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Abstract. We introduce a g¢-differential operator D,, on functions in two
variables which turns out to be suitable for dealing with the homogeneous
form of the g-binomial theorem as studied by Andrews, Goldman and Rota,
Roman, Thrig and Ismail, et al. The homogeneous versions of the g-binomial
theorem and the Cauchy identity are often useful for their specializations
of the two parameters. Using this operator, we derive an equivalent form
of the Goldman-Rota binomial identity and show that it is a homogeneous
generalization of the ¢-Vandermonde identity. Moreover, the inverse identity
of Goldman and Rota also follows from our unified identity. We also obtain
the ¢-Leibniz formula for this operator. In the last section, we introduce the
homogeneous Rogers-Szegd polynomials and derive their generating function
by using the homogeneous ¢-shift operator.
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1. Introduction

We adopt the common conventions and notations on g-series. So we always
assume that |¢| < 1 and use the following notation of the g-shifted factorial:
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The basic hypergeometric series ¢ is defined as follows [6]:
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where ¢ # 0 when r > s + 1.
The ¢-binomial coefficient is given by:

m _ (@9
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The following is the homogeneous form of the ¢-shifted factorial:

Pu(z,y) = (y/z;q)na" = (x —y)(x — qy) - - (x — ¢" ).
We also have the following basic relations:
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The polynomials P, (z,y) are important in the g-umbral calculus as s-
tudied by Andrews [1, 2], Goldman-Rota [5], Goulden-Jackson [7], Thrig and
Ismail [8], Roman [13], Johnson[11], et al. In the g-umbral calculus, the poly-
nomial sequence P, (z,y) is a homogeneous Eulerian family. By vector space
arguments, Goldman and Rota [5] have shown the following ¢-binomial iden-
tity, which we call the Goldman-Rota g-binomial theorem. This identity may
be known earlier, but we do not have accurate information on the reference:

P(z,y) = Zn: m Pu(x,2)Pa_i(2,y). (1.1)

k=0

Let V,, be an n-dimensional vector space over the finite field of g elements,
and X, Y Z be vector spaces over GF'(q) such that | X| =z, |Y| = y and
|Z| = z where |X| denotes the number of vectors in X. Assuming that
Z CY C X and dimV,,< dimZ , Goldman and Rota [5] show that the above
identity counts in two ways the set of all one-to-one linear transformations
f:V, — X such that f~'(Z) = 0. Setting y = 0 and z = 1 in (1.1), one
obtains the following identity due to Cauchy:

=3 [l ve - 12

Note that the polynomials P,(z,1) = (z — 1)(x — q) - - - (x — ¢"') are some-
times called the Gauss polynomials. A direct combinatorial argument for
the above identity of Cauchy is also given by Goldman and Rota [5]. For

2



further background on the above ¢g-binomial theorem and its specializations,
the reader is referred to the introduction written by Kung [12]. Moreover,
by Mobius inversion, Goldman and Rota obtain an identity which leads to a
partition identity, generalizing Durfee’s identity.

n
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It was not obvious how to show the equivalence of the above two g-binomial
theorems (1.1) and (1.3). Here we give a derivation:

Puz,y) = (=1)"qG)Pu(y,¢" "e)
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Goulden and Jackson [7] give a similar derivation of (1.3) from (1.1). More-
over, they give an interpretation of the polynomials Q,(z,y) = P,(z, —y) in
terms of g-counting of certain permutations (bimodal permutations). The
following exchange property of @, (z,y) is given by Goulden and Jackson [7]

n
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Note that there is a notation for @Q,(z,y) in the literature following F. H.
Jackson [9] as mentioned by Johnson [11]:

@+ =@+y(+q) - (x+q"y).

Because the polynomials P,(x,y) occur so often in g-series that they may
deserve a name. We propose to call them the Cauchy polynomials for the
reason that they are the coefficients in the expansion of the homogenous
version of the Cauchy identity (or the ¢g-binomial theorem):

i Po(,y) o _ (Wl @) (1.4)

(¢ @)n (zt;¢)so

n=0
Setting y = 0, the Cauchy identity becomes Euler’s identity:
ntn
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It seems to be neglected that the g-binomial theorem of Goldman and Rota,
and the above exchange property of @Q,(z,y) both are immediate from the
above homogeneous form of the Cauchy identity.

The main result of this paper is to introduce the operator D, on func-
tions in two variables x and y. This operator turns out to be suitable for
dealing with the Cauchy polynomials P,(z,y). We derive a binomial iden-
tity which unifies the two identities of Rota and Goldman, as well as the
g¢-Vandermonde identity. Moreover, our identity can be shown to be equiva-
lent to the Goldman-Rota binomial identity, and the it can be regarded as a
homogeneous generalization of the ¢-Vandermonde identity.

Based on the ¢-Leibniz formula for the classical g¢-difference operator,
we obtain the ¢-Leibniz formula for the homogeneous ¢-difference operator.
It turns out the Cauchy polynomials also appear in the homogeneous ¢-
Leibniz formula. In the last section, we introduce the homogeneous Rogers-
Szego polynomials and the ¢-shift operator. The generating function of the
homogeneous Rogers-Szego polynomials is derived.

2. The Homogeneous g-difference Operator

Recall that the classical ¢-difference operator, or the g-derivative, acting on
functions on variable x, D, is defined by:
f(z) — flgz)

D,f(r) = =T
Note that when the function f is in the context of hypergeometric functions,
the variable z is often used as a parameter, but throughout this paper D,
is always acting on . The operator D, is also the Euler-Jackson difference
operator [10]. Tt may also be expressed in terms of the ¢-shift operator on
the variable z:

n.f(x) = f(qr).

Thus, we may write

Notice that the inverse of 7, is denoted by 6, = n; .

Andrews [1, 2] employs the g¢-difference operator to study the Cauchy
polynomials for the case y = 1, and observes the following relation:

D,P,(z,1)=(1—¢q")P,—1(z,1).
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The objective of this paper to introduce a new operator which is suitable for
the study of the Cauchy polynomials:

f(x,q7y) = f(qz,y)
r—qly

Doy f(2,y) = ; (2.1)

where x and y are variables. We now give the frist theorem of this paper,
which is straightforward to verify.

Theorem 2.1 We have

Doy{Po(z,y)} = (1 = ¢") Paa(2,y). (2.2)

Obviously, for any constant ¢, one has D,,c = 0. Moreover, one may have
the following property of the ¢-difference operator.

Proposition 2.2 If f(x,y) and g(z,y) are homogeneous polynomials of the
f(z,y)

g(z,y)
D, H(z,y) = 0.

same degree n, and H(z,y) = , then we have

From (2.2), we obtain the following property:

Proposition 2.3 We have

p, (Uit} _ o) 25
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We use 0, for the operator acting on the variable y. Clearly,

0,1 = N0y, (2.5)
We define P, (6,,1n,) as the following operator:
POy, m2) = (O = 1) (6y = @) -+ (0 — 4" ). (2.6)

The following theorem gives the expansion of the power of D,, in terms
of operations on z and y individually.



Theorem 2.4 We have
(934 - 771>{f(x= y)}

Dayf ) = e BT .1
n _ Pn(ey» ql’”nx){f(% y)}
D2, fla.y) = PO ST, (2.9
Proof.
D f(z, )z — g 'y)
_ 0,50y, " ) {f (2, 9)}  neBa(By, 0" "ne){f (2, 9)}
Py (ﬂrj i) Pa(qz, ¢ "y)
_ 6y = ¢7"na) Py, ") {f (2, 9)}
Palz, " 1y)
— Pn-l—l(eya qinnw){f(a%y)}
Po(z, g7 1y) '
|
From (2.5) and (2.6), we have
Lemma 2.5 We have
ORSED SIH [SITErA (29)
k=0

Theorem 2.4 can rewritten as:

Theorem 2.6 The operator Dy, has the following expansion:
Dy Af (ﬂf,y)}
= ¢ f (2, y)}
[Ties {m - ?/} Z [ }

n
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From (2.4) and Theorem 2.6, we have

n (yt;Q)oo}

2i{

Lt @)oo

_ 1 —~ [n vk (B) 1y (@Y Qoo
Pur.qy) 4 M( Dt )

n

_ Eyt;g)w 1 )Zm(—1)kq(§)q“‘”)’“($t;q)k(qk_"yt€Q)n—k'

2t @)oo Pu(x,q7"y) £ |k

We now arrive at the following identity:

" Po(w,q "y) =Y m (=1 g (s q)(¢" "ty s (2.10)
k=0

Note that the above identity is an equivalent form of the Goldman-Rota ¢-
binomial identity. However, this form has the advantage of specializing to the
inverse Goldman-Rota identity (1.3) and it can be viewed as a homogeneous
version of the ¢g-Vandermonde identity:

(y/w;q)nxn (2.11)

2¢1(qinax;y;Q7Q) = (yq)

For given n, we may specialize the values of the parameters in (2.10) to
obtain some classical results.

e Setting t — 1/z, ¢"'y — y, and exchanging x and y, we obtain
Goldman-Rota ¢-binomial identity(1.1). Thus, we may say that the
formula (2.10) is equivalent to the Goldman-Rota ¢-binomial theorem.

e Setting ¢ — 1 and ¢7"y — y, we obtain the ¢-Vandermonde identity
(2.11). Indeed, setting 1/t — z and ¢~ "y — y one may rewrite (2.10)
in the following form:

n

n . _
Py(z,y) =) M ¢ P, 2) Paoi(2, 4M).

k=0

e Setting ¢ — ¢ and ¢ "y — y, we get the inverse Goldman-Rota
identity (1.3). In (1.3), setting 1/y by y and 1/z by x then setting
n — 00, we obtain the following identity [6]:
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3. The homogeneous ¢-Leibniz formula

In this section, we give the homogeneous ¢-Leibniz formula for the operator
D,,. In order to present a non-inductive proof, we will use the g-Leibniz
formula for the classical g-difference operator D, [13, 14]

DI (2)g(a)} = ZH k=) DR F(2)} D2 gl ).

Theorem 3.7 Forn > 0, we have

Dy Af(x,y)g(z,y)}

> m Pnfk@ly’f) Dy {g(a" 2, y)}Dr M f (207 )}

5—0 Pnfk(q 1y>q $)

Proof. Let y = xzq, then we have F(x,z2) = f(z,y), and G(z, z) = g(x,y).

It follows that )

Dy, = T ZDqGZ (3.12)
and
D0, =10.D,. (3.13)
Therefore,
1
DF — D*p*. 3.14
S (7R -27) P (3.14)

Thus, we have

Dy Af(x,y)g(w,y)}
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Clearly, setting z = 0, namely, y = 0, we have:

k _ Nk
Dk, = DF.

Corollary 3.8 We have

ol
D2 (e w)g(@)} = 2[ | s Dol 0} Dl (™),

4. The homogeneous ¢-shift operator

Based on the homogeneous ¢-difference operator, one can build up the homo-
geneous ¢-shift operator as the g-exponential of the homogeneous ¢-difference

operator:
oo k
>
= (g )k

(4.15)

The following proposition for the homogeneous g-shift operator immedi-
ately follows from Proposition 2.3:

Proposition 4.9 We have

E(D,,) { (yt;q)OO} - (¥t @)oc

@)oo (285 Q)

The g-shift operator is suitable for the study of the homogeneous Rogers-
Szegd polynomials which are defined by

MENTIEDS {Z] Pz, y).

k=0
Note that setting y = 0 the polynomials h,(z,y) reduces to the classical
Rogers-Szegd polynomials h,(x|q). Recall that h,(z|q) can be expressed in
terms of the g-shift operator T'(D,)z", where

Dy

T(Dy) = Z

— (¢ 0)n

The operator T'(D,) called the augmentation operator in [4], which can be
used to derive the generating function of h,(x|q):
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From (2.2), we obtain the following formula:
E(Day){En(,y)} = hn(, ylg). (4.17)

Next we present the generating function for the homogeneous Roger-Szego
polynomials.

Theorem 4.10 We have

i b (2, ylg)t" (t; @)oo

(G a)n (G @)eo(@t; @)oo

n=0

Proof. By Proposition 4.9, we have

— I, ylg)t" Pz, y)t"
nZ:O (G@)n E<ny){ (4:0)n }
-~ (Yt; @)oo
- E<Dmy){(wt;q)oo}
_ W)
(t; @)oo (2t; @)oo
This completes the proof. |

Setting y = 1 in the above theorem, by Euler’s identity (1.5) we are led
to the evaluation h,(x,1|q) = 2™, which is the Cauchy identity (1.2).
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