W.Y.C. Chen,
The theory of compositionals,
Discrete Math. 122 (1993) 59-87.

Cited by

  1. F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like Structures, Cambridge University Press, 1998.

  2. F. Bergeron, G. Labelle and P. leroux, Introduction to the theory of species of structures, Université du Québec à Montréal, 2008.

  3. W.Y.C. Chen, Compositional calculus, J. Combin. Theory Ser. A 64 (1993) 149-188.

  4. A. Di Bucchianico and D. Loeb, A selected survey of umbral calculus, Electron. J. Combin. (2000) Dynamic Survey 3, 34 pp.

  5. A. Di Bucchianico, D.E. Loeb and G.-C. Rota, Umbral calculus in Hilbert space, In: Mathematical Essays in Honor of Gian-Carlo Rota, 213-238, Progr. Math. 161, Birkhäuser Boston, Boston, MA, 1998.

  6. L. Guo, Baxter algebras and the umbral calculus, Adv. in Appl. Math. 27 (2001) 405-426.

  7. H. Li and D.C. Torney, Enumerations of Unlabelled Multigraphs, Ars Combin. 75 (2005) 171-188.

  8. M.A. Méndez, Species on digraphs, Adv. Math. 123 (1996) 243-275.

  9. M.A. Méndez, The umbral calculus of symmetric functions, Adv. Math. 124 (1996) 207-271.

  10. K.S. Nisar, A study of umbral calculus, Master Thesis, Aligarh Muslim University, 2008.

  11. K.S. Nisar, A study of polynomials and umbral calculus, Ph.D. Thesis, Aligarh Muslim University, 2010.

  12. D. Port, Polynomial maps with applications to combinatorics and probability theory, Ph.D. Thesis, Massachusetts Institute of Technology, 1994.

  13. T. Yoshida, Categorical aspects of generating functions (I): Exponential formulas and Krull–Schmidt categories, J. Algebra 240 (2001) 40-82.