W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu,
Applicability of the q-analogue of Zeilberger's algorithm,
J. Symbolic Comput. 39(2) (2005) 155-170.

Cited by

  1. S.S. Chen, Some applications of differential-difference algebra to creative telescoping, Ph.D. Thesis, l'École Polytechnique, 2011.

  2. S.S. Chen, How to generate all possible rational Wilf-Zeilberger pairs? arXiv:1802.09798.

  3. S.S. Chen, F. Chyzak, R.Y. Feng, G.F. Fu and Z.M. Li, On the existence of telescopers for mixed hypergeometric terms, J. Symbolic Comput. 68 (2015) part 1, 1-26.

  4. S.S. Chen, F. Chyzak, R.Y. Feng and Z.M. Li, The existence of telescopers for hyperexponential-hypergeometric functions, AMSS, Academia Sinica 29 (2010) 239-267.

  5. S.S. Chen, R.Y. Feng, G.F. Fu and Z.M. Li, On the structure of compatible rational functions, In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation (ISSAC'11), 91-98, ACM New York, NY, 2011.

  6. S.S. Chen, Q.-H. Hou, G. Labahn and R.-H. Wang, Existence problem of telescopers: beyond the bivariate case, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, 167-174, ACM, New York, 2016.

  7. S.S. Chen and M. Kauers, Some open problems related to creative telescoping, J. Syst. Sci. Complex. 30 (2017) 154-172.

  8. S.S. Chen, M. Kauers and C. Koutschan, A generalized Apagodu-Zeilberger algorithm, ISSAC 2014---Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 107-114, ACM, New York, 2014.

  9. S.S. Chen and C. Koutschan, Proof of the Wilf-Zeilberger conjecture for mixed hypergeometric terms, arXiv:1507.04840.

  10. S.S. Chen and M.F. Singer, Residues and telescopers for bivariate rational functions, Adv. in Appl. Math. 49(2) (2012) 111-133.

  11. F. Chyzak, Creative telescoping for parametrised integration and summation, Les cours du CIRM 2 (2011) 1-37.

  12. F. Chyzak, The ABC of creative telescoping---Algorithms, bounds, complexity, Preprint.

  13. H. Du, H. Huang and Z.M. Li, A q-analogue of the modified Abramov-Petkovsek reduction, In: Advances in Computer Algebra, 105-129, Springer Proc. Math. Stat. 226, Springer, 2018.

  14. H. Le and Z.M. Li, On a class of hyperexponential elements and the fast versions of Zeilberger's algorithm, AMSS, Academia Sinica, 23 (2004) 136-150.

  15. M. Mohammed and D. Zeilberger, Sharp upper bounds for the orders of the recurrences output by the Zeilberger and q-Zeilberger algorithms, J. Symbolic Comput. 39 (2005) 201-207.

  16. C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2007) Article B56b, 36 pp.

  17. 陈绍示, 冯如勇, 付国锋, 康劲, 多变元 q-超几何项的乘法分解, 系统科学与数学 32(8) (2012) 1019-1032.