
Semi-invariants of Binary Forms and
Sylvester’s Theorem

William Y.C. Chen1 and Ivy D.D. Jia2

1Center for Applied Mathematics
Tianjin University

Tianjin 300072, P. R. China
and

1,2Chern Institute of Mathematics
Nankai University

Tianjin 300071, P. R. China

Emails: 1chenyc@tju.edu.cn, 2jiadandan@mail.nankai.edu.cn

Dedicated to Doron Zeilberger on the Occasion of His Seventieth Birthday

Abstract

We obtain a combinatorial formula related to the shear transformation for semi-
invariants of binary forms, which implies the characterization of semi-invariants in
terms of a differential operator. Then we present a combinatorial proof of an identity
of Hilbert, leading to a relation of Cayley on semi-invariants. This identity plays a
crucial role in the original proof of Sylvester’s theorem on semi-invariants in con-
nection with the Gaussian coefficients. Moreover, we show that the additivity lemma
of Pak and Panova which yields the strict unimodality of the Gaussian coefficients
for n, k ≥ 8 can be deduced from the ring property of semi-invariants.
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1 Introduction

This work is a continuation of the exploration of the Gaussian coefficients or the q-
binomial coefficients by means of semi-invariants of binary forms recently carried out in
[3]. We will be mainly concerned with the combinatorial perspectives related to Sylvester’s
proof of the unimodality conjecture of Cayley. A key identity used by Sylvester is a re-
lation due to Cayley, which turns out to be a consequence of an identity of Hilbert. We
shall give a combinatorial interpretation of the identity of Hilbert. Moreover, we show that
the additivity lemma of Pak and Panova leading to the strict unimodality of the Gaussian
coefficients for n, k ≥ 8 can be deduced from the ring property of semi-invariants.
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Let p(k, n,m) denote the number of partitions of m contained in a k × n rectangle,
then the Gaussian coefficients can be expressed as[

n+ k

k

]
=

nk∑
m=0

p(k, n,m)qm, (1.1)

see [1, 13].

The Gaussian coefficients are symmetric in q. Cayley [2] conjectured in 1856 that the
Gaussian coefficients are unimodal, and it was proved by Sylvester [14] in 1878 based on
semi-invariants of binary forms. There has been an extensive literature on this subject, see,
for example, [7,10–12,15,16]. It is worth mentioning that O’Hara [7] found a constructive
proof. Zeilberger [16] developed an identity, known as the KOH theorem, which justifies
the unimodality.

As the first step to bring Sylvester’s theorem to a combinatorial ground, let us take a
look at the characterization of semi-invariants in terms of the differential operator D. A
semi-invariant of a binary n-form is a polynomial I(a0, a1, . . . , an) with rational coeffi-
cients such that

I(a0, a1, . . . , an) = I(a′0, a
′
1, . . . , a

′
n), (1.2)

where the a′i are determined by the shear transformation with respect to a variable z, that
is, for 0 ≤ i ≤ n,

a′i = ai +

(
i

1

)
ai−1z +

(
i

2

)
ai−2z

2 + · · ·+ a0z
i. (1.3)

Let
D = a0

∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+ · · ·+ nan−1

∂

∂an
. (1.4)

Semi-invariants can be characterized in terms of the differential operator D, see Cayley
[2], Sylvester [14], or Hilbert [6]. More precisely, a polynomial I(a0, a1, . . . , an) is a
semi-invariant of a binary n-form if and only if D(I) = 0.

Note that if I and J are two semi-invariants of a binary n-form, then so are I +
J and IJ . Based on a combinatorial interpretation of the operator D, we show that
I(a′0, a

′
1, . . . , a

′
n) can be expressed in terms of the polynomial I(a0, a1, . . . , an) and the

operator D, in the spirit of the Taylor expansion. This formula immediately leads to the
characterization of semi-invariants in terms of the operator D.

The second objective of this paper is to present a combinatorial proof of an identity of
Hilbert involving the operators D and ∆. The operator ∆ is defined by

∆ = na1
∂

∂a0
+ (n− 1)a2

∂

∂a1
+ · · ·+ an

∂

∂an−1
. (1.5)

The identity of Hilbert [6] reads as follows. For n, k ≥ 0, and 0 ≤ m ≤ nk, let λ be a
partition of m contained in a k × n rectangle, and let c = nk − 2m. Then for i ≥ 1,

D∆i(aλ)−∆iD(aλ) = i(c− i+ 1)∆i−1(aλ). (1.6)
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As an application of Sylvester’s theorem, we show that the additivity lemma of Pak
and Panova [8,9] can be deduced from the ring property of semi-invariants. The additivity
lemma for the Gaussian coefficients was established via a connection with the Kronecker
coefficients in the representation theory of the symmetric group as well as the semigroup
property of the Kronecker coefficients due to Christandl, Harrow and Mitchison [4].

Lemma 1.1. Assume that k1, k2, n ≥ 2, at least one of k1, k2 and n is greater than two
and at least one of k1, k2 and n is even. If the strict unimodality holds for

[
n+k1
n

]
and[

n+k2
n

]
, then it holds for

[
n+k1+k2

n

]
.

To conclude the introduction, we recall that the strict unimodality proved by Pak and
Panova says that for n, k ≥ 8 and 2 ≤ m ≤ nk/2,

p(k, n,m) > p(k, n,m− 1). (1.7)

2 The Operators D and ∆

A binary form of degree n, or a binary n-form, is a homogeneous polynomial in x and y,

f(x, y) = a0x
n +

(
n

1

)
a1x

n−1y +

(
n

2

)
a2x

n−2y2 + · · ·+ any
n, (2.1)

where the coefficients a0, a1, . . . , an are regarded as variables. Consider the shear trans-
formation: x = x′ + zy′ and y = y′, where z is treated as a variable. Suppose that under
this transformation, the binary form f(x, y) becomes

f ′(x′, y′) = a′0x
′n +

(
n

1

)
a′1x

′n−1y′ + · · ·+ a′ny
′n. (2.2)

It is easily checked that for 0 ≤ i ≤ n,

a′i = ai +

(
i

1

)
ai−1z +

(
i

2

)
ai−2z

2 + · · ·+ a0z
i. (2.3)

We say that a polynomial I(a0, a1, . . . , an) with rational coefficients is a semi-invariant
of the binary form f(x, y) if

I(a0, a1, . . . , an) = I(a′0, a
′
1, . . . , a

′
n), (2.4)

see, for example, [5].

To determine whether a polynomial I(a0, a1, . . . , an) satisfies the above condition
(2.4), we are led to an expansion of I(a′0, a

′
1, . . . , a

′
n) as a polynomial of z. As expect-

ed, the operator D comes to the scene. Recall that D is given by

D = a0
∂

∂a1
+ 2a1

∂

∂a2
+ 3a2

∂

∂a3
+ · · ·+ nan−1

∂

∂an
. (2.5)
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Theorem 2.1. For n ≥ 0, and for any polynomial I(a0, a1, . . . , an) over the rational
numbers, we have

I(a′0, a
′
1, . . . , a

′
n) =

∑
i≥0

DiI(a0, a1, . . . , an)
zi

i!
. (2.6)

While we do not intend to claim that the above formula (2.6) is new due to the lack of
accessible literature, at least it is worth noting that such a formulation makes the charac-
terization of semi-invariants transparent in the sense that if D(I) vanishes, then so does
Di(I) for any i ≥ 2. As will be seen, the idea behind (2.6) serves as an embarkation point
to a combinatorial understanding of the identity (1.6) of Hilbert.

Here is an illustration of Theorem 2.1. For a monomial aν = aν00 a
ν1
1 · · · aνnn , we define

its degree by
ν0 + ν1 + · · ·+ νn

and its weight by
ν1 + 2ν2 + · · ·+ nνn.

It is clear that when the operator D is applied to a monomial aν , it preserves the degree
and decreases the weight by one. For example, let

f(x, y) = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3,

and let
I(a0, a1, a2, a3) = c1a

2
0a3 + c2a0a1a2 + c3a

3
1. (2.7)

Upon the substitution (2.3), we get

I(a′0, a
′
1, a
′
2, a
′
3) = c1a

2
0a3 + c2a0a1a2 + c3a

3
1

+ ((3c1 + c2)a
2
0a2 + (2c2 + 3c3)a0a

2
1)z

+ 3(c1 + c2 + c3)a
2
0a1z

2

+ (c1 + c2 + c3)a
3
0z

3.

On the other hand,

D(I) = (3c1 + c2)a
2
0a2 + (2c2 + 3c3)a0a

2
1,

D2(I) = 6(c1 + c2 + c3)a
2
0a1,

D3(I) = 6(c1 + c2 + c3)a
3
0.

We see that (2.6) holds in this case.

To lay out a combinatorial setting for Theorem 2.1, we adopt the common notation of
a partition λ of m contained in a k × n rectangle, that is, λ = (λ1, λ2, . . . , λk), where
n ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and λ1 + λ2 + · · · + λk = m. Accordingly, we use aλ to
denote the monomial aλ1aλ2 · · · aλk .
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Figure 1: The Young diagram and a semi-diagram of shape (4, 3, 2, 2).

Recall that the Young diagram or the Ferrers diagram of a partition λ is a collection
of shaded boxes or cells arranged in left-justified rows with λi boxes in the i-th row. The
partition λ is referred to as the shape of the diagram. For instance, the Young diagram of
shape (4, 3, 2, 2) is illustrated on the left in Figure 1. In this paper, we introduce the notion
of a semi-diagram, which is a Young diagram with some shaded cells filled with a minus
sign and subsequently turned into hollow cells. The diagram on the right in Figure 1 is a
semi-diagram of shape (4, 3, 2, 2) with three minus signs.

To a semi-diagram T of shape λ, we associate it with a weight as follows. For 1 ≤
i ≤ k, if the i-th row contains ri shaded cells and si minus signs, we define its weight
as ariz

si . The weight of a semi-diagram T , denoted by w(T ), is then defined to be the
product of weights of all rows. Of course, the weight of an empty row or an empty shape
is set to be one. For example, the weight of the semi-diagram in Figure 1 equals a3a22a1z

3.

In terms of semi-diagrams, the substitution (2.3) can be interpreted as filling some of
the shaded cells of a Young diagram with a minus sign and turning them into hollow cells.
Consider only one row with i shaded cells, which has weight ai. For 0 ≤ j ≤ i, there are(
i
j

)
ways to turn this row into a semi-diagram by placing a minus sign to j shaded cells

and turning them into hollow cells. Any of the resulting semi-diagrams has weight ai−jzj .
This operation is in accordance with the substitution (2.3).

For example, under the shear transformation, a3 becomes

a′3 = a3 + 3a2z + 3a1z
2 + a0z

3,

which is the sum of the weights of the semi-diagrams

−

−

−

−−

− −

−−

−−−

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. It suffices to show that for any monomial aλ,

a′λ = a′λ1a
′
λ2
· · · a′λk =

m∑
i=0

Di(aλ)
zi

i!
. (2.8)

Let Ki(λ) denote the set of semi-diagrams of λ containing i minus signs. Set∑
T∈Ki(λ)

w(T ) = Wi(λ). (2.9)
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Then we have

a′λ =
m∑
i=0

Wi(λ). (2.10)

In particular, the semi-diagrams containing only one minus sign give rise to the coefficient
of z in I(a′0, a

′
1, . . . , a

′
n). This operation of filling only one shaded cell of a Young diagram

with a minus sign and turning it into a hollow cell can be described by the action of the
operator D on aλ, and this explains where the operator D comes from a combinatorial
point of view.

Moreover, one realizes that in general the coefficient of zi in I(a′0, a
′
1, . . . , a

′
n) can also

be expressed in terms of the operator D. Indeed, the action of Di on aλ can be interpreted
as placing i distinguishable minus signs in a Young diagram and turning them into hollow
cells. But for the coefficient of zi in I(a′0, a

′
1, . . . , a

′
n), the minus signs in a semi-diagram

are regarded indistinguishable. This yields the relation

Di(aλ)
zi

i!
= Wi(λ). (2.11)

Combining (2.10) and (2.11) gives (2.8). This completes the proof.

Since D is a derivative, that is,

D(IJ) = ID(J) + JD(I), (2.12)

the Leibniz formula

Dj(IJ) =

j∑
i=0

(
j

i

)
Di(I)Dj−i(J) (2.13)

is valid, from which we obtain the following product formula. We shall use the notation
IJ(a′0, a

′
1, . . . , a

′
n) to stand for the polynomial I(a0, a1, . . . , an)J(a0, a1, . . . , an) with ai

being substituted by a′i for 0 ≤ i ≤ n.

Theorem 2.2. For n ≥ 0 and for two polynomials I(a0, a1, . . . , an) and J(a0, a1, . . . , an)
over the rational numbers, we have

IJ(a′0, a
′
1, . . . , a

′
n) = I(a′0, a

′
1, . . . , a

′
n)J(a′0, a

′
1, . . . , a

′
n). (2.14)

Now we turn to the vertical shear transformation:

x = x′′, y = zx′′ + y′′,

where z is considered as a variable. Under this transformation, the binary form f(x, y)
becomes

f ′′(x′′, y′′) = a′′0x
′′n +

(
n

1

)
a′′1x

′′n−1y′′ + · · ·+ a′′ny
′′n,

where, for 0 ≤ i ≤ n,

a′′i = ai +

(
n− i

1

)
ai+1z +

(
n− i

2

)
ai+2z

2 + · · ·+ anz
n−i. (2.15)
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A polynomial I(a0, a1, . . . , an) with rational coefficients is called a semi-invariant
with respect to the vertical shear transformation provided that

I(a0, a1, . . . , an) = I(a′′0, a
′′
1, . . . , a

′′
n). (2.16)

A polynomial I(a0, a1, . . . , an) is a semi-invariant with respect to the vertical shear trans-
formation if and only if ∆(I) = 0, see Hilbert [6].

To give a combinatorial interpretation of the operator ∆, we need to have a full picture
of the Young diagram of a partition λ contained in a k × n rectangle. More precisely, we
shall use shaded cells for the cells in the shape of λ and use hollow cells for the cells
outside the shape of λ. For example, below is the depiction of the partition λ = (4, 2, 1, 0)
contained in a 4× 5 rectangle:

Consider a single row diagram with i shaded cells and n − i hollow cells, whose
weight is ai. For 0 ≤ j ≤ n− i, there are

(
n−i
j

)
ways to turn this row into a semi-diagram

by placing a plus sign to j hollow cells and turning them into shaded cells. Any of the
resulting semi-diagrams has weight ai+jzj , where we define the weight of a plus sign to
be z. For example, for n = 6, under the vertical shear transformation, a3 becomes

a′′3 = a3 + 3a4z + 3a5z
2 + a6z

3,

which is the sum of the weights of the semi-diagrams

+

+

+

+ +

+ +

+ +

+ + +

In particular, the action of the operator ∆ can be interpreted in terms of the operation
of filling only one hollow cell in a Young diagram of λ with a plus sign and turning it into
a shaded cell. Analogous to Theorem 2.1, we have the following expansion.

Theorem 2.3. For n ≥ 0 and for any polynomial I(a0, a1, . . . , an) over the rational
numbers, we have

I(a′′0, a
′′
1, . . . , a

′′
n) =

∑
i≥0

∆iI(a0, a1, . . . , an)
zi

i!
. (2.17)

In the same vein as Theorem 2.2, the following product formula holds.

Theorem 2.4. For n ≥ 0 and for two polynomials I(a0, a1, . . . , an) and J(a0, a1, . . . , an)
over the rational numbers, we have

IJ(a′′0, a
′′
1, . . . , a

′′
n) = I(a′′0, a

′′
1, . . . , a

′′
n)J(a′′0, a

′′
1, . . . , a

′′
n). (2.18)
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3 Sylvester’s Theorem

The following theorem of Sylvester [14] establishes a connection between the Gaussian
coefficients and semi-invariants. For 0 ≤ m ≤ nk/2, let

δ(k, n,m) = p(k, n,m)− p(k, n,m− 1), (3.1)

with the convention that p(k, n,−1) = 0.

Theorem 3.1. For n, k ≥ 0 and 0 ≤ m ≤ nk/2, the number of semi-invariants of a
binary n-form of degree k and weight m equals δ(k, n,m).

Theorem 3.1 also takes the following form, as Sylvester [14] chose to work with.

Theorem 3.2. For n, k ≥ 0 and 0 ≤ m ≤ nk/2, the number of semi-invariants of a
binary n-form of degree k and weight not exceeding m equals p(k, n,m).

The following identity (3.2) of Cayley [2] crops up in Sylvester’s proof of the uni-
modality of the Gaussian coefficients, see [14]. Cayley used this relation to construct
covariants.

It might be worth mentioning that from a combinatorial point of view, the identity of
Hilbert is easier to justify than the identity of Cayley for it does not involve the conditions
on semi-invariants. It should also be noted that to pass from Hilbert’s identity to Cayley’s
identity, the condition m ≤ nk/2 is required because it is a constraint for semi-invariants,
see Cayley [2].

Theorem 3.3. For n, k ≥ 0, and 0 ≤ m ≤ nk/2, let I be a semi-invariant of a binary
n-form of degree k and weight m, and let c = nk − 2m. Then for i ≥ 1,

D∆i(I) = i(c− i+ 1)∆i−1(I). (3.2)

Since D(I) = 0 for a semi-invariant I , we see that the above relation is a consequence
of the identity (1.6) of Hilbert [6] with aλ being replaced by a semi-invariant I .

To make the paper self-contained, we give an exposition of Sylvester’s proof. The
consideration of the dimension identity (3.6) makes the argument easier to understand in
terms of an equality, instead of arguing with two inequalities in opposite directions as
described by Sylvester.

We define Qn(k,m) as the vector space of polynomials in a0, a1, . . . , an over the ra-
tional numbers that are homogeneous of degree k and weight m. We shall use Sn(k,m)
to denote the vector space of semi-invariants of degree k and weight m, that is,

Sn(k,m) = {I ∈ Qn(k,m) | D(I) = 0}. (3.3)

The number of semi-invariants of degree k and weight m of a binary n-form is referred
to as the dimension of the vector space Sn(k,m). For example, dimS4(4, 6) = 2. Below
are two semi-invariants of degree 4 and weight 6 of a binary 4-form:

I1 = 3a21a
2
2 − 4a31a3 − 2a0a1a2a3 + 3a20a

2
3 + 4a0a

2
1a4 − 4a20a2a4, (3.4)
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I2 = a0a
3
2 − 2a0a1a2a3 + a20a

2
3 + a0a

2
1a4 − a20a2a4. (3.5)

Notice that for m = 0, dimSn(k, 0) = p(k, n, 0) = 1.

Proof of Theorem 3.2. For 0 ≤ i ≤ m+ 1, let

Vi = Di(Qn(k,m))

and let
Ti : Vi−1 → Vi,

that is, Ti(I) = D(I) for any I ∈ Vi−1. Then the kernel of Ti, denoted by kerTi, namely,

kerTi = {I ∈ Vi−1 | D(I) = 0},

is a subspace of Vi−1. Hence

dimVi−1 = dim kerTi + dimVi. (3.6)

Notice that while acting on a monomial in a0, a1, . . . , an, the operator D preserves the
degree and lowers the weight by one. On the other hand, Qn(k, 0) is generated by ak0,
which is a semi-invariant, and so D(Qn(k, 0)) = 0. It follows that

Vm+1 = Dm+1(Qn(k,m)) = 0.

Iterating (3.6) gives

dimV0 = dim kerT1 + dim kerT2 + · · ·+ dim kerTm+1. (3.7)

It is apparent that
kerTi ⊆ Sn(k,m− i+ 1). (3.8)

The real challenge is to show that

kerTi = Sn(k,m− i+ 1), (3.9)

that is, the successive applications of the operator D resulting in Vi−1 do not leave out any
semi-invariants in Sn(k,m− i+ 1).

For i = 1, nothing needs to be said since by definition,

kerT1 = Sn(k,m). (3.10)

But for i = 2, what does (3.9) mean? Note that a semi-invariant I in Sn(k,m− 1) should
come from a polynomial in Qn(k,m − 1). However, (3.9) indicates that we can restrict
our attention only to D(Qn(k,m)), which is a subspace of Qn(k,m− 1), and we can still
get all the semi-invariants in Sn(k,m− 1).

Sylvester realized that in some sense the operator D is the inverse of the operator ∆,
as guaranteed by the identity (3.2) of Cayley. In other words, the action of the operator ∆
ensures that every semi-invariant in Sn(k,m−i+1) can be shielded from the annihilation
of the operator D.

9



For example, for n = 3, k = 3 and m = 0, it is clear that Q3(3, 0) is generated by a30,
which is a semi-invariant of degree three and weight zero. Now, V3 = D3(Q3(3, 3)). One
may wonder whether a30 is still there in V3. Employing the operator ∆, we find that

∆3(a30) = 18a20a3 + 324a0a1a2 + 162a31,

which is a polynomial in Q3(3, 3). Then it is easily verified that

D3∆3(a30) = 3024a30.

So a30 remains in V3, and this is in accordance with the fact that S3(3, 0) is generated by
a30.

The above reasoning is valid for the general case. For any semi-invariant I in Sn(k,m−
i + 1), ∆i−1(I) falls into Qn(k,m). Thanks to the identity (3.2), we deduce that by suc-
cessively applying the operator D to ∆i−1(I), one recovers the semi-invariant I if we do
not mind the nonzero constant. To be more specific, we deduce that I truly belongs to
Vi−1, and hence the proof is complete.

Examining the proof of Sylvester, one sees that what Sylvester tried to demonstrate is
the following property of D.

Theorem 3.4. For n, k ≥ 0 and 1 ≤ m ≤ nk/2, we have

Qn(k,m− 1) = D(Qn(k,m)), (3.11)

or equivalently, the transformation D is a surjection from Qn(k,m) to Qn(k,m− 1).

Once the above surjectivity is in hand, it immediately follows that the number of semi-
invariants, namely, the dimension of the kernel of D, is given by δ(k, n,m). As far as the
unimodality of the Gaussian coefficients is concerned, we see that Sylvester’s proof also
contains a justification of the injectivity of the transformation ∆.

Theorem 3.5. For n, k ≥ 0 and 1 ≤ m ≤ nk/2, the transformation ∆ is an injection
from Qn(k,m− 1) to Qn(k,m).

Proctor [11] came up with a proof of the unimodality of the Gaussian coefficients by
introducing two operators different fromD and ∆, while taking a notice of the surjectivity
and injectivity of D and ∆. It would be appealing to reach a better understanding of these
properties from a combinatorial angle.

4 A Combinatorial Proof of Hilbert’s Identity

Based on the combinatorial interpretations of the operators D and ∆, we give a combina-
torial proof of the identity of Hilbert [6], as stated below.
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Theorem 4.1. For n, k ≥ 0, and 0 ≤ m ≤ nk, let λ be a partition of m contained in a
k × n rectangle, and let c = nk − 2m. Then for i ≥ 1,

D∆i(aλ)−∆iD(aλ) = i(c− i+ 1)∆i−1(aλ). (4.1)

The above identity of Hilbert plays a fundamental role in the characterization of in-
variants as well as the construction of covariants.

To present a combinatorial interpretation of the above relation, we recall that the dia-
gram of a partition λ contained in a k×n rectangle contains shaded cells inside the shape
of λ and hollow cells outside the shape of λ. A semi-diagram will also be represented
in the same manner. While we shall encounter some signs filled in semi-diagrams, the
weight of a row with r shaded cells will be defined by ar. So the signs will not affect the
weight of a semi-diagram.

Proof of Theorem 4.1. The action of D∆i on aλ can be understood as placing i distin-
guishable plus signs in hollow cells of the Young diagram of λ and turning them into
shaded cells, and then placing a minus sign in a shaded cell and turning it into a hollow
cell.

Similarly, the application of ∆iD to aλ means to fill a shaded cell of the Young diagram
of shape λ with a minus sign and to turn it into a hollow cell, then fill i hollow cells with
distinguishable plus signs and turn them into shaded cells.

Now, we use the symbol ± to denote a cell that is filled with a plus sign first, then
filled with a minus sign. Similarly, ∓ denotes a cell that is filled with a minus sign first,
then filled with a plus sign.

With respect to the computation of D∆i(aλ) − ∆iD(aλ), the semi-diagrams that do
not contain any± or∓ signs would cancel out. Therefore, it suffices to consider the cases
when the sign ± or ∓ is involved.

Let us consider the semi-diagrams generated by D∆i(aλ) containing the sign ±. For
example, let k = 4, n = 5 and λ = (4, 2, 1, 0). The following semi-diagram is an illustra-
tion of such a configuration generated by D∆3(aλ):

±
+ +

These configurations under consideration can be produced from the Young diagram of λ
in a k×n rectangle by placing i distinguishable plus signs in hollow cells and then adding
a minus sign to a shaded cell with a plus sign and turning it into a hollow cell. On the other
hand, semi-diagrams with a ± cell and i− 1 distinguishable plus signs (outside the shape
of λ, to be precise) can be constructed in an alternative way.

We may choose i − 1 plus signs from the i distinguishable plus signs, place them in
the hollow cells of the Young diagram of λ contained in a k × n rectangle, turn them into
shaded cells, and finish with filling a hollow cell with the ± sign and keeping it hollow.
Notice that the location of a hollow cell with the ± sign does not affect the weight of a

11



semi-diagram. That is to say, the cell with the symbol ± might as well be viewed just as
a hollow cell. Therefore, if the ± sign is not taken into consideration, the semi-diagrams
containing i − 1 distinguishable plus signs are generated by applying the operator ∆i−1

to aλ. Note that there are nk−m− (i− 1) hollow cells left for the moment, any of which
can be chosen as a residence of the± sign. It follows that the total contribution of weights
in this case amounts to

i(nk −m− (i− 1))∆i−1(aλ). (4.2)

We now consider the semi-diagrams generated by ∆iD(aλ) containing the sign∓. The
following semi-diagram arising from ∆3D(aλ):

∓

+ +

In general, the involved configurations in this case can be generated from a Young diagram
of shape λ contained in a k × n rectangle by placing a minus sign in a shaded cell, and
then distributing i distinguishable plus signs to i−1 purely hollow cells and the remaining
plus sign to the cell with a minus sign. Note that the cells carrying the ∓ sign as well as
the plus sign are all shaded in the end.

There is also another way to construct such configurations. We may choose i− 1 plus
signs from the i distinguishable plus signs, place them in the hollow cells and turn them
into shaded cells, and then fill a shaded cell with the sign ∓ and keep it shaded. Since
there are m choices for a shaded cell to be filled with the sign ∓, the weights of all the
feasible configurations generated by ∆iD(aλ) add up to

im∆i−1(aλ). (4.3)

Casting up (4.2) and (4.3), we arrive at

i(nk − 2m− i+ 1)∆i−1(aλ), (4.4)

in agreement with the right hand side of (4.1). This completes the proof.

It is worth mentioning that Hilbert obtained another identity on D and ∆. As before,
let c = nk − 2m. Then for i ≥ 1,

Di∆(aλ)−∆Di(aλ) = i(c+ i− 1)Di−1(aλ). (4.5)

Using a similar approach to the identity (4.1), it is not hard to provide a combinatorial
proof of (4.5). The detailed description is left out. Utilizing (4.5), Hilbert demonstrated
that the number of invariants of a binary n-form of degree k and weight m = nk/2
equals δ(k, n, nk/2), where at least one of k and n is even. In fact, Hilbert deduced that
the operator ∆ is an injection from Qn(k, nk/2 − 1) to Qn(k, nk/2). If not, there would
exist a nonzero polynomial I that can be written as a linear combination of the basis
elements ofQn(k, nk/2−1) such that in some way the action of ∆ on I yields an invariant
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in Qn(k, nk/2), that is, D∆(I) = 0. On the other hand, there must exist i such that
Di(I) = 0 but Di−1(I) 6= 0. This causes a contradiction with (4.5).

We also remark that the argument of Hilbert is valid for semi-invariants with 0 ≤ m ≤
nk/2 where the parity constraint on n and k may be lifted. So it can be regarded as an
alternative proof of Sylvester’s theorem. Note that in the case when at least one of k and
n is even and m = nk/2, a semi-invariant of degree k and weight m turns out to be an
invariant.

5 The Additivity Lemma of Pak and Panova

In this section, we present a derivation of the additivity lemma of Pak and Panova in the
context of semi-invariants. As will be seen, it is a consequence of the ring property of
semi-invariants. In view of Theorem 3.1, to prove the strict unimodality of

[
n+k1+k2

n

]
, it

suffices to show that for any 2 ≤ m ≤ bn(k1 + k2)/2c, there exists a semi-invariant of
degree k1 + k2 and weight m.

Proof of Lemma 1.1. It is not difficult to see that under the conditions on n, k1, k2, for any
4 ≤ m ≤ bn(k1 + k2)/2c, we can always express m as m1 + m2 such that 2 ≤ m1 ≤
bnk1/2c and 2 ≤ m2 ≤ bnk2/2c.

Since at least one of k1, k2 and n is even, we find that

bnk1/2c+ bnk2/2c = bn(k1 + k2)/2c. (5.1)

This takes care of the case m = bn(k1 + k2)/2c.

For any bnk1/2c+2 ≤ m < bn(k1+k2)/2c, takingm1 = bnk1/2c, a simple computa-
tion shows that the correspondingm2 falls into the right range, that is, 2 ≤ m2 < bnk2/2c.

For any 4 ≤ m < bnk1/2c+ 2, we may choose m2 to be 2 and set m1 = m− 2. It can
be checked that 2 ≤ m1 < bnk1/2c in this case.

We now assume that 4 ≤ m ≤ bnk1/2c + bnk2/2c and m = m1 + m2, where
2 ≤ m1 ≤ bnk1/2c and 2 ≤ m2 ≤ bnk2/2c. By the assumptions for

[
n+k1
n

]
and

[
n+k2
n

]
,

we see that there exists a semi-invariant I of a binary n-form of degree k1 and weight m1

and a semi-invariant J of a binary n-form of degree k2 and weight m2. Consequently, IJ
is a semi-invariant of a binary n-form of degree k1 + k2 and weight m.

We now turn to the remaining cases m = 2 and m = 3. Since k1, k2, n ≥ 2 and at
least one of k1, k2 and n is greater than two, it is evident that at least one of nk1/2 and
nk2/2 is greater than or equal to three. Let us assume that nk1/2 ≥ 3. By the assumption
for
[
n+k1
n

]
, there is a semi-invariant of degree k1 and weight m1 for any 2 ≤ m1 ≤ nk1/2.

For m1 = 2, suppose that I is a semi-invariant of degree k1 and weight two. For m1 = 3,
suppose that J is a semi-invariant of degree k1 and weight three. Clearly, ak20 is a semi-
invariant of degree k2 and weight zero. It follows that ak20 I is a semi-invariant of degree
k1 + k2 and weight two and ak20 J is a semi-invariant of degree k1 + k2 and weight three.
This completes the proof.
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