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Abstract

We present an algorithm to prove hypergeometric double summa-
tion identities. Given a hypergeometric term F'(n, 4, j), we aim to find
a difference operator L = ag(n)N® + a;(n)N' + --- + a,(n)N" and
rational functions Ri(n,i,7), Ra(n,,j) such that LF = A;(R F) +
Aj(R2F). Based on simple divisibility considerations, we show that
the denominators of R; and Ry must possess certain factors which
can be computed from F'(n,i,j). Using these factors as estimates,
we may find the numerators of R; and Ry by guessing the upper
bounds of the degrees and solving systems of linear equations. Our
algorithm is valid for the Andrews-Paule identity, the Carlitz’s identi-
ties, the Apéry-Schmidt-Strehl identity, the Graham-Knuth-Patashnik
identity, and the Petkovsek-Wilf-Zeilberger identity.

AMS Classification: 33F10, 68 W30

Keywords: Zeilberger’s algorithm, double summation, hypergeometric
term, Andrews-Paule identity.

1. Introduction

This paper is concerned with double summations of hypergeometric terms
F(n,i,7). A function F(n,ky,..., ky) is called a hypergeometric term if the
quotients

F(?’L—l—l,k’l,,k‘m) F(n,k1+1,,k:m) F(?’L,kfl,,k‘m—i—l)
F(?’L,k’l,...,k’m) ’ F(?’L,k’l,...,k‘m) ’ Y F(?’L,kfl,...,km)
are rational functions of n, k1, ..., k,,. Throughout the paper, N denotes the

shift operator with respect to the variable n, defined by
NF(TL,]{?l,...,k‘m) :F(n—l—l,k‘l,...,km),
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and Ay, denotes the difference operator with respect to the variable k;, de-
fined by

A Fnky, . k) = F(nkn, .ok + 1,0 k) — F(ny ko ke o).

We also use A; and A; to denote the difference operators with respect to
the variables ¢ and j, respectively. For polynomials a and b, we denote by
ged(a, b) their monic greatest common divisor. When we express a rational
function as a quotient p/q, we always assume that p and ¢ are relatively
prime unless it is explicitly stated otherwise.

Zeilberger’s algorithm [7,9, 13], also known as the method of creative
telescoping, is devised for proving hypergeometric identities of the form

> F(n,k) = f(n), (1.1)

where F'(n, k) is a hypergeometric term and f(n) is a given function. This
algorithm has been used to deal with multiple sums by Wilf and Zeilberger
[12]. Given a hypergeometric term F(n, ki, ..., ky), the approach of Wilf
and Zeilberger is to try to find a linear difference operator L with coefficients
being polynomials in n

L =ag(n)N° +a;(n)N* + -+ a,.(n)N"

and rational functions Ry, ..., R,, of n, kq,...,k,, such that
LF =) Ay (RF). (1.2)
=1
The problem of constructing the denominators of Ry,..., R, for the

Wilf-Zeilberger approach has not been solved. In an alternative approach,
Wegschaider generalized Sister Celine’s technique [11] to multiple summa-
tions, and proved many double summation identities. In this paper, we
provide estimates of the denominators of R; and Ry for double summations.
These estimates turn out to be good enough for several double summation
identities, including the Andrews-Paule identity which does not seem to be
a suitable example for Wegschaider’s approach.



To give a sketch of our approach, we first consider Gosper’s algorithm
for bivariate hypergeometric terms. Suppose that F'(i, j) is a hypergeometric
term and p;/q1, p2/qe are rational functions such that

P =5 (P00 ) 4, (B )

We show that under certain hypotheses (Section 2, (H1)—-(H3)), the denom-
inators ¢i, g2 can be written in the form

q1(i,7) = v1(i) va(j) v3(i + J) va(i, §) ur () ua(i, 7),
q2(i, 7) = v1(@) va(j) v3(i + j) va(i, 7) w1 (j) wa(i, 5),

such that vy, v9, v4 and us, wo are bounded in the sense that they are factors
of certain polynomials. Then we apply these estimates to the telescoping
algorithm for double summations. Suppose that

LF(n,i,7) = &;(Ri(n, 4, j)F(n,i,5)) + Aj(Re(n, i, 5)F(n,i,7)),

where

(1.3)

1 fl(nviaj) .. 1 f2(n77;7j)
.. : .\ ) R ,n'7/l7 - .. : ..
d(na Z?]) gl(rnﬂl?j) 2( j) d(na Z?]) 92(77'727])

and d(n,1,7) is the denominator of LF'(n,i,7)/F(n,i,7). We may deduce
that g1, g2 can be factored in the form of (1.3) such that vy, ve, v4 and ug, we
are bounded. Although we do not have the universal denominators, these
bounds can be used to give estimates of the denominators ¢g; and g,. Then
by further guessing the bounds of the degrees of the numerators of R; and
Ry, we get the desired difference operator if we are lucky.

Rl(lnwimj) =

Indeed, our approach works quite efficiently for many identities such as
the Andrews-Paule identity, Carlitz’s identities, the Apéry-Schmidt-Strehl

identity, the Graham-Knuth-Patashnik identity, and the Petkovsek-Wilf-Zeilberger

identity.

2. Denominators in Bivariate Gosper’s Algorithm

For a given bivariate hypergeometric term F'(i,j), we give estimates of the
denominators of the rational functions Ry (i, j), Ra(i, j) satisfying
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Let
f1(i, )
91(8,5)’ 92(i, 7)
F(i+1,7) r(,j) F@,j+1)  rai,j)
F(i,j)  s1(i,5)  F(i,j)  s2(i,5)
Dividing F'(4, j) on both sides of (2.1
that

Rl(zvj) R2(27])

(2.2)

) and substituting (2.2) into it, we derive

Tl(ivj) fl(l_l_lvj) fl(zvj) T2(i>j) f2(l>]+1) _.f2(i7j)

L )LL) al)) s e+ D) g Y
Let
U(Zvj) = ng(Sl(i7j>7 52(7:7j>>7 U(Zh]) = ng<gl(7’7]>7g2(Zaj))7
and
8/1(27]) :Sl(Z,])/U(Z,j), 3/2(27]) 232(Z>])/u(l7])7 (2 4)
91(i,5) = g1(i, ) /v, 5), 943, 5) = g2(4, ) /v(i, 5). '

We concern on those R;(i,j), Ra(i,j) whose denominators gy, go satisfy
the following three hypotheses.

(H1) For any irreducible factor p(i,j) of ¢1(¢,7) (g2(i, ), respectively) and
integers hq, ha, p(i + hy,j + ho) divides g1(4,7) (g2(7, ), respectively)
implies p(i 4 hy, j + ha) = p(i, ).

(H2) ged(gi(i, ), v(i, 7)) = ged(g5(i, ), v(i, 7)) = 1.

(H3) For any integers hy, ho, ged(g) (i + hy,j + ha), g5(i, 7)) = 1.
Under these hypotheses, we have

Theorem 2.1 The denominators g1(i, ), g2(i,j) can be factored into poly-

nomials:
91(1, J) = vi(8)va(f)va(i + j)va(i, j)ua ()ua(i, j),

92(7, ) = v1(i)va(f)vs(i + J)va(i, j)wi(i)wa(i, 5),



such that

v (@) | r1(i = 1, 7)s5(i — 1, ),

va(j) [r2(i,j — 1)sy(i, 5 — 1),
U4(i7j) | ng ("ﬂl(Z 17])5 (Z - 1,j),T2(i,j - 1)3/1(27] - 1))’
ua (i, 5) | ged (su(i, 5)s5 (i, 7). ra(i — 1, 5)sy(i — 1, 7)),
wai ) | ged (326, )54, ). 72l — sy, = 1).
Proof. Substituting (2.4) into (2.3), we get
1 - ri (i, j) fli+1,5) R CY)
s1 (1, J)u(i, j) 910+ 1, 5)oi+ 1,5) - g1(64)v(i, 5)
TQ(ZMJ) f2(l>] + 1) B f2(l>])
sy(1, J)uli, j) 9o (i, 3+ Dv(i, i+ 1) ga(i, j)o(i, j)
That is,

s1(1,7)85(1,3)91(4, )95, 7) g1 (i + 1, ) g2(d, 5 + 1)
= fili +1,5)ri(4, 3)s5(3, 7)91(i, 5) 954, §)ga (i, 5 + 1)
—f1(3,5)s1(4, 5)85(1, 7) g5 (3, 5) g1 (i + 1, §)ga (4, 5 + 1)
+f2i,  + V)ra(i, 5)s1(3, ) 914, ) g5 (i, )1 (i + 1, 5)
—f2(i, j)s1(4, §)s5(i, 7) 94 (4, 5) g1 (3 + 1, §)ga (i, 5 + 1).

1. Suppose p(i,7) is an irreducible factor of v(i,j), and for some non-
negative integer [, p' |v. Since

ged(p(i +1,75), f1(i + 1,7)) = ged(p(i, 5 + 1), f2(2, 5 + 1)) = 1,
we have
P+ 1,5) | (i, 5)s50i, 3)g1 (i, 5)g5(i, ) ga (i, j + 1)

and
P, j+ 1) | ra(i, 5)85 (i, 5)g1(3, ) ga (4, ) g1 (i + 1, 7).

There are three cases:



e p(i,7) is a polynomial depending only on . Then ged(p(i +
1,79),91(4,7)) = 1. Otherwise, by hypothesis (H1) we have that
p(i +1,7) = p(i,7) is independent of i, which is a contradiction.
Similarly, ged(p(i+1,7), g2(4,7)) = 1. Since p(i, j) is a polynomial
depending only on i, we have

ged(p(i +1,7),92(¢, 5 + 1)) = ged(p(i 4+ 1,5 + 1), 92(4,5 + 1)) = 1.

Therefore,
pl(i + 17j) | Tl(’i,j)Sé(i,j).

e p(i,j) is a polynomial depending only on j. The same discussion
leads to

P(i g+ 1) [ra(i, )s3 (0. 9)-
e p(i,7) is a polynomial depending both on i and on j. Then either
p(i+1.j)=pli,j+1) or ged(p(i+1,5),p(i,j+1)) =1

In the former case, p(i,j) is a polynomial of i 4+ j (see [1, Lemma
3] or [8, Lemma 3.3]). In the later case, by hypothesis (H1), we

have

ged(p(i +1,7), 91(4, 7)95(4, ) g2(i, 7 + 1)) = 1
and

ged(p(i, j + 1), 91 (4, 7)g5(4, ) g1 (i + 1, 7)) = 1.
Thus,

pl(i7j> ‘ ng (Tl(i - 17]>S/2(Z - 1,j>,7’2(i,j - 1)‘9/1(7'7] - 1))

2. Suppose p is an irreducible factor of g} and p'|g} for some non-negative
integer [. If p(7,7)|v(i,7 + 1), then p(i,j — 1) |v(4, 7). By hypothesis
(H1), p(i,7—1) = p(i, j), which implies p(i, j) | v(7, j), contradicting to
hypothesis (H2). Noting further that

ged(f1(i,9), 9104, 5)) = ged(91(4, 5), go(itha, j+he)) =1, Vhy, hy € Z,

we have
pl(iaj) | 81(7'7]>S/2(7'7]>g1(Z + 17])



If p(i + 1,7) |v(i, 7 + 1), then by hypothesis (H1), p(i + 1,7 — 1) =
p(i, 7), which implies p(, j) | v(i, j), contradicting to hypothesis (H2).
Therefore,

pl(i + 17]) | TI(Z7]>S/2(7’7]>91(17J)

There are also two cases:

e p(i,j) = p(i + 1,7). Then p(i, j) is a polynomial depending only
on j.

e ged(p(i, §), p(i +1,5)) = 1. Then
ged(p(i, j), g1(i + 1, 7)) = ged(p(i + 1, 5), 1(i, j)) = 1,
and hence,

p'(i,9) | ged (s1(i, )85 (i), 10 — 1, 5)s5(i — 1, 7).

3. Similarly, suppose p is an irreducible factor of g4 and p'|g, for some
non-negative integer [. Then either p(i,j) is a polynomial depending
only on i or

p'(i,5) | ged (s1(i, 5)s5(0, ), 72(6, § — 1)1 (6,5 — 1)).

3. Denominators in the Telescoping Algorithm

We are now ready to estimate the denominators of R; and R, in telescoping
algorithm.

As in the case of single summations, the telescoping algorithm for double
summations tries to find an operator

L =ao(n)+a;(n)N+---a.(n)N"
and rational functions Ri(n,1,7), Ra(n, 1, ) such that



Let

F(?’L,Z—l—l,j) _ Tl(n>iaj> F(?’L,Z,]—l—l) _ Tg(n,'é,j> (3 2)
F(?’L,Z,]) Sl(nvimj)’ F(TL,Z,]) 82(n7i7j)’ .

and d(n,,7) be the common denominator of

F(n+1,i,j) F(n+ri,j)
F(n7z7j) ’ Y F(n,Z,J)

Then there exists a polynomial ¢(n, 4, j), not necessarily being coprime to d,
such that

LF(n,i,j) _i y )F(n+l,i,j) c(n, 4, j)

Finig) 2" Ry dmig) 33
Note that c¢ is related to the polynomials ag, aq,...,a, but d is independent
of them.
Now, (3.1) can be written in the form of (2.1):
LF(n,i,5) = Ay(Ry(n, 4, ) LE(n, 4, §)) + Aj(Ry(n, 4, j) LE(n, 1, 5)),
where
. . d(n,i,5) . - d(n,i, 5)
Ri(n,i,j) = Rl(ml,])m and  Ry(n,i,j) = Rz(n7l>])m~
This suggests us to assume
o L fi(n,4,7) . I fa(n,i,g)
R n,t, = . . and R n,t, = . . AN
1( j) d(n,l,j) gl(rnﬂl?j) 2( j) d(n,l,j) gQ(”azaj()S 4)

where f1, g1 (f2, g2, respectively) are relatively prime polynomials.

Since the following discussion is independent of n, we omit the variable n
for convenience. For example, we write R;(i,7) instead of Ryi(n,i,j). Using
these notations, we have

Theorem 3.1 Suppose the polynomials g1, g2 in (3.4) satisfy the hypotheses
(H1)—~(H3). Suppose further that

ged(g1(, 7), d(i4-hq, j+he)) = ged(g2(4, 7), d(i+h1, j+he)) =1, Vhi, h € Z.
(3.5)



Then g1(i,7), g2(i,7) can be factored into polynomials:
91(2, ) = vi(§)vz()vs(i + F)vali, )ua (F)ua(, j),
92(1, 7) = vi(§)v2(5)vs (i + J)vali, ))wi(D)wa(i, ),
such that

(%1 Z) | rl(i - 17])3/2(2 - 17j)7
/

(
va(g) [ r2(i, j = 1)sy (6,5 — 1),
(Z ) | ng (Tl(i - 17j>5 (7' - 17j)77a2(7;7j - 1)5/1(Zvj - 1))7

<

42, ]
v J Tl(i - 17])5,2(7’ - 17]))7

ua(i, §) | ged (s1(4,5)s5(i, )
. 7’2(7;7]. - 1>S/1(Zvj - 1))7

2
w2(®7]) | ng (82(7:7j>5/1(z7j>7
where . . . . . . . .
si(4,5) = s1(i, 7)/ ged(s1(2, 1), s2(4, 7)),

o o S (3.6)
$5(i,7) = s2(1, 7)) ged(s1(i, ), 52(1, 7))-

Proof. Substituting (3.4) into (3.1) and dividing F'(¢,j) on both sides, we
obtain

C(Zvj) _ Tl(imj) fl(l_l_lvj) _ fl(zvj)
79(4,5) foli,j+1) L))
C(Z ]) _ 7"1(7'7]>d(l7.]> fl(Z_'_l?]) _fl(%])
’ 51(7'7]>d(l+17]) gl(z+17]) g1(Z,j)
T2(27])d(27j) f2(zvj + 1) . f2(l>])
Let



All discussion in the proof of Theorem 2.1 still holds. Thus, we have

vi (i) | 7106 — 1, 5)3)
va(g) | Ta(d, j — 1)81(6,5 — 1
a(i,5) | ged (71(i = 1,5)85(i = 1,7), 72(4, 5 — 1)81(i,5 — 1)), (3.8)
us(i, §) | ged (51(3, 5)35 (i, ), 1<z’—1 73— 1,75)),

)

1

J
9) | ged (826, 7)81 (i, 5), 72 (i, § — 1516, 5 — 1)),

Wa (Zv

Where ~ . . ~ . . ~ . . ~ . .

814, 5) = 51(4,5)/ ged(31(4, 5), 52(4, 7)),

85(4, J) = 52(4,5)/ ged(31(4, 5), 52(3, 7))
Since we have (3.5), we may replace 71, 51,79, S2 by 71, $1, 72, So in (3.8), re-
spectively. 1

4. A Telescoping Algorithm for Bivariate Hypergeometric Terms

Theorem 3.1 provides us a way to choose the denominators in the telescoping
algorithm. Given a hypergeometric term F'(n,i,j), we have the following
algorithm:

Algorithm EstDen

1. Calculate 71,79, $1, 59, 57, 85 defined by (3.2) and (3.6);

2. Set
v1() := the maximal factor of (7, j)s5 (4, ) depending only on i;
v9(7) := the maximal factor of r4(7, j)s}(7, j) depending only on 7;
and

v(i) == ged(vi(i — 1), va(1 — 1));

3. Set
u1(j) := the maximal factor of s1(i, 7)s, (7, j) depending only on j;
wi (7) := the maximal factor of s1(1, 7)sh(7,j) depending only on ¢;

4. Set uy(, 7) to be the maximal factor of
ng(Sl(i>j)Sl2(i7j)v rl(i - 17])3,2(2 - 17]))
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which depends on ;
Set ws(i, 7) to be the maximal factor of

ng(Sl(i>j)Sl2(i7j)vr2(i7j - 1)3,1(27] - 1))
which depends on j.

5. Return g1(4, j) := v(i)u1(j)ua(i, j) and ga(i, j) = v(i)wi (Dwa(i, 5).

Remark. Let f(i,7) be a polynomial in 7, 7 and a be a new variable. Then
the maximal factor of f(i,7) depending only on ¢ can be obtained by

ged(f(i,5), f(i,5 + a)),

and the maximal factor of f(7,j) depending on i can be obtained by
f(i,5)/ ged(f (i, ), f(i + a, j)).

We are now ready to describe the telescoping algorithm for double sum-
mations:

Algorithm BiZeil

1. Using algorithm EstDen to obtain g; and gs.
2. Set the order r of the linear difference operator L to be zero.
3. For the order r, calculate the common denominator d(n, 1, j) of

F(n+1,i,j) F(n+r,i, j)
F(n7z7j) ’ Y F(n,Z,J) ‘

(If » = 0, then take d(n,i,7) = 1.)

4. Set the degrees of f; and fy to be one more than those of d - g; and
d - go, respectively.

5. Solve the equation (3.7) by undeterminate coefficients method to obtain
ag, @i, . ..,a, and fi, fo.
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6. If ag # 0, then return L, f1/(d - g1), fo/(d - go) and we are done.

If ap = 0 but deg f; — deg(d - g1) < 2, then increase the degrees of f;
and fy by one and repeat Step 5.

Otherwise, set r := r 4+ 1 and repeat the process from Step 3.
Remarks.

1. In most cases, ¢1(i,j) and go(7, j) can be further reduced by cancelling
a factor of degree 1 and 2 from ¢; and gs, respectively.

2. In all the following examples except Example 4, the degree of the nu-
merator of Ry (R2) is one more than that of the denominator. While
in Example 4, the difference is two.

This can be interpreted visually as follows. Let tq, %o, t3,t4 be the four
terms of the right hand side of (3.7) after multiplying the common
denominator. In most cases, the leading terms of ¢; and ¢y (f3 and t4,
respectively) are cancelled and only these terms are cancelled.

3. There is a trick in Step 5 which accelerates the computation. Given g,
and g9, we may derive part of the factors of f; and f5 by divisibility.
For example, suppose (3.7) becomes

C(Zvj) :Ul('l,]) o fl(zvj) _'_Ug('l,]) f2(l>])
d(l,j) Ul(i>j) wl(l>]) U2(i7j) w2(i>j)’
after substituting and simplification. Suppose further that D(i, j) is
the common denominator of the above equation. Then we immediately
have that f1-D/w; is divisible by ¢; = ged(eD/d, u1D /vy, usD /v, D Jws)
and f1(i4+1, 7)-uy D /vy is divisible by ¢o = ged(eD/d, D /wy, usD /ve, D Jws),
and hence,

fl(Z_'_l?]) f2(7'7]+1)_

q1 and q2
ng(D/wlv QI) ng(ulD/vlu q2)

are factors of fi(i,7) and f1(i 4+ 1, 7), respectively.

5. Examples

In the following examples, F' denotes the summand of the left hand side of
the identity.

12



Example 1. The Andrews-Paule identity:

n n . N 2 . . 2
1+ dn —2i—27\ 2n
ZZ( i ) ( on—2i )= U] (5.1)
=0 7=0
It was confirmed by Andrews and Paule [2,3] by proving the more general

identity
|

3

T

I13)

v
|3

Using the algorithm BiZeil, we can deal with (5.1) directly. In fact, we have

i=0 j=0

g1(,7) = 2n—=2i+1)(n—i+1)(j+1)2,  ¢2(i,§) = (2n—2i+1)(n—i+1)(i+1)*.

Cancelling the factors (n — i + 1) and (i + 1)* from g;(4,7) and ga(4, ),
respectively, we obtain

G(,7)=2n—2i+1)(G+1)? and §(i,j)=2n—2i+1)(n—i+1).
Finally, we get (in 1 second)
(2n + 1)F(n, Z,j) = AZRlF(n, Z,j) + AjR2F(n,i,j),

where

2602+ 50+ 146502 + jn — j — in + 2in® — 2i — 4j%n — 25 — 3ij — 4ijn)

R, =

! (2n — 20 + 1)(1 + j)? ’
R — —2n2 + 2jn% + 6in® + 9in + 3jn — 4ijn — 4i’n — n + j — 3ij + 20 — 4i?

2T (2n — 2i + 1) ’
which are the same as given in [11, p. 85]. Summing 7,j =0,...,n, we get
2n+1)> ) F(n,i,j)

i=0 j=0
= Y (ReF(n,i,n+1) = RByF(n,i,0)) + > (RiF(n,n+1,j) = RiF(n,0,j))
i=0 §=0
on +1\°
= (G(n+1)-G(0)) + RiF(n,n+1,n) = (n+ 1)2< n; ) :
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where

G(i) =

(—2n+i—1)(—4n + 2i — 1)i (4n — 2i
—1+2—2n o —2i)

Example 2. Carlitz’s identity [5] (see Also [12, Example 6.1.2]):
t+7\ [n—1 n—j B "L /21
RO -5G)

91(i.5) = G+ 1D*(=n+j),  g2(i.5) = (i +1)*(—n +1).

We have

Cancelling the factors (—n + j) and (i + 1)(—n + 7), we obtain
G, ) =0G+1D? and §a(i,j) =i+ 1.

Noting that for recurrence of order 2, d(i, j) = (—n+i—1+7)*(—n+i—2+7)?,
we finally get (in 2 seconds)

LF(TL727J) = AZRIF(TL727]) + AjR2F(nvi7j)7

where
L= (4n+6) — (8 +5n)N + (n + 2)N?,

and
Ry = (—(—n+i— 1)(36 — 10ji*n — 13j%ni + 6052 + 60ji — 2% — 38;%

— 8ji? 4 104* 4 361> — 11in® — 14jn® — 2i* — 925n? + 8i*n — 80in + 55°n?
+ 85212 + 88jin +425%n — 172jn+ 245in? 4 5i*n’* + 3i®>n — 54in® + 88n2 +453n

—90j+6j3—40i+5n4+90n))/((—n+i—1+j)2(—n+i—2+j)2(j+1)2),
Ry = ((64 —19ji*n — 65%ni + 145> + 74ji + 54i* — 105%i — 3654° + 2¢° + 39n

— 16in® — 9jn® — 4i* + 6i° — 535n* + 50i*n — 176in + 45°n* + 45%i* + 5n’
+ 83jin + 165°n — 100jn + 22jin* + 11i*n* + 4i°n — 93in* + 112n* — 60;

— 1081 + 140n) (=0 — 1+ 7)) / (=0 +i =2+ )2 (=n +i = 1+ j)%),
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Example 3. Carlitz’s identity [4] (see Also [12, Example 6.1.3]):
AN j i m— i

e S () ()

k

We have
gi(i,g) = (n =g+ (1 +7)%  g2(6,5) = (m—i+j)(i+1)%
Cancelling the factors (1 + j) and (i + 1)?, we obtain
9106, 7) = (n—j+i)(1+j) and go(i,j) =m—i+}.

Noting that for recurrence of order 2, d(i,j) = (—n +j — 1)?(—n + j — 2)?,
we finally get (in 37 seconds)

LF(”’?%]) = AZRIF(INHZJJ) + AJR2F(HJZ7]>7
where

L=2(m+3+n)2+m+n)-
(3m + 2nm + 4n* 4+ 14 + 15n) (n +m + 3)N + (2n + 5)(n + 2)°N?,

and the denominators of Ry, Ry are d(i,7)g1(i,7) and d(i, j)go(3, j), respec-
tively. The degrees of denominators and numerators of R;, Ry are both less
than those given in [12].

Example 4. The Apéry-Schmidt-Strehl identity [10]:

SO0 -2 E )

We have
g1(i,5) = (=j —1+i)* and ga(i,j) = (i +1)°.
Cancelling the factors (—j — 1+ i) and (i + 1), we obtain
Gi(i,j) = (=j =1+ and §(i,j) =i+ 1.
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Noting that for recurrence of order 2, d(i,j) = (n+ 2 —j)(n+1—j), we
finally get (in 1 second)

LF(n,i,j) = AR F(n,i,7) + AjRoF(n, i, 7),
where
L= (n+1)°—(3+2n)(17Tn*+5In + 39)N + (n + 2)°N?,
and

Ry = (—2i*(3+2n)(—10+ 305 —49n> — j° — 4n* — 24n® — 2 + n* — 6ns®
+ 3ni + 3ngi + n?ji + 35%% — 35% + 3ji — 4i* — 25% — 25i% 4+ 11n%5% + 607
+33nj2+18nj—6j4+2i+15j—39n))/((n+2—j)(n+1—j)(—j—1+i)2),

Ry = (2(—j +1)(3 + 2n)(—8n%i — 4n*i* — An’ji + 4n’j + 4n’j> + 12nj
— 12nji — 24ni + 12n5% — 12n4% + 1252 — 45i* + 5% + 65%% — 35* + 8
+ 5% — 82 + 3% — 16i — 16ji))/((n +2 = )n+1-4)3i+1)).

The rational functions Ry, Ry are simpler than those given in [10]. The
operator L was used by Apéry in his proof of the irrationality of ((3) and
Chyzak and Salvy obtained it using Ore algebras [6].

Example 5. The Strehl identity [10]:

SE()COC) () -S0C) e

We have
1(i,5) = (G+1=14)", 9206, §) = (=3i =3+ j)(=3i = 2+j)(=3i = 1+) (i +1)".
Cancelling the factor (=37 — 3 + j)(—3i — 2 + j) from g,, we obtain

91(6,5) =G +1-9° and (i, ) = (=30 = 1+ j)(i + 1)°.
Noting that for recurrence of order 6,

di,j) = (n+1=j)n+2=7)(n+3-75)(n+4-j)n+5-7)(n+6-7),
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we finally get (in 2510 seconds)
LF(TL727]) = AZRIF(TL727]) + AjR2F(nv i?j)?

where L is a linear difference operator of order r = 6 and the denominators
of Ry, Ry are d(i,7)g1(¢,7) and d(i, 7)g2(i, ), respectively. The operator L is
the same as the operator obtained by applying Zeilberger’s algorithm to the
right hand side of (5.2).

Example 6. The Graham-Knuth-Patashnik identity [7, p. 172]:

SEer (00 G )

(5.3)
We have

Cancelling the factor (j +1)(j +1 —[) from g, we obtain
Gi(j, k) =(k+1)(k+1+1) and go(j,k) = 1.

Noting that for recurrence of order 1 (with respect to r), d(j, k) =r —j+1,
we finally get (in 8 seconds)

LF(’I",j, k) = AleF(ija k) +AkR2F(T7j7 k)a
where
L=(r+n+)(n+s+l—m—-r)+(r—1+1)(r—s)R

is a linear difference operator with respect to the variable » and the denom-
inators of Ry, Ry are d(j,k)g1(j, k) and d(j, k)g2(j, k), respectively. Then
(5.3) follows from the evaluation of the initial value (r = 0) by Zeilberger’s
algorithm:

Zk:(_”k<k )=o) ()

Example 7. The Petkovsek-Wilf-Zeilberger identity [9, p. 33]:

£y ()20

(5.4)
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We have
ar,s)=m+r)n+1—=7r)(s+1)?% go(r,s)=n+7r)(n+1—7)(r+1)>.
Cancelling the factors s + 1 and (r 4+ 1)?, we obtain

g(r,s)=m+r)(n+1—-r)(s+1) and go(r,s)=n+r)(n+1—-r).
Noting that for recurrence of order 2, d(r, s) equals
(n+1)(n+2)(n+1—r)(n+2—7r)(n+1—s)(n+2—s)(n—r—s+1)(n+2—r—s),
we finally get (in 35 seconds)

LF(n,r,s) = A Ry F(n,r s)+ AsRoF(n, 1, s),

where

L =4(4n+5)(4n +3)(n +1) +2(2n + 3)(3n* + In + 7)N — (n + 2)*N?

is a linear difference operator and the denominators of Ry, Ry are d(r, $)gi(r, s)
and d(r, s)ga(r, s), respectively. The recursion is the same as that obtained
by applying Zeilberger’s algorithm to the right hand side of (5.4).

Example 8. Calculate
f£(n) (i + %) (n) <Z)
i=0 j=0 LN

91(i,5) = G+ 1)@ +5%), 920, 5) = (i +1=5) (@ +5°).

We have

Cancelling the factors j + 1 and % + 53, we obtain
g1(i,7) = +5° and  go(i,j) =i+1—J.

Noting that for recurrence of order 1, d(i,j) = n+ 1 — i, we finally get (in 1
second)
LF(”’?%]) = AZRIF(INHZJJ) + AJRQF(n7 i?j)?

where
L=3(n*+20n+27)(n+1)— (n®+ 18n + 8)nN
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and the denominators of Ry, Ry are d(i,7)g1(i,7) and d(i, j)go(i, j), respec-
tively. Solving Lf(n) = 0, we immediately get

f(n) =3"n(n®+ 18n + 8).

Using the package MultiSum.m by K. Wegschaider and A. Riese, we only find
recurrences of order greater than 2, which are not easy to solve.
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