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1. Introduction

Since their introduction by Lascoux and Schützenberger in 1982 [25], Schubert polyno-
mials have been extensively studied by combinatorialists [22, 24,26,40,41] and remain
a thriving subject for new insights and challenges. The notion of Schubert polynomials
has been further extended to two sets of variables by Lascoux, called double Schubert
polynomials which are related to Chern classes [22], and have been recently studied,
for example, in [1, 8, 9, 12, 13, 36]. We are concerned with a class of double Schubert
polynomials also singled out by Lascoux – the symmetric double Schubert polynomials,
which we call the double Schur function in comparison with the supersymmetric Schur
function. The double Schur function can be viewed as a generalization of the factorial
Schur function introduced by Biedenharn and Louck [2, 3]. The factorial Schur func-
tion can be obtained from the double Schur function by specializing the variable set
Y = {y1, y2, . . . , ym} to the value set {0, 1, . . . ,m−1}. M. Mendez [29,30] developed an
umbral calculus for symmetric functions including the factorial Schur function and the
double Schur function. Molev and Sagan [32] have recently obtained the Littlewood-
Richardson rule for the factorial Schur function.

Our first result is a lattice path interpretation of the double Schur function based
on a flagged determinantal formula derived from a formula of Lascoux for the symmet-
ric double Schubert polynomial. We start with the definition of the double Schubert
polynomial. Such a lattice path construction easily translates into the tableau defini-
tion as a natural generalization of the original tableau defintion of the factorial Schur
function [7]. Different approaches to the double Schur function have been developed
by Goulden and Greene [17], and Macdonald [27]. The double Schur function can be
defined in terms of a Jacobi-Trudi type determinant, called the multi-Schur function,
and it can also be defined in terms of divided difference operators. We take the ap-
proach of establishing a nonintersecting lattice path explanation of the determinantal
definition of the double Schur function, and then translate the lattice path formulation
into tableau notation. Although it has been a standard practice to construct lattice
paths based on a certain kind of binomial type determinant, the origins of the lattice
paths corresponding to the double Schur function are not on a horizontal line as in the
usual cases; whereas the origins we choose lie slightly off the diagonal and the destina-
tions turn out to be on a vertical line. In our construction, the content function of a
tableau comes into play in a quite natural way.

The main result in this paper is a combinatorial treatment of the divided difference
operators which can be used to compute the double Schur function from a monomial.
We present a combinatorial interpretation of such divided difference operators acting
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on a dominant double Schubert polynomial. With such a lattice path representation,
one easily arrives at the operator definition, the tableau interpretation and the de-
terminantal formula of the double Schur function. Our combinatorial approach also
extends to the flagged double Schur function.

Finally, we obtain lattice path representations of the tableau definitions of the
symplectic and orthogonal characters of sp2n(λ,X) and so2n+1(λ,X) based on the
tableau representations of King and El-Sharkaway [20], and Sundaram [39]. Based on
such lattice path correspondence, we obtain two flagged determinantal formulas for
these characters.

2. The Double Schur Function

Let us start with the classical defintion of double Schubert polynomials in terms of
divided difference operators. Given a function f(x1, x2, . . . , xn), the transposition op-
erator si is defined by

si f(x1, x2, . . . , xn) = f(x1, . . . , xi+1, xi, . . . , xn),

and the divided difference operator ∂i is given by

∂if =
f − sif
xi − xi+1

=
f(. . . , xi, xi+1, . . .)− f(. . . , xi+1, xi, . . .)

xi − xi+1

.

The double Schubert polynomial is then defined as the action of a series of divided
difference operators on the following maximal double Schubert polynomial:

∆(X, Y ) =
∏
i+j≤n

(xi − yj),

where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Given a permutation w ∈ Sn, let

ci(w) = |{j : i < j and w(i) > w(j)}|.

Then
c(w) = (c1(w), · · · , cn(w))

is called the code of w or the inversion code of w, and l(w) =
∑n

i=1 ci(w) is called
the length of w. Note that the codes of permutations on n elements are in one-to-
one correspondence with sequences a1a2 · · · an on the set {0, 1, . . . , n − 1} such that
ai ≤ n − i. Double Schubert polynomials, denoted by SI(X, Y ), can be defined as
polynomials on X and Y indexed by an inversion code I of a permutation on n elements,
or equivalently by a permutation w in Sn. The following constructive definition of
double Schubert polynomials is given by Lascoux [23,24].
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Definition 2.1. Given an inversion code I = (i1, . . . , in) of a permutation w ∈ Sn, the
polynomial SI(X, Y ) is constructed by the following procedure. Let K be the inversion
code of the longest permutation w0 in Sn, namely, w0 = n (n − 1) · · · 2 1 and K =
(n− 1, n− 2, . . . , 0). Then the polynomial

Sw0(X, Y ) = SK(X, Y ) = ∆(X, Y ).

Suppose I = (i1, . . . , in) is an inversion code of w such that ik > ik+1. Then the double
Schubert polynomial corresponding to the inversion code

I ′ = (i1, . . . , ik−1, ik+1, ik − 1, ik+2, . . . , in), (1)

is given by
SI′(X, Y ) = ∂kSI(X, Y ).

Suppose that w is the permutation with inversion code I as in the above defini-
tion. Then the permutation w′ corresponding to I ′ in (1) can be obtained from w by
transposing the elements in the k-th and (k + 1)-th positions. Thus, we may compute
the Schubert polynomial SI(X, Y ) for any inversion code I as successive actions on
the maximal double Schubert polynomial ∆(X, Y ). It can be verified that the above
definition is indeed equivalent to the original definition in terms of reduced words on
transpositions. Given any inversion code I, it can be reached from the code of the
longest permutation by the lowering operations in the above definition. Note that af-
ter each step the length of the resulting code decreases by one. Note that the procedure
to arrive at an inversion code from that of the longest permutation may not be unique.
However, because of the braid relations:

∂i · ∂j = ∂j · ∂i for |i− j| > 1,

∂i · ∂i+1 · ∂i = ∂i+1 · ∂i · ∂i+1, for all i,

the double Schubert polynomial is uniquely defined (see also [26]). In general, we may
use the standard route as described below. Let I = (i1, i2, · · · , in) be the inversion code
of w ∈ Sn, that is ik ≤ n−k. Then we can obtain SI(X, Y ) from ∆(X, Y ) = SK(X, Y ),
where K is the inversion code of the longest permutation of Sn. If i1 = n− k, then we
have

∂1(∂2(· · · (∂k−1∆(X, Y )))) = Si1, n−2,··· ,k+1, k, k−1,··· ,2, 1, 0(X, Y ),

and if i2 = n− l 6= n− 2, then we have

∂2(∂3(· · · (∂l−1Si1,n−2,··· ,2,1,0(X, Y )))) = Si1,i2,n−3,··· ,l+1,l,l−1,··· ,1,0(X, Y ).

Iterating this process, we may compute SI(X, Y ). For example, Let I = (1, 2, 0, 0)
for n = 4. We have

S1,2(X, Y ) = ∂3(∂1(∂2∆(X, Y ))).
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Consider next the class of permutations w of Sn such that the inversion code of
w is a non-decreasing sequence by disregarding any string of zeros at the right-hand
end of c(w). Such permutations are called Grassmannian permutations. Moreover, a
permutation in this class is called Grassmannian permutation of shape

λ : λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0,

where m ≤ n, and λ is the reverse of the sequence of I, namely,

λ1 = im ≥ im−1 ≥ · · · ≥ i1 ≥ 0.

A symmetric double Schubert polynomial is defined as a double Schubert polynomial
indexed by the inversion code of a Grassmannian permutation, or by a partition λ.

A different perspective of the symmetric double Schubert polynomials is to view
them as supersymmetric Schur functions in X and Y , although these two classes are
not quite the same. However, they share a common feature of the supersymmetric
complete function for X = {x1, x2, . . .} and Y = {y1, y2, . . .}:

hn(X − Y ) = [tn]

∏
y∈Y (1− yt)∏
x∈X(1− xt)

=
n∑
k=0

ek(X)hn−k(−Y ), (2)

where [tn] f(t) means the coefficient of tn in f(t), en−k(−Y ) denotes the elementary
symmetric function en−k(−y1,−y2, . . .) and hk(X) denotes the ordinary complete sym-
metric function in X. It is important to note that if we change the signs of every
variable in Y , then hn(X + Y ) coincides with the supersymmetric function used by
Golden and Greene [17] in the notation Hn(X, Y ). It is necessary in the context of
double Schubert polynomials to define hn(X − Y ) as in (2) for which the variables in
Y carry the minus signs in the numerator. If we set yi = i− 1, then hn(X, Y ) becomes
the factorial complete symmetric function as defined in [7].

Let I = (i1, i2, . . . , im), im > 0, be an inversion code of a Grassmannian permutation
w ∈ Sn. Then SI(X, Y ) can be expressed as the following determinant:

SI(X, Y ) = det


hi1(Xm − Yi1) hi2+1(Xm − Yi2+1) · · · him+m−1(Xm − Yim+m−1)
hi1−1(Xm − Yi1) hi2(Xm − Yi2+1) · · · him+m−2(Xm − Yim+m−1)
· · · · · · · · · · · ·
hi1−m+1(Xm − Yi1) hi2−m+2(Xm − Yi2+1) · · · him(Xm − Yim+m−1)

 ,

(3)
where Xm = {x1, x2, . . . , xm} and Ym = {y1, y2, . . . , ym}.

The above determinant can be recast in terms of the divided difference operator as:

SI(X, Y ) = (∂m−1∂m−2 . . . ∂1) · (∂m−1∂m−2 . . . ∂2) · · · (∂m−1)SJ(X, Y ).
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where J = (j1, j2, . . . jm) = (im +m− 1, im−1 +m− 2, · · · , i1) and

SJ(X, Y ) =
m∏
k=1

jk∏
l=1

(xk − yl).

The above double Schubert polynomial is called a dominant double Schubert polyno-
mial [24, 26]. If we set Y = 0, then the above definition of SI(X, Y ) reduces to the
following expression of the Schur function:

sλ(X) = (∂m−1∂m−2 . . . ∂1) · (∂m−1∂m−2 . . . ∂2) · · · (∂m−1)xλ1+m−11 xλ2+m−22 · · ·xλmm .

We remark that the product of operators in the above equation is an important special
case in the theory of Schubert polynomials for the longest permutation w0 in Sm:

∂w0 = (∂m−1∂m−2 . . . ∂1) · (∂m−1∂m−2 . . . ∂2) · · · (∂m−1),

as described in Definition 2.1.

Lascoux introduced the Lagrange operator Lm which extends a polynomial in one
variable, say x1, to a symmetric function in m variables x1, x2, . . . , xm:

Lm f(x1) =
m∑
i=1

f(xi)
/∏
j 6=i

(xi − xj).

The Lagrange operator Lm can be expressed in terms of divided difference operators:

Lm = ∂m−1 ∂m−2 · · · ∂1.

The above operator Lm coincides with the classical higher order divided difference
operator, and is denoted by ∆ with parameters [x1, x2, . . . , xm] in [7]. Moreover, the
product ∂m−1 ∂m−2 · · · ∂i, denoted by Lmi , can also be regarded as a Lagrange operator
extending a polynomial in xi to a symmetric function in xi, xi+1, . . . , xm. It is important
to mention that the divided difference operator corresponding to the reduction from
the longest permutation to the identity permutation can be written as the product of
Lagrange operators:

(∂m−1∂m−2 . . . ∂1) · (∂m−1∂m−2 . . . ∂2) · · · (∂m−1) = Lm1 L
m
2 · · · Lmm−1.

The action of the above operator can be expressed in terms of determinants. For any
polynomial f(X) = f(x1, x2, . . . , xm), we have

(∂m−1∂m−2 . . . ∂1) · (∂m−1∂m−2 . . . ∂2) · · · (∂m−1) f(X) =
∑
σ∈Sm

(−1)|σ| fσ(X)/∆(X), (4)
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where fσ(X) denotes the action of the permutation σ on the indices of the variables
x1, . . . , xm, and ∆(X) is the Vandermonde determinant in x1, x2, . . . , xm:

∆(X) =
∏
i<j

(xi − xj).

The above formula can be understood as the equivalence between the alternant defini-
tion of the Schur function and the Jacobi-Trudi identity as described by Stanley [37],
or in [7] for the case of the factorial Schur function.

We employ the following notation as in [17,27]:

(x|Y )n =
∏

1≤i≤n

(x− yi), (5)

and extend to

(x|Y )[i,n] =
n∏
k=i

(x− yk). (6)

If we set f =
∏m

k=1(xm−k+1|Y )ik+k−1 in (4), then we are led to the following expres-
sion given by Lascoux [24] in the terminology of symmetric double Schubert polyno-
mials:

SI(X, Y ) =

det

(
(xi|Y )m+im−j+1−j

)
m×m

∆(X)
,

where I is the inversion code of a Grassmannian permutation. If we rewrite the above
formula in terms of a partition λ = (λ1, λ2, . . . , λm),

sλ(X, Y ) =

det

(
(xi|Y )λj+m−j

)
m×m

∆(X)
,

then we arrive at the 6th variation of the Schur function as given by Macdonald [26]
as a natural generalization of the factorial Schur function.

Note that the above divided difference operator definition of the double Schur func-
tion differs from the divided difference operator definition based the maximal double
Schubert polynomial ∆(X, Y ). Nevertheless, the equivalence of the two can be viewed
as a duality between the operators and the polynomials. The proof of this equivalence
can be found in [24,26].

The factorial Schur function can be obtained from the double Schur function, or the
symmetric double Schubert polynomial by specifying yi to i − 1. On the other hand,
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the factorial Schur function possesses almost the same properties as the double Schur
function because parameters 0, 1, 2, . . . in the factorial Schur function basically play a
role as indeterminates y1, y2, . . .. The idea of using lattice path methods for the factorial
Schur function was first pointed out in [7] because of the binomial type property of the
entries in the Jacobi-Trudi formula, and later explicitly given by Goulden-Hammel [18],
Goulden and Greene [17]. However, as we shall see, there is still something to be said
about such a general idea, particularly about the origins of lattice paths, as we shall
see in the next section.

3. A Lattice Path Interpretation

There is some advantage of using the index of the double Schur function as an inversion
code, instead of a partition. With respect to the factorial Schur function, the number
of parts including zero components is important when it is used as an index, although
for the ordinary Schur function the zero components can be ignored. For this reason,
the usage of Gelfand pattern in the physics literature is a good way to avoid such
an ambiguity. Therefore, we use a sequence instead of a partition to index a double
Schur function. As a first step to give a lattice path interpretation of the double Schur
function SI(X, Y ), we prefer the following variation of (3), which can be regarded as
a triangulation or a flagged form. As we shall see, such a flagged form leads to nice
properties for constructing the corresponding lattices:

det


hi1(En−1 − Yi1) hi2+1(En−1 − Yi2+1) · · · hin+n−1(En−1 − Yin+n−1)
hi1−1(En−2 − Yi1) hi2(En−2 − Yi2+1) · · · hin+n−2(En−2 − Yin+n−1)
· · · · · · · · · · · ·
hi1−n+1(E0 − Yi1) hi2−n+2(E0 − Yi2+1) · · · hin(E0 − Yin+n−1)

 , (1)

where Ei = Xn \Xi = {xi+1, · · · xn}.

The transformation from the determinant (3) to (1) easily follows from a property
of the multi-Schur function [24,26]:

Lemma 3.1. Let J = (j1, j2, . . . , jn) be a sequence of integers, and let X1, . . . , Xn and
Y1, . . . , Yn be sets of variables. Then the multi-Schur function

SJ(X1 − Y1, . . . , Xn − Yn) = det

(
hjk+k−l(Xk − Yk)

)
n×n

can also be rewritten as the determinant

det

(
hjk+k−l(Xk − Yk −Dn−l)

)
n×n

for any family D0, D1, . . . , Dn−1 of variables such that |Di| ≤ i.
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We now proceed to give a lattice path realization of the flagged determinant (1).
As usual, a lattice path in the plane is a path P from an origin to a destination in
which every step is either going up (vertical step) or going right (horizontal step). The
weight of each step is defined as follows:

1. For a vertical step from (i, j) to (i, j + 1), the weight is xi − yi+j.

2. For a horizontal step from (i, j) to (i+ 1, j), the weight is 1.

3. The weight of a path P is the product of the weights of the steps in the path, denoted
by w(P ).

For a set of paths P1, P2, . . . , Pm, the weight is defined to be the product of all the
weights. Let A = (A1, A2, . . . , Am) and B = (B1, B2, . . . , Bm) be sequences of lattice
points, we say that (P1, P2, . . . , Pm) is a group of nonintersecting lattice paths from A
to B if Pi’s are nonintersecting and Pi is a lattice path with origin Ai and destination
Bi. Moreover, we use w(A,B) to denote the sum of weights of all nonintersecting
lattices paths from A to B. We now can state the first theorem of this paper:

Theorem 3.2. Let I = (i1, i2, . . . , im) be a non-decreasing sequence. Then the double
Schur function SI(X, Y ) can be evaluated by w(A,B) for Ak = (k,−k + 1) and Bk =
(m, im−k+1 − k + 1).

For the first step in proving the above theorem, we need to give a lattice path
interpretation of the entries in the determinant (1). They are the supersymmetric
functions, and we may express them as the action of divided difference operators on
the polynomial hn(x1 − Yn) which turns out to be a product (x1 − y1) · · · (x1 − yn).
This leads to a lattice path interpretation of the entries in the determinant.

Lemma 3.3 (Lascoux [24]). For the complete double Schur function hn(x1 − Y ), we
have

Lrhn(x1 − Y ) = Lr(x1|Y )n = hn−r+1(Xr − Y ). (2)

Proof. While the following identity is straightforward to verify, it is a fundamental idea
in dealing with divided differences of generating functions:

∂i
1

1− txi
= t · 1

(1− txi)(1− txi+1)
. (3)

Iterating the same argument, we arrive at the following identity:

Lrhn(x1 − Y ) = [tn]Lr

(∏
y∈Y (1− ty)

1− x1t

)
= [tn−r+1]

∏
y∈Y (1− ty)∏

1≤i≤r(1− txi)
= hn−r+1(Xr − Y ),

which completes the proof.
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As a critical case of the above lemma, we have the following relation, as noted
in [24]:

hn(x1 − Yn) =
n∑
i=0

(−1)n−ixi1en−i(y1, · · · , yn) = (x1 − y1) · · · (x1 − yn).

Note that if we set yi = i− 1, then hn(x1 − Yn) turns out to the factorial (x1)n. With
the above formula for hn(x1−Yn) and the formula for hn−r+1(Xr−Yn), we may obtain
the following lattice path interpretation of the function hm(Xn − Yn+m−1):

Lemma 3.4. The double complete symmetric function hm(Xn − Yn+m−1) can be de-
scribed by the sum of weights over lattice paths from (1, 0) to (n,m).

Proof. By Lemma 3.3, we have

hm(Xn − Yn+m−1) = Ln (x1|Y )n+m−1.

Iterating the following identity [7]:

(x1|Y )m+1 − (x2|Y )m+1

x1 − x2
=
∑

0≤k≤m

∏
1≤l≤k

(x1 − yl)
∏

k+2≤l≤m+1

(x2 − yl), (4)

it follows that

hm(Xn − Yn+m−1) =
∑

i1+i2+···+in=m

( ∏
1≤r≤n

( i1+···+ir+r−1∏
t=i1+···+ir−1+r

(xr − yt)
))

, (5)

which is the sum of the weights over all lattice paths from (1, 0) to (n,m).

In general, all the entries in the determinant (1) can be interpreted by lattice paths.
Here we only consider those nonzero entries.

Lemma 3.5. Suppose that ik + j ≥ 0 and j < k. Then the following entry

hik+j(Xn\Xn+j−k − Yik+k−1) (6)

equals the sum of weights of all lattice paths from (n + j − k + 1,−(n + j − k)) to
(n, ik + k − n).

In the notation of divided differences, the function (6) can be expressed as

Lnn+j−k+1 (xn+j−k+1|Y )ik+k−1.
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Figure 1: Before the involution

We are now ready to give an involutional proof of Theorem 3.2 in the spirit of the
Gessel-Viennot methodology [15,16].

Proof of Theorem 3.2: Recall that Al = (l,−l + 1), Bl = (m, im−l+1 − l + 1). Let π =
π1π2 · · · πm be a permutation on {1, 2, . . . ,m}. Suppose that Pl is a lattice path from
Al to Bπl , 1 ≤ l ≤ m. The sign of the configuration (P1, P2, . . . , Pm) is defined to be the
sign of the permutation π. We need to find the smallest index j such that Pj intersects
with a path Pk (j < k). We choose k to be the smallest if Pj intersects with more
than one path. Let v be the intersection point of Pj and Pk. Then we may switch the
segments from v to Pπj and Pπk , leading to lattice paths (P1, . . . , P

′
j , . . . , P

′
k, . . . , Pm).

This construction is a sign-reversing and weight preserving involution. It is illustrated
in Figures 1 and 2.

Once the lattice path interpretation of the determinant (1) is obtained, it is straight-
forward to translate it into a Young tableau representation as given by Biedenharn and
Louck for the factorial Schur function [2,3], and for the double Schur function as given
by Goulden and Greene [17] and Macdonald [27].

Theorem 3.6. Let I = (i1, i2, · · · , im) be a code of a Grassmannian permutation, and
λ = (λ1, λ2, . . . , λm) be a partition with λk = im+1−k, 1 ≤ k ≤ m. Then the double
Schur function SI(X, Y ) equals the function sλ(X, Y ) defined on column strict tableaux
T on {1, 2, . . . ,m} of shape λ with the following weight function:

(xT (α) − yT (α)+C(α)),

where T (α) is the entry of T in the cell α, and C(α) is the content of α which equals
j − i if α falls in the i-th row and j-th column.

11



-

6

x

y

o
r
A1

rBπ1

r
Aj

rBπ
′
j

r
Ak

r
v

rBπ
′
k

p p p r
Am

rBπm

Figure 2: After the involution.

Proof. For any column strict tableau T with shape λ on the set {1, 2, . . . ,m}, we
associate it with a sequence (P1, P2, · · · , Pm) of nonintersecting paths such that Pk has
origin Ak = (k,−k + 1) and destination Bk = (m,λk + 1 − k). Let us consider the
k-th row of T . If the first cell is u (u ≥ k), then we draw a line from (u,−k + 1) to
(u,−k+ 2). Suppose that the second cell in the k-th row is v, then we may draw a line
from (v,−k + 2) to (v,−k + 3), and so on. Thus, we have λk vertical lines and we can
add some horizontal lines to get a path Pk from (k,−k+1) to (m,λk−k+1). Moreover,
these paths P1, P2, . . . , Pm are nonintersecting because the tableau T is column strict.
The above procedure is reversible. Hence we obtain a bijection.

A cell α in the k-th row and l-th column has content l − k and corresponds to the
lth vertical step in Pk from (T (α),−k + l) to (T (α),−k + l + 1), this step has weight

xT (α) − yT (α)−k+l = xT (α) − yT (α)+C(α).

It follows that ∏
α∈λ

(xT (α) − yT (α)+C(α)) =
∏
k

w(Pk),

where w(Pk) is the weight of Pk. This completes the proof.

It is worth mentioning the following formula of Pragacz and Thorup [34] for the
supersymmetric Schur function indexed by a partition λ = (λ1, . . . , λl):

Sλ(Xm, Yn) = det

(
Sλi−i+j(Xm/Yn)

)
l×l
,

where

Sn(X/Y ) = [tn]

∏
y∈Y (1 + yt)∏
x∈X(1− xt)

= hn(X − (−Y )),
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and −Y = {−y1,−y2, . . .}. As noted in [17, 27], although the double Schur function
is different from the supersymmetric Schur function, the two have a common tableau
representation when we extend X and Y to the following infinite sets:

X = {. . . , x−2, x−1, x0, x1, x2, . . .} and Y = {. . . , y−2, y−1, y0, y1, y2, . . .}.

4. The Flagged Double Schur Function

In this section, we introduce the notion of a flagged double Schur function, which fall-
s into the more general framework of determinantal forms studied by Lascoux [22].
The flagged form of the ordinary Schur function was introduced by Lascoux and
Schützenberger [25]. Gessel observed that the tableau definition of the Schur func-
tion could be extended to the flagged Schur function, and a detailed study was later
carried out by Wachs [41]. The flagged version of the supersymmetric Schur function
has been studied by Goulden and Hammel [18,19]. Our main idea is to use lattice paths
to characterize the actions of divided difference operators, and then to turn the lattice
paths into flagged determinantal formulas. To this end, we start with the divided dif-
ference operator definition of the flagged double Schur function, and then establish the
lattice path interpretation.

Let λ = (λ1, λ2, . . . , λm) be a partition with λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and let
b = (b1, b2, . . . , bm) be a sequence of nondecreasing positive integers. The flagged Schur
function with shape λ and flag b is defined as

sλ(b) = det(hλi−i+j(bi))m×m,

where hλi−i+j(bi) = hλi−i+j(x1, x2, · · · , xbi).

In [41], Wachs gave a combinatorial definition of the flagged Schur function in terms
of column strict tableaux. Let T (λ, b) be the set of all column strict tableaux T of
shape λ such that the elements in the i-th row of T do not exceed bi. Then we have

sλ(b) =
∑

T∈T (λ,b)

w(T ),

where w(T ) =
∏

α∈T xT (α).

We define the flagged double Schur function as follows.

Definition 4.1. Given a partition λ and a flag b, the flagged double Schur function is
given by

sλ,b(X − Y ) = det

(
hλi−i+j(Xbi − Yλi+bi−i)

)
m×m

.
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Note that if set b1 = b2 = · · · = bm, then the flagged double Schur function reduces
to the double Schur function. We now shift our attention to a divided difference
definition of the flagged Schur function, and then pursue a lattice path interpretation
based on the divided difference operators. Given a partition λ with m positive parts,
and a flag b of length m, set ai = λi + bi − i, and

Lb = Lb1,...,bm = (∂b1−1∂b1−2 · · · ∂1)(∂b2−1∂b2−2 · · · ∂2) · · · (∂bm−1∂bm−2 · · · ∂m).

Then we have a lattice path interpretation for the action of Lb1,··· ,bm on the polynomial

(X|Y )a = (x1|Y )a1(x2|Y )a2 · · · (xm|Y )am ,

from which one may easily recover the tableau definition and the determinantal defini-
tion of the flagged double Schur function. Hence we arrive at the conclusion that the
divided difference definition of the flagged double Schur function coincides with the
determinantal definition and the tableau definition.

Theorem 4.2. The polynomial Lb1,...,bm((x1|Y )a1(x2|Y )a2 · · · (xm|Y )am) equals the sum
of weights of all sequences (P1, P2, · · · , Pm) of nonintersecting paths such that Pi has
origin (i,−i+ 1) and destination (bi, λi − i+ 1).

Before we present a proof of the theorem, we make some remarks.

• The above lattice path represenation gives the following determinantal formula:

Lb1,...,bm((x1|Y )a1(x2|Y )a2 · · · (xm|Y )am) = det(hλi−i+j((Xbi \Xj−1)− Yλi+bi−i))m×m.

By Lemma 3.1, we may rewrite it as our first definition:

det

(
hλi−i+j(Xbi − Yλi+bi−i)

)
m×m

.

• The above lattice path representation can also be translated into the following
tableau notation:

sλ,b(X − Y ) =
∑

T∈T (λ,b)

w(T ),

where T (λ, b) is the set of column strict tableau of shape λ such that the elements
in the i-th row do not exceed bi, and

w(T ) =
∏
α∈T

(xT (α) − yT (α)+C(α)),

with C(α) being the content function as before.
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We restate the identity (4) in terms of lattice paths.

Lemma 4.3. Let P be the vertical segment from (m, k) to (m, p). Then the action
of ∂m on the weight of P yields the sum of weights of all lattice paths from (m, k) to
(m+ 1, p− 1).

Using the above lemma, we may have the following rule for computing the action
of ∂m.

Lemma 4.4 (Pairing Lemma). Let (A1, A2, . . . , An) be a sequence of the lattice points
with Ai = (m, ki), and let B = (B1, B2, . . . , Bn) be a sequence of lattices points with
B1 = (m, p) and Bi = (m + 1, ti) for i ≥ 2. Suppose p > k1 > k2 > · · · > kn,
p− 1 > t2 > · · · > tn, and ki ≤ ti for i ≥ 2. Then we have

∂mw(A,B) = w(A,B′),

where B′ is obtained from B by replacing B1 with (m+ 1, p− 1).

Proof. First, we note that if w(A,B) contains a factor that is symmetric in xm and
xm+1, then this factor can be regarded as a constant when applying the operator ∂m.
We proceed to show that what really matters for the operator ∂m is the segment of
the path from A1 to B1 that is above the horizontal line y = t2 + 1. The polynomial
w(A,B) can be computed by the following procedure. Suppose t2+1 > k1. Then every
path from A2 to B2 must have the segment from (m + 1, k1 − 1) to (m + 1, t2), and
w(A,B) must contain the factor

(xm|Y )[m+k1,m+t2] (xm+1|Y )[m+k1,m+t2], (1)

which is symmetric in xm and xm+1. If k2 > t3, then every path from A3 to B3

automatically does not intersect with any path from A2 to B2. By Lemma 4.3 or
Lemma 3.4, the weights of such paths contribute to the factor

h(xm, xm+1, Y ) (2)

which is again symmetric in xm and xm+1. If k2 < t3 + 1, we may repeat the above
process to get a factor in the form of (1). Iterating the above process, one may have
factors symmetric in xm and xm+1.

For the case when t2 + 1 ≤ k1, we first take out the factor w(A1, B1), and then we
may use the above argument to show that the rest factors of w(A,B) are symmetric in
xm and xm+1. For each case, we may apply Lemma 4.3 to reach the desired conclusion.
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We can now prove Theorem 4.2.

Proof of Theorem 4.2. We begin with the m vertical lines P1, P2, · · · , Pm, where Pi is
from Ai = (i,−i + 1) to Bi = (i, ai − i + 1). Recall that ai = λi + bi − i. Consider
the action of ∂m on (X|Y )a. By Lemma 4.3, ∂m(X|Y )a equals the sum of weights
of all lattice paths from A to B′ where B′ is obtained from B by replacing B1 with
(m + 1, am − m). Next consider the action of ∂m+1 on ∂m (X|Y )a. For any group
of paths (Q1, Q2, . . . , Qm) from A to B′, ∂m+1 affects only the area between the lines
x = m+ 1 and x = m+ 2. We may assume that the points of (Q1, Q2, . . . , Qm) on the
lines x = m+1 and x = m+2 satisfy the conditions in Lemma 4.4, otherwise the action
of ∂m+1 on the weight of these paths leads to zero. Repeating the same argument, it
follows that Lbmm (X|Y )a equals the sum of weights of all lattice paths (automatically
nonintersecting) from A to

(1, a1), (2, a2 − 1), (m− 1, am−1 −m+ 2), · · · , (bm, λm −m+ 1). (3)

We continue with the action of ∂m−1 on the weight of a set of nonintersecting lattice
path from A to the destination points (3), and we may still apply Lemma 4.4. Iterating
the same argument, we get the desired lattice path interpretation of Lb(X|Y )a.

Setting Y = 0 in Theorem 4.2, we arrive at the following corollary for the ordinary
flagged Schur function.

Corollary 4.5. Given a flag b = (b1, b2, . . . , bm) and a partition λ with m parts, let
ai = λi + bi − i. Then Lb1,b2,··· ,bm(xa11 x

a2
2 · · ·xamm ) equals the sum of weights of all

nonintersecting paths P1, P2, · · · , Pm, such that Pi has origin (i,−i+1) and destination
(bi, λi − i+ 1).

From this corollary, we obtain the following determinantal formula:

det

(
hλi−i+j(Xbi \Xbj−1

)

)
m×m

.

By Lemma 3.1, we may rewrite the above formula as follows:

det

(
hλi−i+j(Xbi)

)
m×m

,

which coincides with the definition of the flagged Schur function Sλ(b) given by Wachs
[41].
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5. Flagged Determinantal Formulas for Sympletic and Orthogonal Char-
acters

Compared with previous lattice path approaches to the double Schur function by
Goulden-Greene [17], Krattenthaler [21] and Molev [31], the construction given in the
present paper easily leads to the flagged determinantal formula. Moreover, without
additional effort these paths can also be translated into a tableau representation. We
find another application of this idea to the symplectic and orthogonal characters sp(2n)
and so(2n + 1) by giving new flagged determinantal formulas for these two kinds of
characters. They have been studied via various approaches, see, for example, [11, 39].
Fulmek and Krattenthaler [11] give a proof for the determinant expression

sp2n(λ,X) = det

(
hλi−j+1(X)

... hλj−j+i(X) + hλj−j−i+2(X)

)
r×r

where hn(X) = hn(x1, x
−1
1 , x2, x

−1
2 , · · · , xn, x−1n ) is the ordinary complete symmetric

function, and the first expression gives the entries of the first row and the second for
the remaining rows.

5.1. The Symplectic Characters

The symplectic characters sp2n(λ,X) can also be expressed using 2n-symplectic tableau
introduced by King and El-Sharkaway in [20].

Definition 5.1. A semi-standard tableau T of shape λ is called a 2n-symplectic tableau
if its entries are elements of {1, 2, · · · , 2n} and they obey the additional constraint

Ti,j ≥ 2i− 1.

Let S(λ) be the set of 2n-symplectic tableau, then

sp2n(λ,X) =
∑
T

XT ,

where T ∈ S(λ), XT =
∏n

l=1 x
|{Ti,j=2l−1}|−|{Ti,j=2l}|
l .

Lemma 5.2. Given a partition λ = (λ1, · · · , λr), r ≤ n, there is a bijection between
S(λ) and the set of nonintersecting lattice paths (P1, P2, . . . , Pr) such that Pi is from
Ai = (2i− 1,−i+ 1) to Bi = (2n, λi − i+ 1) for 1 ≤ i ≤ r.

Proof. For a path Pi, let us consider Ti,j. We can draw a vertical line from (Ti,j, j − i)
to (Ti,j, j − i + 1) and complete the path from (2i − 1,−i + 1) to (2n, λi − i + 1) by
adding horizontal lines.
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T =

2 3 4 6

4 4 6

5 6

Figure 3: A Symplectic tableau.

-

6

x

y

o
r
(1,0)

r(6,4)

r
(3,-1)

r(6,2)

r
(5,-2)

r(6,0)

Figure 4: Corresponding lattice paths.

Because each step can be reversed, we obtain a bijection between S(λ) and the
nonintersecting lattice paths.

For example, if λ = (4, 3, 2) and n = 3, the following Figure 3 is a symplectic
tableau of shape λ.

The corresponding lattice paths are shown in Figure 4.

We can now define the weight of a path to ensure that we can compute sp2n(λ,X)
by lattice paths:

Definition 5.3. For each path, the weight of each step is given by the following rules:

1. for the step from (2i− 1, j) to (2i− 1, j + 1), the weight is xi;

2. for the step from (2i, j) to (2i, j + 1), the weight is x−1i ;
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3. for the step from (i, j) to (i+ 1, j), the weight is 1.

Thus, the above weight assignment does lead to a lattice path interpretation of
sp2n(λ,X). Now let us consider the paths from Ai to Bj, as in the above lemma, i.e.,
Ai = (2i − 1,−i + 1) and Bj = (2n, λj − j + 1). If λj − j + 1 < −i + 1, then set the
weight to 0; otherwise, the sum over all such weighted paths becomes

hλj+i−j(xi, x
−1
i , xi+1, x

−1
i+1, · · · , xn, x−1n ).

Then we have the following theorem:

Theorem 5.4. We have the following formula for the symplectic characters:

sp2n(λ,X) = det(hλj+i−j(xi, x
−1
i , xi+1, x

−1
i+1, · · · , xn, x−1n ))r×r.

5.2. The Odd Orthogonal Characters

The charaters so2n+1(λ,X) can be interpreted in terms of a set of orthogonal tableau of
shape λ, as denoted by O(λ) and introduced by Sundaram [39]. The Proctor tableaux
[35] also leads to the same character as the Sundaram tableaux, and a weight preserving
bijection of these two classes of tableaux is established by Fulmek and Krattenthaler [8].
Let us recall the definition of the Sundaram tableaux.

Definition 5.5. A semistandard tableau T of shape λ, with l(λ) ≤ n, is called a
so(2n+ 1) tableau if its entries are elements of

1 < 2 < 3 < . . . < 2n− 1 < 2n <∞,

and obey the additional constaints:

1. Ti,j ≥ 2i− 1,

2. for each row, there is at most one ∞.

Let O(λ) be the set of such tableau, then

so2n+1(λ,X) =
∑
T

XT ,

where T ∈ O(λ), X
T =

∑n
l=1 x

|Ti,j=2l−1|−|Ti,j=2l|
l .

The following lemma gives a lattice path representation of odd orthogonal tableaux.
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Lemma 5.6. Given a partition λ = (λ1, · · · , λr), r ≤ n, there is a bijection between
O(λ) and the set of nonintersecting lattice paths (P1, P2, . . . , Pr) where Pi has origin
Ai = (2i− 1,−i+ 1) and destination Bi = (2n+ i, λi − i+ 1) such that for the region
x > 2n there is at most one vertical step on Pi which is possibly from (2n + i, λi − i)
to (2n+ i, λi − i+ 1).

Proof. For each path Pi, let us consider the cells (i, j) such that Ti,j < ∞. We can
draw a vertical line from (Ti,j, j − i) to (Ti,j, j − i+ 1) in the lattice path. If Ti,j =∞,
in which case j = λi by definition, then we can draw a vertical line from (2n+ i, λi− i)
to (2n+ i, λi− i+ 1). After the vertical lines are drawn, the path Pi can be completed
by adding horizontal lines. It is easy to see that this construction is in fact a bijection.

For a lattice path corresponding to an odd orthogonal tableau, its weight is given
below:

1. for the step from (2i− 1, j) to (2i− 1, j + 1), the weight is xi, if i ≤ n;

2. for the step from (2i, j) to (2i, j + 1), the weight is x−1i , if i ≤ n;

3. for the step from (2n+ i, λi − i) to (2n+ i, λi − i+ 1), the weight is 1;

4. for the step from (i, j) to (i+ 1, j), the weight is 1.

As for the case of symplectic characters, the above weight assignment yields a lattice
path interpretation of so2n+1(λ,X). The set of lattice paths from Ai = (2i− 1,−i+ 1)
to Bj = (2n+ j, λj − j + 1) subject to the conditions in Lemma 5.6 gives the following
function for λj − j + 1 ≥ −i+ 1:

hλj+i−j(xi, x
−1
i , xi+1, x

−1
i+1, . . . , xn, x

−1
n ) + hλj+i−j−1(xi, x

−1
i , xi+1, x

−1
i+1, . . . , xn, x

−1
n ). (1)

Then we have the following theorem:

Theorem 5.7. The orthogonal character so2n+1(λ,X) can be evaluated by the following
determinant:

det

(
hλj+i−j(xi, x

−1
i , xi+1, x

−1
i+1, . . . , xn, x

−1
n )+hλj+i−j−1(xi, x

−1
i , xi+1, x

−1
i+1, . . . , xn, x

−1
n )

)
r×r
.
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Québec à Montréal, No. 6, 1991.

27. I.G. Macdonald, Schur functions: theme and variations, Publ. I.R.M.A. Strasbourg, 1992,
498/S-27, Actes 28e Seminaire Lotharingien, p. 5-39.

28. I.G. Macdonald, Symmetric Functions and Hall Polynomial, Oxford Univ. Press, New
York/London, 1979.

29. M.A. Méndez, The umbral calculus of symmetric functions, Adv. Math.124 (1996) 207-
271.

30. M.A. Méndez, Umbral shifts and symmetric functions of Schur type, Mathematical
Essays in Honor of Gian-Carlo Rota, B.E. Sagan and R.P. Stanley, Eds., Birkhäuser,
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