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1. Introduction

Computer simulations are used more and more frequently in the modern technological
society. This calls for a mathematical theory for simulations. There are two elementary
elements associated with a simulation: local rules and dependency relations. In a
simulation, there are many (maybe infinitely many) entities and each entity has a
state at a given time. The update of states is determined by the local rules and
the dependency relations. Moreover, there are two kinds of update schemes: parallel
update and sequential update. Both update schemes have been extensively studied in
the literature.

We review the following model of discrete dynamical systems based on a graph,
which is called a dependency graph. An entity is represented by a vertex of a graph.
Two vertices are joined by an edge if they interfere with each other in the update
process. More specifically, an update is implemented by local functions defined for
each vertex. For a vertex v, the local function depends on the state of the vertex v
itself and the states of the neighbors of v. If the states of the vertices are updated in a
parallel manner, the system is called a parallel dynamical system (PDS). If the update
is carried out in a sequential order, then the system is called a sequential dynamical
system (SDS). In the sequential case, a permutation on the vertices is used to specify
the order of updates, see, for example, [1–5,7–12].

In this paper, we are particularly concerned with the four kinds of dynamical sys-
tems: OR-PDS, OR-SDS, NOR-PDS and NOR-SDS. For each of these systems, we
present an evaluation theorem on the update of the global state vectors. In fact, the
state vectors are represented by subsets of the vertex set of the dependency graph.
Such evaluation schemes turn out to be useful for the study of properties of the dy-
namical systems. We demonstrate that many properties of the dynamical systems can
be characterized by the dependency graphs. For the AND and NAND functions, we
may construct the dynamical systems based on the OR and NOR systems, thus, we do
not need to consider systems with these two Boolean functions.

We prove that the state spaces of PDS [OR,G] and SDS [OR,G, π] have 2k com-
ponents if G has k components; The width of PDS [OR,G] equals to the diameter of
G, where the width of a dynamical system on a graph is defined to be the maximum
distance from a transient state vector to the nearest fixed state vector or periodic state
vector; The width of SDS [OR,G, π] does not exceed the diameter of G for any π ∈ Sn;
Any orbit (limit cycle) of PDS [NOR,G] has length 2; There is a bijection between
the periodic points of SDS [NOR,G, π] and the independent sets of G; The widths of
PDS [NOR,G] and SDS [NOR,G, π] are both equal to 1. The maximal in-degree in
the state space of PDS [NOR,G] is equal to the number of dominant sets of G, which
is reached by the state vector (0, 0, · · · , 0). Analogously, the maximal in-degree in the
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state space of SDS [NOR,G, π] is reached by the state vector (0, 0, · · · , 0).

We also show that for forests that do not contain a single edge the number of
orientations equals the number of different OR-SDS.

2. Definitions and Notations

All the dynamical systems are assumed to be built on an undirected graph G = (V,E),
which is called the dependency graph. The graph G is supposed to have vertex set
V = {1, 2, · · · , n}. For each vertex 1 ≤ i ≤ n, there is a state xi ∈ F2 = {0, 1}. For
1 ≤ i ≤ n and a subset W ⊆ V , we define

NG(i) = {j ∈ V |(i, j) ∈ E},

di = |NG(i)|,

NG(W ) =
⋃
i∈W

NG(i),

NG(i) = {i} ∪NG(i).

For a dynamical system on G, there is a local function associated with each vertex i.
This is a function to update the state of the vertex i based on the state of i itself and
the states of the neighbors of i. We will be concerned with the local functions that
are symmetric on the input states. Under this assumption, the update of the state of
vertex i is determined by the states of these vertices that are related to i, regardless of
the order of the related vertices. In fact, the local functions considered in this paper
will be the Boolean functions OR and NOR. As to the state vector X = (x1, x2, . . . , xn)
of the vertices V = {1, 2, . . . , n}, we can use a subset W of V to represent the state
vector X by taking the elements i for which xi = 1 into the subset W .

Definition 2.1 Let G be a graph on V = [n]. The following mapping

[F,G] : Fn2 7→ Fn2 ,

[F,G](x1, x2, · · · , xi, · · · , xn) = (y1, y2, · · · , yi, · · · , yn),

is called a parallel dynamical system (PDS) over G, where yi is the updated state of
vertex i by applying the local function of vertex i with respect to the dependency graph
G.

Let fi,G be a local update function of the vertex i with respect to the dependency
graph G, and let Fi,G be the update function on the global state vector by applying the
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local function to update the state of vertex i, while keeping other states unchanged. If
we compose the functions Fi,G(1 ≤ i ≤ n) according to a given order π ∈ Sn, where Sn
is the set of permutations on V , then we can get an update function from Fn2 to Fn2 .

Definition 2.2 Let G be a graph on V = [n] and π = π1π2 · · · πn ∈ Sn. The mapping

[F,G, π] = Fπ1,GFπ2,G · · ·Fπn,G : Fn2 7→ Fn2

is called a sequential dynamical system (SDS) over G.

We note that in the above notation of composition of functions, we assume that
the function Fπ1,G is applied first, Fπ2,G is applied next, and so on, namely,

Fπ1,GFπ2,G · · ·Fπn,G(x1, . . . , xn) = Fπn,G(· · ·Fπ1,G(x1, . . . , xn)).

We will usually use X to denote a state vector (x1, x2, . . . , xn), and use g to denote
the global update function of a dynamical system which acts on state vectors. The
set of all state vectors is called the state space. Given a dynamical system with global
update function g, we may describe the following terminology.

1. If g(X) = X, then X is called a fixed point. The notation FIX[g] represents the
set of all fixed points of the dynamical system with global update function g.

2. If there exists an integer m > 1 such that gm(X) = X and for any integer
0 < l < m, gl(X) 6= X, then X is called a periodic point or periodic state vector
of g and m is called the period of X. We adopt the notation PER[g] to denote
the set of all periodic points of g.

3. If X /∈ FIX[g] ∪ PER[g], then X is called a transient point, or a transient state
vector of g.

4. If there does not exist any state vector Z such that g(Z) = X, then X is called
a Garden-of-Eden (GOE) of g. The set of GOEs of g is denoted by GOE[g].

Definition 2.3 Let G be a dependency graph on V = [n] and let g be the global update
function of a dynamical system on G. The digraph Γ[g], called the functional digraph
of g, is defined as the digraph with vertex set as the state space of g, and arc set

A[Γ[g]] = {(X, g(X))|X ∈ Fn2}.

An orbit of g is a cycle or a loop of the functional digraph of g.
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We next define the width of a dynamical system in terms of its functional digraph.

Definition 2.4 Let g be the global update function of a dynamical system on the de-
pendency graph G. For a state vector X ∈ Fn2 , let h(X) be the minimum nonnegative
integer such that gh(X)(X) is a fixed point or a periodic point in the functional digraph
Γ[g], where g0(X) is defined to be X. The number max{h(X)|X ∈ Fn2} is called the
width of the dynamical system.

This paper will be concerned with the properties of the dynamical systems with
OR and NOR functions that are related to the above terminology.

3. OR-PDS and OR-SDS

If we take the OR function as the local update functions, then the corresponding
dynamical systems are called OR-PDS and OR-SDS, and denoted by [OR,G] and
[OR,G, π], respectively.

Recall that a system is said to be a fixed point system if all its orbits are loops,
see [7]. We will show that PDS [OR,G] and SDS [OR,G, π] are fixed point systems,
that is, all orbits in their state space are fixed points. To describe the global update
functions for the OR systems, we find it more convenient to work with subsets as a
representation of state vectors. The following evaluation theorem can be easily verified.

Theorem 3.1 Let PDS [OR,G] be the OR-PDS on G. Let X be a state vector and W
be the subset of V corresponding to X, namely, W is the subset of vertices having state
1 with respect to X. Let φ[OR,G] be the function acting on subsets of V in accordance
with the OR-PDS. In other words, φ[OR,G](W ) is the subset of vertices having state 1
with respect to the state vector [OR,G](X). Then we have

φ[OR,G](W ) = W
⋃

NG(W ). (3.1)

Theorem 3.2 Let SDS [OR,G, π] be the OR-SDS on G. Let X be a state vector and
W be the subset of V corresponding to X. Let φ[OR,G,π] be the function acting on subsets
of V in accordance with the OR-SDS. Then we have

φ[OR,G,π](W ) = ϑπn(ϑπn−1 · · · (ϑπ1(W ))), (3.2)

where

ϑi(W ) =

{
W, if NG(i) ∩W = ∅,

W ∪ {i}, otherwise.
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Using the above evaluation theorems, we show that there is no cycle of length bigger
than 1 in Γ[OR,G] and Γ[OR,G, π] (for any π ∈ Sn), or equivalently, PER[OR,G] =
PER[OR,G, π] = ∅. This leads to the following conclusion.

Theorem 3.3 The systems PDS [OR,G] and SDS [OR,G, π] are fixed point systems.

We next show that the set of fixed points of the system [OR,G] is related to the
connected components of G.

Theorem 3.4 Suppose there are k connected components in the dependency graph G.
Then functional digraph Γ[OR,G] has 2k components, and the system PDS [OR,G]
has 2k fixed points.

Proof. Using the evaluation of φ[OR,G], one sees that a subset W is a fixed point of
φ[OR,G] if and only if W satisfies the following condition: if i ∈ W , then for any j
in the same component as i in the dependency graph G, we have j ∈ W . There are
altogether 2k such subsets W when G has k components. By virtue of Theorem 3.1,
PDS [OR,G] has 2k fixed points. It follows from the fact PER[OR,G] = ∅ that the
functional digraph Γ[OR,G] has 2k components. This completes the proof.

The width of PDS [OR,G] is determined by the diameter of G.

Theorem 3.5 Assume that G is a connected graph. Then the width of PDS [OR,G]
equals to the diameter of G.

Proof. Suppose that G is a connected graph with vertex set V and d is the diameter
of G. Then we may assume that there is a shortest path of length d in G from a
vertex i to a vertex j. By Theorem 3.4, there are only two fixed points in the system
[OR,G] corresponding to the subsets V and ∅, namely, the state vectors (1, 1, . . . , 1)
and (0, 0, . . . , 0). By Theorem 3.1, for a subset W = {i} with one element, we have
j /∈ φd−1[OR,G](W ). It follows that

φd−1[OR,G](W ) 6= V.

On the other hand, for any W ′ ⊂ V , we have φd[OR,G](W
′) = V or φd[OR,G](W

′) = ∅;
otherwise the diameter of G would exceed d. By Definition 2.4, we obtain that d is the
width of PDS [OR,G].

In the spirit of Theorem 3.4 and Theorem 3.5, we obtain the following results for
OR-SDS. The proofs are omitted.
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Theorem 3.6 Suppose there are k connected components in the dependency graph G.
Then for any permutation π ∈ Sn, the functional digraph Γ[OR,G, π] has 2k compo-
nents, and the system SDS [OR,G, π] has 2k fixed points.

Theorem 3.7 Let G be a connected graph. Then for any permutation π ∈ Sn, the
width of SDS [OR,G, π] does not exceed the diameter of G. Moreover, there exists a
permutation σ ∈ Sn such that the width of the system [OR,G, σ] is equal to the diameter
of G.

The following example is an illustration of Theorem 3.7.

Example 3.8 Let G be the following graph with diameter 3:
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There are 16 different OR-SDS on G (with respect to the global update function) cor-
responding to the following permutations:

12345 12354 12543 12435 13425 13542 15432 14352
23451 23541 25431 24351 34512 35142 54312 43512.

The widths of these OR-SDS are respectively 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2.

For a special class of graphs, the number of acyclic orientations equals the number
of different OR-SDS based on the these graphs. Let G be an undirected graph on
V = [n] and Acyc(G) be the set of acyclic orientations of G. Let a(G) = |Acyc(G)|,
and let S(fk)(G) be the set of different SDS with the local functions fk(1 ≤ k ≤ n) and
the dependency graph G. We set a(fk)(G) = |S(fk)(G)|.

In [10], Reidys shows that the number of different NOR-SDS on G equals to the
number of acyclic orientations of G, namely, for any graph G,

a(nork)(G) = a(G). (3.3)

Although the above assertion does not apply to the case of OR functions, we will
show that the same result is valid for the forests that do not contain isolated edges.
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Theorem 3.9 Assume that F = (V,E) is a forest on V = [n] which does not contain
isolated edges (connected components with two vertices). Then we have

a(ork)(F ) = a(F ) = 2|E|.

Proof. Let G be a graph on V = [n] and U be the graph with vertex set Sn in which two
different vertices (i1, . . . , in) and (h1, . . . , hn) are adjacent if (i1, . . . , in) can be obtained
from (h1, . . . , hn) by exchanging of two elements hk, hk+1, where hk and hk+1 are not
adjacent in G. We set

[π]G = {π′|π′ and π are in the same component of U}.

Let
Sn/∼G = {[π]G|π ∈ Sn}

and h(fk) be the following mapping:

h(fk) : Sn/∼G 7→ S(fk)(G),

[π]G 7→ [F,G, π].

Since there is a one-to-one correspondence between Acyc(G) and Sn/∼G for any graph
G ( [11], Proposition 1), we only need to show that h(ork) is a bijection when G is a
forest F which does not contain an isolate edge. Clearly, h(ork) is a surjection. For any
[π]F 6= [σ]F in Sn/∼F , there is an edge (i, j) in F such that i <π j and j <σ i, where
i <π j means that i is on the left of j in the permutation π. Let

Si = {k | k 6= i, i and k are in the same component of F \ (i, j)},

Sj = {k | k 6= j, j and k are in the same component of F \ (i, j)}.

By the assumption that none of the components of F is an isolated edge, it follows
that Si 6= ∅ or Sj 6= ∅. Without loss of generality we may assume that Si 6= ∅. Since
(i, j) is a cut edge, we get that Si ∩ Sj = ∅.

Let XSi
be the state vector corresponding to the subset Si. Notice that the j-th

entry of the state vector [OR,F, π](XSi
) equals 1 and the j-th entry of the state vector

[OR,F, σ](XSi
) equals 0. It follows that [OR,F, π] and [OR,F, σ] are different systems,

that is to say, h(ork) is injective. Therefore, we have shown that h(ork) is a bijection.
This completes the proof.

4. NOR-PDS

In this section, we are concerned with parallel dynamical systems with the NOR func-
tion as local functions. These systems are called NOR-PDS, and denoted by [NOR,G]
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for a dependency graphG. We first present the following evaluation theorem. The proof
is straightforward and hence is omitted.

Theorem 4.1 Let PDS [NOR,G] be the NOR-PDS on G. Let X be a state vector and
W be the subset of V corresponding to X. Let φ[NOR,G] be the global update function
acting on subsets of V in accordance with the NOR-PDS. Then we have

φ[NOR,G](W ) = V \ (W
⋃

NG(W )). (4.1)

As an immediate consequence of Theorem 4.1, the system [NOR,G] does not have
any fixed point. Moreover, we have

Theorem 4.2 All the orbits of PDS [NOR,G] are 2-cycles.

Proof. Since PDS [NOR,G] has no fixed point, PER[NOR,G] must have some orbits
with length exceeding 1 by the structure of the functional digraph of [NOR,G]. Let X
be a periodic point of PDS [NOR,G] and W be the corresponding subset. Then there
exists an integer k such that φk[NOR,G](W ) = W . Because φ[NOR,G] is given by (4.1), k
must be an even number. It remains to prove k = 2.

Let W ′ = φ[NOR,G](W ). We claim that NG(W ) = NG(W ′). Assume that there is
an element w ∈ (NG(W ) ∪ NG(W ′)) and w /∈ (NG(W ) ∩ NG(W ′)). Without loss of
generality, we may assume that w ∈ NG(W ) and w /∈ NG(W ′). By the definition of
φ[NOR,G], w is contained in φ2m

[NOR,G] for any integer m > 1, which is contradictory to
the fact that the state vector X corresponding to the subset W is a periodic point. So
the claim is justified, and we get

φ[NOR,G](W ) = W ′ and φ[NOR,G](W
′) = W.

That is to say, φ2
[NOR,G](W ) = W . This completes the proof.

We next show that the functional digraph of PDS [NOR,G] has quite a simple
structure.

Theorem 4.3 The width of PDS [NOR,G] is equal to 1.

Proof. Let X be a state vector and W be the subset corresponding to X. By Theorem
4.2, it suffices to show that φ3

[NOR,G](W ) = φ[NOR,G](W ). Let

W1 = φ[NOR,G](W ), W2 = φ[NOR,G](W1), W3 = φ[NOR,G](W2).
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It is easy to verify that NG(W1) = NG(W2). Thus we have

W3 = (V \W2) \NG(W2)

= (V \ (V \W1 \NG(W1))) \NG(W2)

= W1 ∪ (NG(W1) \NG(W2))

= W1.

This is to say, φ3
[NOR,G](W ) = φ[NOR,G](W ).

Note that the above theorem can be restated as

GOE[NOR,G] ∪ PER[NOR,G] = Fn2 . (4.2)

The following theorem shows that the maximum in-degree of the functional digraph
of the system [NOR,G] is related to the dominant sets of the dependency graph G.

Theorem 4.4 In the functional digraph Γ[NOR,G], the maximum in-degree is reached
by the state vector X = (0, 0, · · · , 0), and it is equal to the number of dominant sets of
G.

Proof. By the evaluation theorem of PDS [NOR,G], one sees that for any subset W ′,
φ[NOR,G](W ) = W ′ if and only if W is a dominant set of the graph G[V \ W ′], the
induced subgraph of G restricted to V \W ′. In particular, W ′ = ∅ if and only if W is a
dominant set of G. From Theorem 4.1, it follows that the in-degree of X = (0, 0, · · · , 0)
equals to the number of dominant sets of G.

We continue to show that the in-degree of the state vector X = (0, 0, . . . , 0) in
Γ[NOR,G] is indeed the maximum in-degree. For any subset W ′, if φ[NOR,G](W ) = W ′,
then φ[NOR,G](W ∪W ′) = ∅. This implies that from a pre-image of W ′, we can find a
pre-image of ∅. Moreover, for any two distinct pre-images W1 and W2 of W ′, we have
W1 ∩W ′ = ∅ and W2 ∩W ′ = ∅. It follows that

W1 ∪W ′ 6= W2 ∪W ′. (4.3)

Furthermore, W1 ∪W ′ and W2 ∪W ′ are both dominant sets of G, namely,

φ[NOR,G](W1 ∪W ′) = φ[NOR,G](W2 ∪W ′) = ∅. (4.4)

Therefore, for any two distinct pre-images of W ′, there are two distinct pre-images of
∅. So we obtain that

|φ−1[NOR,G](W
′)| ≤ |φ−1[NOR,G](∅)|.

This completes the proof.
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5. NOR-SDS

In this section, we study sequential dynamical systems with NOR function as the local
update functions, denoted by [NOR,G, π] for a given dependency graph G. These
systems have been studied by Reidys [12]. We give the following evaluation theorem
which is useful to give a simpler augment for the results obtained by Reidys.

Theorem 5.1 Let SDS [NOR,G, π] be a NOR-SDS on G. Let X be a state vector and
W be the subset of V corresponding to X. Let φ[NOR,G,π] be the global update function
acting on subsets of V in accordance with the NOR-SDS with dependency graph G.
Then we have

φ[NOR,G,π](W ) = ρπn(ρπn−1 · · · (ρπ1(W ))), (5.1)

where

ρi(W ) =


W \ {i}, if i ∈ W,

W ∪ {i}, if NG(i) ∩W = ∅,

W, otherwise.

An instant consequence of the above theorem is that the functional digraph Γ[NOR,G, π]
has no fixed points. Furthermore, we may use the above evaluation scheme to simplify
proofs of several results of Reidys. The set of independent sets of G will be denoted
by DG [6].

Lemma 5.2 For any subset W of V , φ[NOR,G,π](W ) forms an independent set of G.

Proof. Assume that there exists a subset W such that φ[NOR,G,π](W ) /∈ DG. Then there
are two elements i, j in φ[NOR,G,π](W ) such that (i, j) is an edge of G. Without loss of
generality, we may assume that i <π j and j = πk for some k. Since i is in the subset
ρπk−1

(ρπk−2
· · · (ρπ1(W ))), after the action of ρj on the subset ρπk−1

(ρπk−2
· · · (ρπ1(W ))),

j is not contained in ρπk(ρπk−1
· · · (ρπ1(W ))). This leads to a contradiction.

Next we show that the mapping φ[NOR,G,π] induces a bijection on DG. In other
words, φ[NOR,G,π] maps an independent set to an independent, and the mapping is
one-to-one.

Lemma 5.3 For any permutation π on [n], the mapping φ[NOR,G,π] yields a bijection
on the set of independent sets of G.
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Proof. By the finiteness of DG, we only need to prove that φ[NOR,G,π] over DG is an
injection. Suppose that W1 and W2 are two different independent set of G such that

φ[NOR,G,π](W1) = φ[NOR,G,π](W2). (5.2)

Let k0 be the first element in π that appears in W1 ∪W2 \ (W1 ∩W2). Without loss
of generality, we assume that k0 ∈ W1 and k0 /∈ W2. Then there exists k1 >π k0 such
that k1 ∈ W2, k1 /∈ W1 and (k0, k1) ∈ E. Similarly, for k1 ∈ W1 ∪W2 \ (W1 ∩W2),
there exists k2 >π k1 such that k2 ∈ W1, k2 /∈ W2 and (k1, k2) ∈ E. By iterating
this procedure, we will fail at certain point to find ki >π ki−1 such that ki ∈ W1,
ki /∈ W2 and (ki−1, ki) ∈ E, or to find ki >π ki−1 such that ki ∈ W2, ki /∈ W1 and
(ki−1, ki) ∈ E. Hence we get ki−1 ∈ φ[NOR,G,π](W1) and ki−1 /∈ φ[NOR,G,π](W2), or
get ki−1 ∈ φ[NOR,G,π](W2) and ki−1 /∈ φ[NOR,G,π](W1). This is contradictory to the
assumption (5.2).

The above Theorem 4.4 has the following counterpart for SDS [NOR,G, π]. The
proof is essentially the same.

Lemma 5.4 For any subset W of V , we have

|φ−1[NOR,G,π](W )| ≤ |φ−1[NOR,G,π](∅)|.

From the above three lemmas, we get the following results due to Reidys [12].

Theorem 5.5 The width of SDS [NOR,G, π] equals to 1.

Theorem 5.6 There is a bijection between the set of the periodic points of [NOR,G, π]
and the set of the independent sets of G.

Theorem 5.7 In the functional digraph Γ[NOR,G, π], the maximal in-degree is reach
by the state vector X = (0, 0, · · · , 0).

The following example is an illustration of Theorem 5.5, Theorem 5.6 and Theorem
5.7.

Example 5.8 Let G be the following graph with independent sets: ∅, {1}, {2}, {3},
{4}, {1, 4}, {2, 4}.
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By Theorem 5.5 and Theorem 5.6, we obtain that for any π ∈ Sn,

PER[NOR,G, π] = {0000, 1000, 0100, 0010, 0001, 1001, 0101},

and

GOE[NOR,G, π] = {0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111}.

Moreover, for the permutation π = 3124, the in-degrees of the periodic points 0000,
1000, 0100, 0010, 0001, 1001, 0101 in the functional digraph Γ[NOR,G, 3124] are
respectively 4, 2, 2, 1, 4, 1, 2.
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