
SIAM J. Comput.
33 (2004), no. 2, 379-392

The Minimum All-Ones Problem for Trees ∗

William Y. C. Chen, Xueliang Li, Chao Wang and Xiaoyan Zhang

Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, P.R. China

Abstract. The Minimum All-Ones Problem was shown to be NP-complete for general
graphs. Therefore, it becomes an interesting question to identify special classes of graph-
s for which one can find polynomial time algorithms. In this paper we consider this problem
for trees. First, for any solution to the All-Ones Problem for a tree we give a characteriza-
tion on the elements in the solution, by introducing the concept of Quasi-All-Ones Problem.
Then we give the enumeration for the number of solutions in a tree. By using the Minimum
Odd (Even) Sum Problem as subprocess, we obtain a linear time algorithm for the Minimum
All-Ones Problem for trees. We also get a linear time algorithm for finding solutions to the
All-Ones Problem in a unicyclic graph.

Keywords: Lamp Lighting Problem, All-Ones Problem, graph algorithm, time complexity

AMS Classification: 05C85, 05C70, 90C27, 68Q25, 68R10

1 Introduction

The term All-Ones Problem was introduced by Sutner, see [9]. It has applications in linear
cellular automata, see [10] and the references therein. The problem is cited as follows: sup-
pose each of the square of an n × n chessboard is equipped with an indicator light and a
button. If the button of a square is pressed, the light of that square will change from off to
on and vice versa; the same happens to the lights of all the edge-adjacent squares. Initially
all lights are off. Now, consider the following questions: is it possible to press a sequence
of buttons in such a way that in the end all lights are on ? This is referred as the All-Ones
Problem. If there is such a solution, how to find a such way ? And finally, how to find such
a way that presses as few buttons as possible ? This is referred as the Minimum All-Ones

∗This work was done under the auspices of the “973” Project on Mathematical Mechanization and NSFC.

1

Problem. All the above questions can be asked for arbitrary graphs. Here and in what fol-
lows, we consider connected simple undirected graphs only. One can deal with disconnected
graphs component by component. For all terminology and notations on graphs, we refer to
[6]. An equivalent version of the All-Ones Problem was proposed by Peled in [7], where it
was called the Lamp Lighting Problem. The rule of the All-Ones Problem is called σ+ rule
on graphs, which means that a button lights not only its neighbors but also its own light. If a
button lights only its neighbors but not its own light, this rule on graphs is called σ rule.

The All-Ones Problem has been extensively studied recently, see Sutner [11,12], Barua
and Ramakrishnan [1] and Dodis and Winkler [2]. Using linear algebra, Sutner [10] proved
that it is always possible to light every lamp in any graphs by σ+ rule. Lossers [5] gave
another beautiful proof also by using linear algebra. A graph-theoretic proof was given by
Erikisson et al [3]. So, the existence of solutions of the All-Ones Problem for general graphs
was solved already. Galvin [4] gave a graph-theoretic algorithm of linear time to find solu-
tions for trees. In [8], Sutner proved that the Minimum All-Ones Problem is NP-complete in
general. Therefore, it becomes an interesting question to identify special classes of graphs
for which one can find polynomial time algorithms. It is the main result of this paper that
there exists a linear time algorithm for the Minimum All-Ones Problem for trees.

In graph-theoretic terminology, a solution to the All-Ones Problem with σ+-rule can be
stated as follows: given a graph G = (V,E), where V and E denotes the node-set and the
edge-set of G, respectively. A subset X of V is a solution if and only if for every node v of
G the number of nodes in X adjacent to or equal to v is odd. Such a subset X is called an
odd parity cover in [10]. So, the All-Ones Problem can be formulated as follows: given a
graph G = (V,E), does a subset X of V exist such that for all node v ∈ V −X , the num-
ber of nodes in X adjacent to v is odd, while for all node v ∈ X , the number of nodes in X
adjacent to v is even ? If there exists a solution, how to find a one with minimum cardinality ?

This paper is organized as follows. Section 1 is an introduction. In Section 2, we give,
for any solution to the All-Ones Problem for a tree, a characterization on the elements in the
solution, by introducing the concept of Quasi-All-Ones Problem. This leads to an enumer-
ation for the number of solutions in a tree. In Section 3, we give a linear time algorithm to
the Minimum All-Ones Problem for trees. In concluding section, Section 4, we give a linear
time algorithm for constructing solutions to the All-Ones Problem in a unicyclic graph. An
open problem on All-Colors Problem is also proposed, generalizing the concept of All-Ones
Problem.

2

2 Characterization and Enumeration of Solutions for Trees

It is easy to see that if a given graph G can be partitioned into two disjoint subgraphs G1

and G2 such that G1 is Eulerian and every node of G2 is adjacent to odd number of nodes
of G1, then by pressing all the buttons on the nodes of G1 all the lights will be on and vice
versa. However, it is very difficult to find an Eulerian subgraph with such a property in a
large graph G. Sutner [9] proposed the question whether there is a graph-theoretic method
to find a solution for the All-Ones Problem for trees. Galvin [4] solved this question in the
following way: consider a rooted tree, drawn like a family tree, with the root at the top.
The nodes will be divided into 3 classes: outcasts, oddballs and rebels. The classification is
defined inductively, from the bottom up, as follows:

• All of the childless nodes or leaves are rebels.

• A node, other than a leaf, is called an rebel if it has no oddball children and an even
number of its children are rebels.

• A node is called an oddball if it has no oddball children and an odd number of its
children are rebels.

• A node is called an outcast if at least one of its children is an oddball.

We sometimes simply call a node r-type, b-type or o-type if it belongs to the rebel class,
the oddball class or the outcast class. For examples, see Figure 1.

rebel oddball outcast

Figure 1. The roots of the rooted trees are r-type, b-type and o-type.

Galvin Algorithm [4]: Membership in a solution C is defined inductively, from the top
down. An outcast is excluded from the membership in C. A rebel will be a member of C
if and only if its parent is not a member of C; in particular, if the parentless node (the root)
is a rebel, then it will be a member of C. The oddballs will join C in whatever numbers are
needed to make their parent’s closed neighborhood contain an odd number of members. It is
easy to check that C is a solution.

3

In this section, from the idea of Galvin algorithm we determine whether or not the root of
a tree is in a solution of the All-Ones Problem and the Quasi-All-Ones Problem defined next.
This will be used in enumerating the number of solutions for the All-Ones Problem. This
will also be used in solving the Minimum All-Ones Problem for trees and in constructing
solutions to the All-Ones Problem for unicyclic graphs.

Definition 2.1. For a rooted tree, the Quasi-All-Ones Problem is to find a subset C of nodes
such that for every node v except for the root of the tree, the number of nodes in C adjacent
to v or equal to v is odd, while for the root, the number is even. C is called a solution to the
Quasi-All-Ones Problem.

Theorem 2.1. For a rooted tree,

1. if the root is a rebel, then

(1.1) the All-Ones Problem has a solution if and only if the root belongs to the solution;

(1.2) the Quasi-All-Ones Problem has a solution if and only if the root does not belong
to the solution.

2. if the root is an oddball, then

(2.1) the All-Ones Problem has a solution no matter whether the root belongs to the so-
lution;

(2.2) the Quasi-All-Ones Problem does not have any solution no matter whether the root
belongs to the solution.

3. if the root is an outcast, then

(3.1) the All-Ones Problem has a solution if and only if the root does not belong to the
solution;

(3.2) the Quasi-All-Ones Problem has a solution if and only if the root does not belong
to the solution.

4

Proof. We prove this theorem by induction on the depth s of the rooted tree, which is defined
as the maximal distance from the root to leaves. In particular, a rooted tree with only one
node is of depth 0. It is easy to see that if the root of a tree is a rebel, then the depth can be
any nonnegative integer. For a tree with an oddball root, the depth will be at least 1, while
for a tree with an outcast root, the depth will be at least 2.

If a rooted tree is of depth 0, then the root must be a rebel node. Any solution to the
All-Ones Problem must contain the root and any solution to the Quasi-All-Ones Problem
does not contain the root, which means that (1.1) and (1.2) hold when the depth is 0. It is
also easy to check that (2.1) and (2.2) hold when the (least possible) depth is 1, and (3.1) and
(3.2) hold when the (least possible) depth is 2.

Next, suppose that for any rooted tree whose depth is less than s, all the statements of the
theorem are true. Then, for a rooted tree whose depth is s, we distinguish three cases.

1. The root is a rebel.

Assume that the children of the root are t(r)1 , · · · , t(r)2k , t(o)2k+1, · · · , t(o)m , where k ≥ 0, the
subtree rooted at t(r)i (1 ≤ i ≤ 2k), denoted by T (r)

i , is a subtree with a rebel root and with
depth less than s, and the subtree rooted at t(o)j (2k + 1 ≤ j ≤ m), denoted by T (o)

j , is a
subtree with an outcast root and with depth less than s. Then, from the induction hypothesis,
for an outcast-rooted tree the All-Ones Problem or Quasi-All-Ones Problem has a solution
if and only if the outcast root does not belong to the solution. So we can ignore the case for
outcast-rooted subtree.

Suppose that the All-Ones Problem for the rebel-rooted tree has a solution, denoted by
C. If the root r 6∈ C, then C(T (r)

i)(1 ≤ i ≤ 2k) (which is the restriction of C on the subtree
T

(r)
i) is the solution to the All-Ones Problem for the rebel-rooted subtree T (r)

i with depth less
than s. From the induction hypothesis, t(r)i ∈ C(T

(r)
i), and so t(r)i ∈ C. However, we know

that the number of rebel children of the rebel root is even. So, the root can not be covered odd
times by C, and hence C is not an odd parity cover, a contradiction. Thus, if the All-Ones
Problem for a rebel-rooted tree with depth s has a solution, then the root must belong to the
solution.

Conversely, Consider each rebel-rooted subtree T (r)
i (1 ≤ i ≤ 2k), and each outcast-

5

rooted subtree T (o)
j (2k + 1 ≤ j ≤ m), whose root t(r)i , t(o)j is a rebel child and an outcast

child of the root r, respectively. Then, the Quasi-All-Ones Problem for each of them has a
solution, denoted by C(T (r)

i), C(T (o)
j), respectively. Note that

t
(r)
i 6∈ C(T

(r)
i) (1 ≤ i ≤ 2k), t

(o)
j 6∈ C(T

(o)
j) (2k + 1 ≤ j ≤ m).

It is easy to check that C = {r}
⋃
(
⋃2k

i=1C(T
(r)
i))

⋃
(
⋃m

j=2k+1C(T
(o)
j)) is a solution to the

All-Ones Problem for the original rebel-rooted tree with depth s. So (1.1) holds when the
depth is s.

Similarly we can prove (1.2).

2. The root is an oddball.

Assume that the children of the root are t(r)1 , · · · , t(r)2k−1, t
(o)
2k , · · · , t(o)m , where k ≥ 1, the

subtree rooted at t(r)i (1 ≤ i ≤ 2k − 1), denoted by T (r)
i , is a rebel-rooted subtree with depth

less than s, and the subtree rooted at t(o)j (2k ≤ j ≤ m), denoted by T (o)
j , is an outcast-rooted

subtree with depth less than s. Similar to the above discussion, we can ignore the case for
outcast-rooted subtree.

Suppose that the Quasi-All-Ones Problem for the oddball-rooted tree has a solution, de-
noted by C. If the root r ∈ C (or r 6∈ C), then C(T (r)

i)(1 ≤ i ≤ 2k − 1) is a solution
to the Quasi-All-Ones Problem (or the All-Ones Problem) for the rebel-rooted subtree T (r)

i

with depth less than s. From the induction hypothesis, we have that t(r)i 6∈ C(T
(r)
i) (or

t
(r)
i ∈ C(T

(r)
i)), and so t(r)i 6∈ C (or t(r)i ∈ C). However, we know that the number of rebel

children of the oddball root is odd. So, the root is covered odd times by C, which means that
C is a solution to the All-Ones Problem for the original oddball-rooted tree, a contradiction.
Thus (2.2) holds when the depth is s.

Next, we prove (2.1). Consider each rebel-rooted subtree T (r)
i (1 ≤ i ≤ 2k−1), and each

outcast-rooted subtree T (o)
j (2k ≤ j ≤ m), whose root t(r)i , t(o)j is a rebel child and an outcast

child of the root r, respectively. We discuss the following two cases.

First, the Quasi-All-Ones Problem for each of them has a solution, denoted by C(T (r)
i),

C(T
(o)
j), respectively. Note that

t
(r)
i 6∈ C(T

(r)
i) (1 ≤ i ≤ 2k − 1), t

(o)
j 6∈ C(T

(o)
j) (2k ≤ j ≤ m).

6

It is easy to check that C = {r}
⋃
(
⋃2k−1

i=1 C(T
(r)
i))

⋃
(
⋃m

j=2k C(T
(o)
j)) is a solution to the

All-Ones Problem for the original oddball-rooted tree with depth s. Here the root belongs to
the solution.

Second, the All-Ones Problem for each rebel-rooted subtree T (r)
i (1 ≤ i ≤ 2k − 1) has

a solution, denoted by C(T (r)
i). Then, the All-Ones Problem for each outcast-rooted subtree

T
(o)
j (2k ≤ j ≤ m) has a solution, denoted by C(T (o)

j). Note that

t
(r)
i ∈ C(T

(r)
i) (1 ≤ i ≤ 2k − 1), t

(o)
j 6∈ C(T

(o)
j) (2k ≤ j ≤ m).

It is easy to check that C = (
⋃2k−1

i=1 C(T
(r)
i))

⋃
(
⋃m

j=2k C(T
(o)
j)) is a solution to the All-Ones

Problem for the original oddball-rooted tree with depth s. Here the root does not belong to
the solution. Thus (2.1) holds when the depth is s.

3. The root is an outcast.

Assume that the children of the root are t(b)1 , · · · , t(b)k , t(r)k+1, · · · , t(r)l , t(o)l+1, · · · , t(o)m , where
k ≥ 1, the subtree rooted at t(b)i (1 ≤ i ≤ k), denoted by T (b)

i , is an oddball-rooted subtree
with depth less than s, the subtree rooted at t(r)i (k + 1 ≤ i ≤ l), denoted by T (r)

i , is a rebel-
rooted subtree with depth less than s, and the subtree rooted at t(o)i (l + 1 ≤ i ≤ m), denoted
by T (o)

i , is an outcast-rooted subtree with depth less than s. A similar argument can cover
the proof of this case.

From the theorem, we have the following remarks.

Remark 2.1.

1. For any solution to the All-Ones Problem for a rooted tree,

(a) if the root is a rebel, it must belong to the solution;

(b) if the root is an outcast, it can not belong to the solution.

(c) if the root is an oddball, both cases are possible, i.e., it may or may not belong to
the solution.

2. If there exists a solution to the Quasi-All-Ones Problem for a rooted tree, then the root
can not be an oddball and

7

(a) if the root is a rebel, then it can not belong to the solution;

(b) if the root is an outcast, then it can not belong to the solution.

Remark 2.2. If there exists a solution to the All-Ones Problem or the Quasi-All-Ones Prob-
lem for a rooted tree, then

1. if the root is a rebel or an oddball, both cases are possible, i.e., it may or may not
belong to the solution.

2. if the root is an outcast, it can not belong to the solution.

From the above clear analysis, we can get the following enumeration result.

Theorem 2.2. If a rooted tree has p oddball nodes and q outcast nodes, then the number of
solutions to the All-Ones Problem for the tree is 2p−q.

Proof. From Theorem 2.1 and Remarks 2.1 and 2.2, we can deduce the following facts: First,
for a rebel node v, if its parent node is not contained in a solution C, then v is contained in
C; whereas if its parent node is contained in C, then v is not contained in C. Second, the
outcast nodes cannot be contained in any solution.

If the root of the tree is a rebel or an outcast node, then every outcast node needs one of
its oddball children to match its rebel children so that the outcast node will be lighted without
itself in the solution. So, at each outcast node, its oddball children have degrees of freedom
equal to the number of oddball children minus 1. Therefore, the number of solutions to the
All-Ones Problem for a tree is exactly 2p−q. If the root of the tree is an oddball, since the
root can have two choices, i.e., in a solution, or not, we have that the number of solutions is
2(2p−1−q) = 2p−q. The proof is complete.

From the results so far, we can say that the All-Ones Problem for trees has got a satis-
factory solution. It is natural to ask about the Minimum All-Ones Problem for trees. The
Minimum All-Ones Problem is NP-complete for general graphs [8]. However, it can be
solved easily for some special classes of graphs, for examples, a path with n nodes has an
optimal solution with dn

3
e nodes, and a cycle with n nodes has an optimal solution with n

3

nodes if n = 0 mod 3 and n nodes otherwise. For an arbitrary tree, no such succinct for-
mula has been known for the number of nodes in an optimal solution. However, we can ask
whether there is a polynomial time algorithm for trees. At first look, we can not see if there
is such an algorithm, because from our Theorem 2.2 we know that the number of solutions

8

could be exponentially large. However, we do obtain a polynomial time algorithm for trees,
by using the characterization in Theorem 2.1 and Remarks 2.1 and 2.2. Actually, what we
get is a linear time algorithm.

3 The Minimum All-Ones Problem for Trees

In order to give our algorithm, we need to introduce a new problem, called the Minimum Odd
(Even) Sum Problem, which is described as the following linear programm.

For the matrixM2×n = (mij)2×n, i ∈ {0, 1}, j ∈ {1, 2, · · · , n},mij ∈ Z+, the Minimum
Odd Sum Problem is defined as

min
n∑

j=1

m0jx0j +m1jx1j


∑n

j=1 x1j = 1 mod 2

x0j + x1j = 1, j = 1, 2, · · · , n
xij ∈ {0, 1}, i ∈ {0, 1}

Note that m0jx0j +m1jx1j is equal to m1j if x1j = 1, or m0j if x1j = 0. So m0jx0j +m1jx1j
can be written as mx1jj . For convenience, we replace x1j by yj . Then it is easy to see that
the above linear program is equivalent to the following one.

min
n∑

j=1

myjj

{ ∑n
j=1 yj = 1 mod 2

yj ∈ {0, 1}

Algorithm for the Minimum Odd Sum Problem

Input. A matrix M2×n.
Step 1. Choose a minimum element from every column of M2×n (if both elements in a

9

column are the same, choose one of the them). Then, sum up the first subscripts of all the
chosen elements, denoted by S. If S = 1 mod 2, go to Step 3; otherwise, go to Step 2;
Step 2. Calculate the absolute value of the difference of the two elements in every column.
Choose one of the columns with the minimum absolute values. In this column, we choose
the hitherto unselected element and forget about the chosen element, then go to Step 3;
Step 3. Sum up all the chosen elements, which gives the optimal value min

∑n
j=1myjj .

Theorem 3.1. The above algorithm correctly solves the Minimum Odd Sum Problem, and
the time complexity is linear.

Proof. The first statement of the theorem is proved as follows. Since the Minimum Odd
Sum Problem asks for a unique element from every column, our greedy algorithm picks up
the Minimum element from every column. If the sum of the first subscripts of all the chosen
elements satisfies that

∑n
j=1 yj = 1 mod 2, then the sum of all the chosen elements is ex-

actly the optimal value min
∑n

j=1myjj . If
∑n

j=1 yj 6= 1 mod 2, we only need to adjust the
elements slightly so that the sum of the first subscripts of all the chosen elements satisfies
that

∑n
j=1 yj = 1 mod 2. Because we adjust elements in the column where the Minimum

absolute value of the difference of the two elements attains from Step 2, it is easy to see that
the chosen elements after adjusting have the Minimum sum among the feasible solutions to
the Odd Sum Problem, i.e., the chosen elements consist of an optimal solution.

For the second statement of the theorem, since every step uses linear time, the total time
is O(n). The proof is complete.

From the above discussion, we can enumerate the number of optimal solutions to the
Minimum Odd Sum Problem. Suppose that the absolute value of the difference of the two
elements in the i-th column is |di|.

If min{|di||i = 1, 2, · · · , n} = s > 0, then

1. if the sum of the first subscripts of all the chosen elements satisfies that
∑n

j=1 yj = 1
mod 2 in Step 1, it is straightforward to see that the problem has a unique optimal solution.

2. if
∑n

j=1 yj 6= 1 mod 2, the only possible ways to adjust the chosen elements have to
be done in the set of the columns {i||di| = s, i = 1, 2, · · · , n}, say, r such columns in all.
Since we can do the adjustment in any one of the r such columns, the problem has r optimal
solutions.

10

If min{|di||i = 1, 2, · · · , n} = s = 0, and suppose |{i||di| = 0, i = 1, 2, · · · , n}| = r,
then

1. if
∑n

j=1 yj = 1 mod 2, the only possible ways to adjust the chosen elements have to
be done in even number of the columns {i||di| = 0, i = 1, 2, · · · , n}. So, the problem has T0
optimal solutions, where T0 =

(
r
0

)
+
(
r
2

)
+
(
r
4

)
+ · · · = 2r−1.

2. if
∑n

j=1 yj 6= 1 mod 2, the only possible ways to adjust the chosen elements have to
be done in odd number of the columns {i||di| = 0, i = 1, 2, · · · , n}. So, the problem has T1
optimal solutions, where T1 =

(
r
1

)
+
(
r
3

)
+
(
r
5

)
+ · · · = 2r−1.

Replacing
∑n

j=1 yj = 1 mod 2 in the Minimum Odd Sum Problem by
∑n

j=1 yj = 0
mod 2, we then get a new problem, called the Even Sum Problem. It can be solved in the
same way as above. The details are omitted.

Now we give our linear time algorithm to the Minimum All-Ones Problem for trees. The
algorithm uses induction on the number of layers of a tree and the Minimum Odd or Even
Sum algorithm as subprocess.

First of all, we give the definition of layers for a rooted tree as follows: the i-th layer of
the tree is composed of the nodes with distance i from the root for i = 0, 1, 2, · · · . Suppose
the tree has s layers. Then for any i < s, every node except the leaves in the i-th layer can
be considered as the root of a small tree with depth 1, which is simply called a small tree in
the sequel. We divide the small trees into the following three types.

1. (type I). A type I small tree has an r-type root. For such a small tree, we can assume
that the children of its root are t(r)1 , · · · , t(r)2k , t(o)2k+1, · · · , t(o)m , where k ≥ 0 and the subtree
rooted at t(r)i (1 ≤ i ≤ 2k) is denoted by T (r)

i , and the subtree rooted at t(o)j (2k+1 ≤ j ≤ m)

is denoted by T (o)
j . An example of type I small trees is shown in Figure 2 (a).

2. (type II). A type II small tree has a b-type root. For such a small tree, we can assume
that the children of its root are t(r)1 , · · · , t(r)2k−1, t

(o)
2k , · · · , t(o)m , where k ≥ 1, the subtree rooted

at t(r)i (1 ≤ i ≤ 2k − 1) is denoted by T (r)
i , and the subtree rooted at t(o)j (2k ≤ j ≤ m) is

denoted by T (o)
j . An example of type II small trees is shown in Figure 2 (b).

11

3. (type III). A type III small tree has an o-type root. For such a small tree, we can
assume that the children of its root are t(b)1 , · · · , t(b)k , t(r)k+1, · · · , t(r)l , t(o)l+1, · · · , t(o)m , where
k ≥ 1, the subtree rooted at t(b)i (1 ≤ i ≤ k) is denoted by T

(b)
i , the subtree rooted at

t
(r)
i (k + 1 ≤ i ≤ l) is denoted by T (r)

i , and the subtree rooted at t(o)i (l + 1 ≤ i ≤ m) is
denoted by T (o)

i . An example of type III small trees is shown in Figure 2 (c).

r

rr o rr r

b

o rb

o

o

(a) (b) (c)

Figure 2. Examples of small trees of types I, II and III

By executing our algorithm layer by layer, from the bottom up, we are going to tag each
node v in the present layer with a pair of sets of nodes. Then we can get an optimal solution
in linear time. If v is a leaf, it is tagged by Step 0 of our algorithm; if not, its tagged pair of
sets can be obtained from the following three cases.

1. For every r-type leaf tri of the small trees rooted at v, since the leaf is in the previ-
ous layer, we have got an optimal solution C1(T

(r)
i) to the All-Ones Problem for the subtree

rooted at t(r)i and an optimal solution C2(T
(r)
i) to the Quasi-All-Ones Problem for the same

subtree.

2. For every b-type leaf tbi of the small trees rooted at v, we have got an optimal solution
C1(T

(b)
i) to the All-Ones Problem for the subtree rooted at tbi such that the root of the sub-

tree belongs to C1(T
(b)
i), and an optimal solution C2(T

(b)
i) to the All-Ones Problem for this

subtree such that the root of the subtree does not belong to C2(T
(b)
i).

3. For every o-type leaf toi of the small trees rooted at v , we have got an optimal solu-
tion C1(T

(o)
i) to the All-Ones Problem for the subtree rooted at toi and an optimal solution

C2(T
(o)
i) to the Quasi-All-Ones Problem for the subtree.

Note that the above pair for every leaf of a tree is clearly determined at the beginning of
our algorithm.

12

Algorithm for the Minimum All-Ones Problem for Trees

Input. A rooted tree T with s layers, and a pair {C1(v), C2(v)} of sets for each node v of
the tree.
Step 0. Initially, for every leaf t(r) of T , set {{t(r)}, ∅}, which means that {t(r)} is the opti-
mal solution to the All-Ones Problem for the subtree with the single node t(r), and ∅ is the
optimal solution to the Quasi-All-Ones Problem for the single node subtree.
Step 1. Inductively generate the pair for every node of T , from the bottom up layer by layer,
till we arrive at the root of the tree. Suppose that the present layer is the i-th layer. If i ≥ 0,
go to Step 2; otherwise, go to Step 4;
Step 2. We distinguish the following three cases to generate the pairs. For every small tree
rooted in the i-th layer, the algorithm works as follows:

1. It is of type I. Denote its root by r∗. Suppose that the children of r∗ are t
(r)
1 ,

· · · , t(r)2k , t(o)2k+1, · · · , t(o)m , where k ≥ 0. We already knew that C1(t
(r)
i) = C1(T

(r)
i) and

C2(t
(r)
i) = C2(T

(r)
i) for every r-type leaf as a root for the subtree T (r)

i , where 1 ≤ i ≤ 2k, and
C1(t

(o)
i) = C1(T

(o)
i) and C2(t

(o)
i) = C2(T

(o)
i) for every o-type leaf as a root for the subtree

T
(o)
i , where 2k+1 ≤ i ≤ m. Then, setC1(r

∗) = {r∗}
⋃
(
⋃2k

i=1C2(t
(r)
i))

⋃
(
⋃m

j=2k+1C2(t
(o)
j))

as the optimal solution to the All-Ones Problem of the subtree rooted at r∗, and set C2(r
∗) =

(
⋃2k

i=1C1(t
(r)
i))

⋃
(
⋃m

j=2k+1C1(t
(o)
j)) as the optimal solution to the Quasi-All-Ones Problem

of the subtree rooted at r∗.

2. It is of type II. Denote its root by b∗. Suppose that the children of b∗ are t(r)1 , · · · ,
t
(r)
2k−1, t(o)2k , · · · , t(o)m , where k ≥ 1. We already knew that C1(t

(r)
i) = C1(T

(r)
i) and C2(t

(r)
i) =

C2(T
(r)
i) for every r-type leaf as a root for the subtree T (r)

i , where 1 ≤ i ≤ 2k − 1, and
C1(t

(o)
i) = C1(T

(o)
i) and C2(t

(o)
i) = C2(T

(o)
i) for every o-type leaf as a root for the subtree

T
(o)
i , where 2k− 1 ≤ i ≤ m. Then, set C1(b

∗) = {b∗}
⋃
(
⋃2k−1

i=1 C2(t
(r)
i))

⋃
(
⋃m

j=2k C2(t
(o)
j))

as the optimal solution to the All-Ones Problem of the subtree rooted at b∗ such that b∗ be-
longs to the optimal solution, and set C2(b

∗) = (
⋃2k−1

i=1 C1(t
(r)
i))

⋃
(
⋃m

j=2k C1(t
(o)
j)) as the

optimal solution to the All-Ones Problem of the subtree rooted at b∗ such that b∗ does not
belong to the optimal solution.

3. It is of type III. Denote its root by o∗. Suppose that the children of o∗ are t(b)1 , · · · ,
t
(b)
k , t(r)k+1, · · · , t(r)l , t(o)l+1, · · · , t

(o)
m , where k ≥ 1. Use the pairs of sets on the nodes t(b)1 , · · · ,

t
(b)
k to make a two dimensional matrix C2×k = (cij)2×k such that |C2(t

(b)
i)| is the value of the

13

element c0i in (cij)2×k and |C1(t
(b)
i)| is the value of the element c1i.

Remark 3.1. From Theorem 2.1 and Remarks 2.1 and 2.2, any solution to the All-Ones
Problem (or the Quasi-All-Ones Problem) of the subtree rooted at o∗ can not contain the
o-type root o∗. This means that all the r-type children of the o-type root must be contained
in the solution. Because the solution must contain odd (or even) number of children of the
o-type root, we have to employ our Minimum Odd Sum algorithm or the Minimum Even
Sum algorithm to choose some of the b-type children into an optimal solution, according to
the parity of l − k.

If l − k is even (odd), we use the Minimum Odd (Even) Sum algorithm to choose the
elements in (cij)2×k. Suppose that the union of the elements chosen from the 0-th row in
(cij)2×k is

⋃n1

p=1 c0jp , and the union of the elements chosen from the 1st row in (cij)2×k is⋃n2

q=1 c1jq , where n1 + n2 = k. Then, we set C1(o
∗) = (

⋃n1

p=1C2(t
(b)
jp
))
⋃

(
⋃n2

q=1C1(t
(b)
jq
))⋃

(
⋃l

i=k+1C1(t
(r)
i))

⋃
(
⋃m

i=l+l C1(t
(o)
i)) as the optimal solution to the All-Ones Problem of

the subtrees rooted at o∗. Next, we use the Minimum Even (Odd) Sum algorithm to choose
the elements in (cij)2×k. Suppose that the union of the elements chosen from the 0-th row
in (cij)2×k is

⋃n1

p=1 c0jp , and the union of the elements chosen from the 1st row in (cij)2×k is⋃n2

q=1 c1jq , where n1 + n2 = k. Then, we set C2(o
∗) = (

⋃n1

p=1C2(t
(b)
jp
))
⋃

(
⋃n2

q=1C1(t
(b)
jq
))
⋃

(
⋃l

i=k+1C1(t
(r)
i))

⋃
(
⋃m

i=l+l C1(t
(o)
i)) as the optimal solution to the Quasi-All-Ones Problem

of the subtrees rooted at o∗.

Step 3. i := i− 1, go to Step 1;

Step 4. We are now at the point to give an optimal solution for the rooted tree T from the
pair on the root by distinguishing the following three cases: if the root is of r-type, denoted
by r∗, then the C1(r

∗) of the pair is an optimal solution; if the root is of b-type, denoted by b∗,
then the C1(b

∗) of the pair is a candidate for the optimal solution such that b∗ belongs to the
candidate solution, and the C2(b

∗) of the pair is another candidate for the optimal solution
such that b∗ does not belong to the candidate solution. Now, compare the values of |C1(b

∗)|
and |C2(b

∗)|. Suppose that |Ct(b
∗)| = min{|C1(b

∗)|, |C2(b
∗)|}, t ∈ {1, 2}. Then, we choose

Ct(b
∗) as an optimal solution; if the root is of o-type, denoted by o∗, then the C1(o

∗) of the
pair is an optimal solution.

Theorem 3.2. The above algorithm outputs an optimal solution to the All-Ones Problem of
a given tree T , and the time complexity is linear.

Proof. In Step 0, we regard every leaf in the bottom of the tree as a subtree whose unique

14

optimal solution to the All-Ones Problem and the Quasi All-Ones Problem contains exactly
the node itself and nothing, respectively. Then, the initial values of all the leaves of the tree
can be completely determined. The algorithm now proceeds inductively on the number of
layers of the tree. Then from the method for constructing solutions in the proof of Theorem
2.1 and Remarks 2.1, 2.2 and 3.1, it is easy to conclude that the algorithm ensures that all
the leaves v of the small trees of all types I, II and III in every layer have been recorded the
right information, i.e., the pairs {C1(v), C2(v)}. From these pairs of sets, we can choose the
optimal solution for the given tree, according to the type of the root of the tree. The first
statement of the theorem is thus proved.

For the second statement of the theorem, it is not hard to see that for every layer the
algorithm uses time linear in the number of nodes in the layer, even though sometimes the
Minimum Odd or Even Sum algorithm has to be used. Therefore, the total time used by
the algorithm is linear for the Minimum All-Ones Problem of the given tree. The proof is
complete.

An example to show our algorithm is given in Figure 3 (a) and (b). For every node in
Figure 3 (a), the label by ignoring its subscript is the type of that node. In Figure 3 (b) we
simply use x to denote the set {x} with a single element x. Initially, our algorithm sets a
pair {v, ∅} for every leaf v. Then from bottom up, the pair for each node in every layer can
be generated. Note that the children of o1 are b1,b2,b3 and r10 and the pairs on the b-type

nodes can form a matrix as described in our algorithm: P23 =

(
r1 r2 r3 ∪ r4 ∪ r5
b1 b2 b3

)
. The

corresponding numerical matrix is C23 =

(
1 1 3
1 1 1

)
which will be used in the Minimum

Odd (Even) Sum algorithm. Note that only r10 is an r-type node. Then, use the Minimum
Even Sum algorithm to get b1 ∪ r2 ∪ b3 (possibly, r1 ∪ b2 ∪ b3) union r10 and form C1(o1).
Use the Minimum Odd Sum algorithm to get b1∪b2∪b3 (possibly, r1∪r2∪b3) union r10 and
form C2(o1). In the end, by comparing |C1(b4)| = 7 with |C2(b4)| = 5, we get an optimal
solution C2(b4) = b1∪r2∪ b3∪r10∪r11. The details about the pair {C1(v), C2(v)} for every
node v are recorded in Figure 3 (b).

4 Concluding Remarks

Although the existence of solutions to the All-Ones Problem for general graphs was proved
by linear algebraic methods, see [10, 5], in [10] Sutner asked whether there is a graph-
theoretic proof for the existence. Erikisson et al [3] gave a such proof. However, how to find
a solution efficiently by graph-theoretic algorithms remains unknown. Although based on

15

b3

r2 r3

o1

r1 r7r4 r5 r6

r8 r9

r11

r10

b4

b2b1

Figure 3 (a). Labelling the type for every node

the result in [3] one can get a graph-theoretic algorithm inductively, the time complexity is
not polynomial, which is upper bounded by O(n!). It is easy to see that for the empty graph
with n nodes, their algorithm runs in time O(n!). So, to find a graph-theoretic algorithm of
polynomial time for general graphs, some other ideas are needed. For trees, Galvin [4] gave
a graph-theoretic algorithm of linear time. In this concluding section, based on the discus-
sion in Section 2 we would like to give a such algorithm of linear time for unicyclic graphs.

For convenience, we say that the truth value of a node in G is 1, if it belongs to the
solution to the All-Ones Problem (or the Quasi-All-Ones Problem) for G; and 0, otherwise.
Recall that a graph G is called unicyclic if it contains a unique cycle. In other words, we can
regard a unicyclic graph as a cycle attached with each node a rooted tree, called a suspended
tree. Note that the depth of a suspended tree can be 0. For simplicity, we say that a node t in
the cycle has the same type as the type of the root t of the suspended tree.

Algorithm for Unicyclic Graphs

Input. A unicyclic graph G, each node in the unique cycle being labelled by types.

Step 1. If none of the nodes on the cycle is an outcast, then let the truth value of all nodes on
the cycle be 1, ie., take the union of the solutions each of which is a solution to the All-Ones
Problem for each suspended tree whose root belongs to the solution. Then, the union is a
solution to the All-Ones Problem for the whole unicyclic graph.

Step 2. If there are outcast nodes, we fix an order to the nodes on the cycle. Then, we cut the
cycle by deleting the edge between an outcast node u and the node v before it on the cycle.
The unicyclic graph becomes a tree with root v, denoted as T , and the type of every node
on the original cycle will be changed as in Figure 4, where the changing of the type of each

16

b3

r2 r3

o1

B4

R1 R2 R3

r1 r7r4 r5 r6

r8 r9

r11

r10

b4

b2b1

O1

R4

R11

R9R8

R5 R7R6

B3B2B1 R10

Figure 3 (b). An example of our algorithm for the Minimum All-Ones Problem for trees

node from on the original cycle to on the tree T , and the changing rule is just the same as
that in Galvin method.

b

o

b

r

r

r

r

b

r

b

r

r

b

o

b

b

o

o

o

b

o

r

b

o
are not changed

r

o

Figure 4. Changing of types

By Galvin algorithm, we can construct a solution X for the tree T . Then, we add an edge
to connect the node u and the node v in T , then the tree T returns to the original unicyclic
graph with a solution X . Because u is an outcast node, no matter it is in the unicyclic graph
or in the tree, it will not belong to the solution, and hence, will not affect the other nodes’
truth values, while u’s on or off status will probably be affected by v if v belongs to X . If v

17

does not belong to X , then X is a solution to the All-Ones Problem for the unicyclic graph;
else, we only need to change the solution to the All-Ones Problem into the solution to the
Quasi-All-Ones Problem, or the other way around for the suspended tree with root u accord-
ing to the construction method in the proof of Theorem 2.1, and then the modified solution
is a one to the All-Ones Problem for the unicyclic graph. An example is shown in Figure 5.

w(r)

u(o)v(b)
Cut the cycle by deleting the edge

between vertices v and u

Change

types

w(r)

u(o)

v(b)

By Galvin algorithm

1

1
1

1

1

0
00

0

Recover the origin unicyclic graph

and modify the solution to suspended
tree with root u 11

1

11

0

0

0

0

v(r)

w(r)

u(o)

Figure 5. An example of our algorithm for unicyclic graphs

So, we get the following result.

Theorem 4.1. The above algorithm outputs solutions to the All-Ones Problem for unicyclic
graphs, and the time complexity is linear.

To end this paper, we propose the following problem.

All-Colors Problem: The so-called All-Colors Problem on graphs is described as follows,
which is a natural generalization for the All-Ones Problem:

For any node of a graph G, it has a color value between 0 and r − 1. If a node is pressed
one time, then the color values of the node and its neighbors are added by 1 under the mean-

18

ing of modular r. If the initial status is that the color value of every node is 0, then we ask
how to press some nodes (maybe many times) to make the color value of every node equal
to r− 1 (or any fixed k such that 1 ≤ k ≤ r− 1) under the meaning of modular r. If we ask
for that the sum of color values of all nodes attains to the minimum, the problem is called
the Minimum All-Colors Problem.

Acknowledgement. The authors are greatly indebted to the referees for their invaluable sug-
gestions and comments, which have substantially improved the presentation of the paper.

References

[1] R. Barua and S. Ramakrishnan, σ-game, σ+-game and two-dimensional additive cellu-
lar automata, Theoret. Comput. Sci., 154(1996), 349-366.

[2] Y. Dodis and P. Winkler, Universal configurations in light-flipping games, Proceedings
of 12-th Annuaql ACM/SIAM Symposium on Discrete Algorithms (SODA), Jannuary
2001, 926-927.

[3] H. Eriksson, K. Eriksson and J. Sjöstrand, Note on the lamp lighting problem, Advances
in Applied Mathematics, 27(2001), 357-366.

[4] Fred Galvin, Solution to problem 88-8, Math. Intelligencer, Vol.11, No.2(1989), 31-32.

[5] O.P. Lossers, Solution to problem 10197, Amer. Math. Monthly, Vol.100, No.8(1993),
806-807.

[6] Christos H. Papadimitriou and K. Steiglitz, Combinatorial Optimizations: Algorithms
and Complexity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1982.

[7] Uri Peled, Problem 10197, The American Mathematical Monthly, Vol.99, No.2(1992),
162.

[8] K. Sutner, Additive automata on graphs, Complex Systems, Vol.2, No.1(1988), 1-28.

[9] K. Sutner, Problem 88-8, Math. Intelligencer, Vol.10, No.3(1988).

[10] K. Sutner, Linear cellular automata and the Garden-of-Eden, Math. Intelligencer,
11(2)(1989), 49-53.

[11] K. Sutner, The σ-game and cellular automata, Amer. Math. Monthly, 97(1990), 24-34.

19

[12] K. Sutner, σ-automata and Chebyshev-polynomials, Theoret. Comput. Sci., 230(2000),
49-73.

20

