypergeometric term F (n, k)
has a Z-pair if and only if F2(n, k) is a proper hypergeometric term, where

F (n, k) = (E − 1)F1(n, k) + F2(n, k) (1.2)

is the 2-variable analog of the decomposition (1.1). When F (n, k) is a rational function,
it reduces to the result of Abramov and Le. Based on this criterion, we present an
algorithm to verify the existence of Z-pairs.

We first introduce the canonical representation of double hypergeometric terms and
some of its properties in Section 2. Then we obtain a sufficient and necessary condition
for the existence of Z-pairs (Theorem 3.6). The corresponding algorithms are presented
in Section 4.

2 The Canonical Representation of Double Hyperge-

ometric Terms

Throughout the paper functions are maps from N (or N2) to C and C, Z, Z+, N are the set
of complex numbers, integers, positive integers and non-negative integers, respectively.
A function T (k) is called a hypergeometric term if T (k + 1)/T (k) is a rational function
of k. A function F (n, k) is called a double hypergeometric term if both

F (n + 1, k)/F (n, k) and F (n, k + 1)/F (n, k)

are rational functions of n and k. Two double hypergeometric terms F (n, k) and G(n, k)
are said to be similar if their ratio is a rational function of n and k.
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As in Section 1, N and E denote the shift operators with respect to n and k, re-
spectively. For polynomials f(n, k), g(n, k) ∈ C[n, k], we denote by gcd(f, g) the monic
greatest common divisor of f and g. We also write p⊥ q to indicate that the polynomials
p(n, k), q(n, k) ∈ C[n, k] are relatively prime, i.e., gcd(p, q) = 1.

Definition 2.1 Let r(n, k), s(n, k) ∈ C[n, k]. If r⊥Ehs for all h ∈ Z, then the rational

function r/s is called k-shift-reduced. If r⊥Ehr for all h ∈ Z \ {0}, then the polynomial

r is called k-shift-free.

Definition 2.2 A non-zero polynomial f(n, k) ∈ C[n, k] is called proper if each of its

irreducible factor is of the form g(an + bk), where g(n) is a polynomial in one variable

and a, b ∈ Z.

Now we give the definition of the canonical representation of double hypergeometric
terms.

Definition 2.3 Let F (n, k) be a double hypergeometric term. If there exist polynomials

a(n, k), b(n, k), c(n, k) and d(n, k) such that

F (n, k + 1)

F (n, k)
=

a(n, k)

b(n, k)

c(n, k + 1)

c(n, k)

d(n, k)

d(n, k + 1)
, (2.1)

where c(n, k)⊥ d(n, k) and a(n, k)/b(n, k) is k-shift-reduced, we call [a(n, k), b(n, k),
c(n, k), d(n, k)] a canonical representation of F (n, k).

It is shown that for each double hypergeometric term, there exists a canonical repre-
sentation [4, 7]. Moreover, we have

Proposition 2.4 ( [7]) Let F (n, k) be a double hypergeometric term with a canonical

representation [a(n, k), b(n, k), c(n, k), d(n, k)]. Then

• a(n, k) and b(n, k) are both proper polynomials;

• F (n, k) is a proper hypergeometric term if and only if d(n, k) is a proper polynomial;

• There exist polynomials fi(x), gi(x) ∈ C[x] such that

k−1
∏

j=0

(

a(n + 1, j)

a(n, j)
·

b(n, j)

b(n + 1, j)

)

=

∏t

j=1 fj(ujk + u′
jn)

∏t

j=1 gj(vjk + v′jn)
, (2.2)

where uj , vj , u
′
j , v

′
j are integers.

3 A Criterion for the Existence of Z-pairs

By Proposition 2.4, we can write the ratio F (n + i, k)/F (n, k) in terms of the canonical
representation of F (n, k).
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Lemma 3.1 Let F (n, k) be a double hypergeometric term with a canonical representation

[a(n, k), b(n, k), c(n, k), d(n, k)]. Then for each i ≥ 0, there exist proper polynomials

w
(i)
1 (n, k) and w

(i)
2 (n, k) such that

F (n + i, k)

F (n, k)
=

c(n + i, k)

d(n + i, k)
·
d(n, k)

c(n, k)
·
w

(i)
1 (n, k)

w
(i)
2 (n, k)

. (3.1)

Proof. Similar to the proof of Theorem 4.2 in [7], we have

F (n + i, k)

F (n, k)
=

k−1
∏

j=0

i−1
∏

m=0

{

a(n + m + 1, j)

a(n + m, j)
·

b(n + m, j)

b(n + m + 1, j)

}

·
i−1
∏

m=0

F (n + m + 1, 0)

F (n + m, 0)
·
c(n + i, k)

c(n, k)
·

c(n, 0)

c(n + i, 0)

·
d(n, k)

d(n + i, k)
·
d(n + i, 0)

d(n, 0)
.

Notice that F (n+1,0)
F (n,0) = u(n)

v(n) , where u(n), v(n) are polynomials. By Proposition 2.4,

we have

F (n + i, k)

F (n, k)
=

i−1
∏

m=0

∏t

l=1 fl(ulk + u′
l(n + m))

∏t

l=1 gl(vlk + v′l(n + m))

i−1
∏

m=0

u(n + m)

v(n + m)

c(n + i, k)

c(n, k)
·

c(n, 0)

c(n + i, 0)
·

d(n, k)

d(n + i, k)
·
d(n + i, 0)

d(n, 0)
.

This completes the proof. �

Proper polynomials can be characterized by the following lemma.

Lemma 3.2 A polynomial f(n, k) ∈ C[n, k] is proper if and only if f(n, k)⊥ p(n, k) for

any irreducible polynomial p(n, k) which satisfies p(n, k)⊥ p(n + i, k + j) for all (i, j) ∈
Z2 \ (0, 0).

Proof. Suppose f(n, k) is a proper polynomial and p(n, k) is an irreducible polynomial
which satisfies p(n, k)⊥ p(n + i, k + j) for all (i, j) ∈ Z2 \ (0, 0). If gcd(f, p) 6= 1, p(n, k)
must be an irreducible factor of f(n, k). By the definition of proper polynomials, p(n, k) =
g(an + bk) for some (a, b) ∈ Z2 \ (0, 0), which implies p(n + b, k − a) = p(n, k). This
contradicts the hypothesis of p(n, k). Therefore, f(n, k)⊥ p(n, k).

On the other hand, suppose f(n, k)⊥ p(n, k) for any irreducible polynomial p(n, k)
which satisfies p(n, k)⊥ p(n + i, k + j) for all (i, j) ∈ Z2 \ (0, 0). Let q(n, k) be an
irreducible factor of f(n, k), there must be integers a, b which are not both zero such
that gcd(q(n, k), q(n + a, k + b)) 6= 1. Since q(n, k) is irreducible, we have q(n, k) =
q(n + a, k + b). By Lemma 3.3 in [7], we have q(n, k) = g(a′n + b′k) for some integers
a′, b′. �

Lemma 3.2 enables us to decompose a non-proper and k-shift-free polynomial.
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Lemma 3.3 Let d(n, k) ∈ C[n, k] be a non-proper and k-shift-free polynomial. Then

there exists an irreducible polynomial p(n, k) such that

d(n, k) = pα(n, k)d̃(n, k), α ∈ Z
+

p(n, k)⊥ p(n + i, k + j), ∀ (i, j) ∈ Z
2 \ (0, 0), (3.2)

p(n, k)⊥ d̃(n + i, k + j), ∀ i ∈ N, j ∈ Z.

Proof. Since d(n, k) is non-proper, by Lemma 3.2, it has an irreducible factor q(n, k)
such that q(n, k)⊥ q(n + i, k + j), ∀ (i, j) ∈ Z

2 \ (0, 0).

We factor d(n, k) to be

d(n, k) = qα1(n + a1, k + b1) · · · q
αr (n + ar, k + br)d1(n, k),

where (ai, bi) ∈ Z2 are pair-wised distinct, αi ∈ Z+, and q(n+ i, k + j)⊥ d1(n, k), ∀ i, j ∈
Z. Noting that d(n, k) is k-shift-free, it follows that ai 6= aj for i 6= j. Without loss of
generality, we assume that a1 < a2 < · · · < ar. Then qα1(n + a1, k + b1) | d(n, k), but

q(n + a1, k + b1)⊥ d(n + i, k + j), ∀ i > 0, j ∈ Z,

q(n + a1, k + b1)⊥ d(n, k + j), ∀ j 6= 0.

Taking α = α1 and p(n, k) = q(n + a1, k + b1), we get the desired decomposition. �

Now we are ready to give a criterion of the existence of Z-pairs.

Theorem 3.4 Let F (n, k) be a double hypergeometric term with a canonical represen-

tation [a(n, k), b(n, k), c(n, k), d(n, k)] such that d(n, k) is k-shift-free. Then F (n, k) has

a Z-pair if and only if F (n, k) is a proper hypergeometric term, or equivalently, if and

only if d(n, k) is a proper polynomial.

Proof. Since proper hypergeometric terms have Z-pairs, we only need the inverse. Sup-
pose F (n, k) has a Z-pair but is not a proper hypergeometric term. Clearly, for a differ-
ence operator L ∈ C[n, N ],

(N · L)F (n, k) = (E − 1)G(n, k) =⇒ LF (n, k) = (E − 1)G(n − 1, k).

Therefore, we may assume F (n, k) has a Z-pair (L, G) with L =
∑I

i=0 ai(n)N i, where
ai(n) are polynomials in n and a0(n) 6= 0. Noting that LF is similar to F and (E − 1)G
is similar to G, it follows that F and G are similar. Hence we may assume that

G(n, k) =
r(n, k)

s(n, k)
F (n, k),

where r(n, k) and s(n, k) are two relatively prime polynomials.

By the definition of Z-pairs, we have

I
∑

i=0

ai(n)
F (n + i, k)

F (n, k)
=

r(n, k + 1)

s(n, k + 1)

F (n, k + 1)

F (n, k)
−

r(n, k)

s(n, k)
. (3.3)
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Substituting (2.1) and (3.1) into (3.3), we obtain

I
∑

i=0

ai(n)
c(n + i, k)

d(n + i, k)

w
(i)
1 (n, k)

w
(i)
2 (n, k)

=
r(n, k + 1)

s(n, k + 1)

a(n, k)

b(n, k)

c(n, k + 1)

d(n, k + 1)
−

r(n, k)

s(n, k)

c(n, k)

d(n, k)
. (3.4)

Since F (n, k) is not a proper hypergeometric term, d(n, k) is a non-proper polynomial.
By Lemma 3.3, there exists an irreducible polynomial p(n, k) such that (3.2) holds.
Let c1(n, k) = c(n, k)/ gcd(c(n, k), s(n, k)), s1(n, k) = s(n, k)/ gcd(c(n, k), s(n, k)). Then
Equation (3.4) becomes

I
∑

i=0

ai(n)
c(n + i, k)w

(i)
1 (n, k)

pα(n + i, k)d̃(n + i, k)w
(i)
2 (n, k)

=
r(n, k + 1)c1(n, k + 1)a(n, k)

s1(n, k + 1)pα(n, k + 1)d̃(n, k + 1)b(n, k)
−

r(n, k)c1(n, k)

s1(n, k)pα(n, k)d̃(n, k)
. (3.5)

Multiplying

s1(n, k + 1)s1(n, k)pα(n, k + 1)d̃(n, k + 1)b(n, k)
I

∏

j=0

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k)

on both sides of (3.5), we get

s1(n, k + 1)s1(n, k)pα(n, k + 1)d̃(n, k + 1)b(n, k)

·

I
∑

i=0

ai(n)c(n + i, k)w
(i)
1 (n, k)

∏

j 6=i

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k)

=r(n, k + 1)c1(n, k + 1)a(n, k)s1(n, k)

I
∏

j=0

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k)

− r(n, k)c1(n, k)s1(n, k + 1)pα(n, k + 1)d̃(n, k + 1)b(n, k)w
(0)
2 (n, k)

·

I
∏

j=1

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k). (3.6)

Notice that p(n, k) divides each term of the left hand side except for the first one. There-
fore, p(n, k) divides

s1(n, k + 1)pα(n, k + 1)d̃(n, k + 1)b(n, k)

I
∏

j=1

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k)

·
(

s1(n, k)a0(n)c(n, k)w
(0)
1 (n, k) + r(n, k)c1(n, k)w

(0)
2 (n, k)

)

.

From (3.2), it follows that

p(n, k)⊥ pα(n, k + 1)d̃(n, k + 1)

I
∏

j=1

pα(n + j, k)d̃(n + j, k).
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By Proposition 2.4 and Lemma 3.2, b(n, k) and w
(j)
2 (n, k) are also relatively prime to

p(n, k). Hence,

p(n, k)|s1(n, k + 1)
(

s1(n, k)a0(n)c(n, k)w
(0)
1 (n, k) + r(n, k)c1(n, k)w

(0)
2 (n, k)

)

. (3.7)

Similarly, since p(n, k + 1) divides both sides of Equation (3.6) and c(n, k)⊥ d(n, k), we
have

p(n, k + 1)|r(n, k + 1)s1(n, k), (3.8)

and hence p(n, k + 1)|r(n, k + 1) or p(n, k + 1)|s1(n, k).

Case 1. Suppose p(n, k + 1)|r(n, k + 1). From (3.7), we have

p(n, k)|s1(n, k + 1)s1(n, k)a0(n)c(n, k)w
(0)
1 (n, k).

Since r(n, k)⊥ s(n, k), c(n, k)⊥ d(n, k), a0(n) and w
(0)
1 (n, k) are proper polynomi-

als, it follows that p(n, k)|s1(n, k + 1), i.e., p(n, k − 1)|s1(n, k). Let m(> 0) be
the greatest integer such that p(n, k −m)|s1(n, k). By Equation (3.6), p(n, k −m)
divides

r(n, k)c1(n, k)s1(n, k + 1)pα(n, k + 1)d̃(n, k + 1)b(n, k)w
(0)
2 (n, k)

·

I
∏

j=1

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k).

However, r(n, k)⊥ s(n, k) and c1(n, k)⊥ s1(n, k) imply that p(n, k−m)|s1(n, k+1),
which contradicts the choice of m.

Case 2. Suppose p(n, k + 1)|s1(n, k). Let M > 0 be the greatest integer such that p(n, k +
M)|s1(n, k), i.e., p(n, k+M +1)|s1(n, k+1). Also by (3.6), we have p(n, k+M +1)
divides

r(n, k + 1)c1(n, k + 1)a(n, k)s1(n, k)
I

∏

j=0

pα(n + j, k)d̃(n + j, k)w
(j)
2 (n, k).

Similarly, we get p(n, k + M + 1)|s1(n, k), which is also a contradiction. �

Similar to Lemma 1 in [3], the existence of Z-pairs is preserved under addition.

Lemma 3.5 Suppose there exist Z-pairs for two similar double hypergeometric terms

F1(n, k) and F2(n, k). Then there exists a Z-pair for F (n, k) = F1(n, k) + F2(n, k).

Proof. Let (L1, G1), (L2, G2) be the Z-pairs of F1 and F2 respectively. Let L be the least
common left multiple of L1 and L2, i.e., L = L′

1 ◦ L1 = L′
2 ◦ L2 ∈ C[n, N ]. Therefore,

LF = LF1 + LF2 = L′
1(L1F1) + L′

2(L2F2) = L′
1((E − 1)G1) + L′

2((E − 1)G2).

7



Since NE = EN and nE = En,

LF = (E − 1)(L′
1G1 + L′

2G2).

Since L′
1G1 is similar to G1, it is similar to F1. Also, L′

2G2 is similar to F2. Since F1

and F2 are similar, it follows that L′
1G1 + L′

2G2 is a double hypergeometric term similar
to F . �

Notice that F (n, k) = (E−1)G(n, k) has a Z-pair (1, G), and (1.2) implies that F1, F2

are similar to F . Combining Theorem 3.4 and Lemma 3.5, we obtain the main result of
this paper.

Theorem 3.6 Let F (n, k) be a double hypergeometric term. Suppose F1(n, k), F2(n, k)
be two double hypergeometric terms which satisfies

F (n, k) = (E − 1)F1(n, k) + F2(n, k)

and F2(n, k) has a canonical representation [a(n, k), b(n, k), c(n, k), d(n, k)] such that

d(n, k) is k-shift-free. Then F (n, k) has a Z-pair if and only if F2(n, k) is a proper

hypergeometric term, or equivalently, if and only if d(n, k) is a proper polynomial.

4 The Algorithms

Theorem 3.6 transforms the problem of the existence of Z-pairs into the following two
problems.

1. Find an algorithm to decompose F (n, k) into

F (n, k) = (E − 1)F1(n, k) + F2(n, k),

such that F2(n, k) has a canonical representation [a(n, k), b(n, k), c(n, k), d(n, k)]
with d(n, k) being k-shift-free.

2. Find an algorithm to determine whether d(n, k) is a proper polynomial.

These two problems can be solved as follows.

Let F (n, k) be a double hypergeometric term. It is shown in [4, 7] that there is an
algorithm, denoted by DGosper, to find the canonical representation of F (n, k), i.e., to
find polynomials a(n, k), b(n, k), c(n, k) and d(n, k) such that

F (n, k + 1)

F (n, k)
=

a(n, k)

b(n, k)

c(n, k + 1)

c(n, k)

d(n, k)

d(n, k + 1)
,

where c(n, k)⊥ d(n, k) and a(n, k)/b(n, k) is k-shift-reduced. Therefore,

T (n, k) =
F (n, k)

F (n, 0)
=

d(n, 0)

c(n, 0)

c(n, k)

d(n, k)

k−1
∏

i=0

a(n, i)

b(n, i)
.
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Viewing a(n, k)/b(n, k) and c(n, k)/d(n, k) as rational functions of k with coefficients
in the field C(n) (the fractional field of C[n]), T (n, k) becomes a hypergeometric term
over the field C(n). Therefore, by the algorithm dcert given in [5], one can find hyper-
geometric terms F ′

1(k), F ′
2(k) similar to T (n, k) such that

T (n, k) = (E − 1)F ′
1(k) + F ′

2(k)

and F ′
2(k) has a canonical representation [f̃1(k), f̃2(k), ṽ1(k), ṽ2(k)] having the following

property: gcdk(ṽ2(k), ṽ2(k+h)) = 1, ∀h ∈ Z\{0}, where gcdk denotes the monic greatest
common divisor in the field C(n).

Noting that for any r(n), s1(n), s2(n) ∈ C(n) which are not zero, we have

[

r(n)f̃1(k), r(n)f̃2(k), s1(n)ṽ1(k), s2(n)ṽ2(k)
]

is also a canonical representation of F ′
2(k), we may transform f̃1, f̃2, ṽ1, ṽ2 to f1, f2, v1, v2 ∈

C[n, k] such that [f1, f2, v1, v2] is a canonical representation of F ′
2(k) and v2 is k-shift-free.

Since F ′
1(k) and F ′

2(k) are similar to T (n, k), we have F ′
1(k)F (n, 0) and F ′

2(k)F (n, 0) are
similar to F (n, k), and hence, they are both double hypergeometric terms. Clearly,

F (n, k) = (E − 1)(F ′
1(n, k)F (n, 0)) + (F ′

2(n, k)F (n, 0)).

Noting that [f1, f2, v1, v2] is also a canonical representation of F ′
2(k)F (n, 0), Theorem 3.6

states that F (n, k) has a Z-pair if and only if v2(n, k) is a proper polynomial.

Finally, Abramov and Le [3, Section 4] give the algorithm to determine whether or
not a polynomial is proper.

We provide two examples.

Example 1. Let

F1(n, k) =
kn2 + kn + 2n + 1

(kn + 1)(kn + n + 1)k!
.

Applying the algorithms DGosper and dcert, we get

ṽ1(k)

ṽ2(k)
= −

n + 1

n
k +

2n + 1

n
.

Since v2(n, k) = 1 is naturally a proper polynomial, we see that F1(n, k) has a Z-pair.
In fact, by the Maple package EKHAD we find that

L = 1 − N, G = −
1

(kn + k + 1)(kn + 1)(k − 1)!

is a Z-pair for F1(n, k).

Example 2. Let

F2(n, k) = kF1(n, k) =
kn2 + kn + 2n + 1

(kn + 1)(kn + n + 1)(k − 1)!
.

9



Applying the algorithms DGosper and dcert, we get

ṽ1(k)

ṽ2(k)
=

(

−nk3 +
3n2 − 2

n + 1
k2 +

n3 + 8n2 + 3n − 1

n(n + 1)
k −

2n3 + n2 − 4n − 2

n(n + 1)

)

/

(kn+n+1).

Since v2(n, k) = kn + n +1 is not a proper polynomial, we conclude that F2(n, k) has no
Z-pair.
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[4] S. A. Abramov and M. Petkovšek, Proof of a conjecture of Wilf and Zeilberger,
Preprint Series of the Institute of Mathematics, Physics and Mechanics 39 (2001)
no. 748, Ljubljana, March 9, 2001.
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