W.Y.C. Chen and J. Oliveira,
Implication algebras and the Metropolis-Rota axioms for cubic lattices,
J. Algebra 171 (1995) 383-396.

Cited by

  1. M. Abad and J.P.D. Varela, Representation of cubic lattices by symmetric implication algebras, Order 23 (2006) 173-178.

  2. C. Bailey and J. Oliveira, An axiomization for cubic algebras, In: Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), 305-334, Progr. Math. 161, Birkhäuser Boston, Boston, MA, 1998.

  3. C.G. Bailey and J.S. Oliveira, Cube-like structures generated by filters, algebra universalis, 49 (2003) 129-158.

  4. C. Bailey and J.S. Oliveira, The algebra of filters of a cubic algebra, arXiv:0901.4933.

  5. C. Bailey and J.S. Oliveira, Enumerating the derangements of an n-cube via Mobius inversion, arXiv:0902.0937.

  6. R.K. Bandaru, On QI-algebras, Discuss. Math. Gen. Algebra Appl. 37 (2017) 137-145.

  7. R.A. Borzooei and S.K. Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae Online, e-2006, 371-373.

  8. F. Cicalese, Reliable computation with unreliable information, Ph.D. Thesis, University of Salerno, 2001.

  9. F. Cicalese, D. Mundici and U. Vaccaro, Rota-Metropolis cubic logic and Ulam-Rényi games, In: Algebraic combinatorics and computer science, 197-244, Springer Italia, Milan, 2001.

  10. F. Cicalese, Fault-Tolerant Search Algorithms, Monographs in Theoretical Computer Science an EATCS Series, Springer-Verlag, 2013.

  11. A.W.M. Dress, Recent results and new problems in phylogenetic combinatorics, La ciencia y tecnología ante el tercer milenio, Sociedad Estatal España Nuevo Milenio (2002) 143-162.

  12. J. Meng, Implication algebras are dual to implicative BCK-algebras, Soochow Journal of Mathematics 22 (1996) 567-571.

  13. A. Rezaei and A.B. Saeid, Relation between BE-algebras and g-Hilbert algebras, Discuss. Math. Gen. Algebra Appl. 38 (2018) 33-45.

  14. A. Rezaei, A.B. Saeid and R.A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Appl. Math. 8 (2013) 573-584.

  15. A.B. Saeid, H.S. Kim and A. Rezaei, On BI-algebras, An. Şt. Univ. Ovidius Constanţa 25 (2017) 177-194.

  16. A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. online, e-2008, 585-588.