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1. Introduction

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two sets of variables, and let
sλ(X) and sλ(Y ) be the Schur functions indexed by a partition λ in the sets of variables
X and Y , respectively. (We refer the reader to [22] or [26, Ch. 7] for all notation and
definitions concerning partitions and symmetric functions.) Then the classical Cauchy
identity for Schur functions can be stated as follows:

Theorem 1.1 For n ≥ 1, we have

n∏
i,j=1

1

1− xiyj
=
∑
λ

sλ(X)sλ(Y ), (1.1)

where the sum ranges over all partitions of length at most n.

Classical proofs of Theorem 1.1 are by means of the Robinson–Schensted–Knuth corre-
spondence and the Cauchy-Binet formula, respectively [22, 26]. There is also a deriva-
tion based on a matrix product involving the elementary symmetric functions as given
in Macdonald [22, p. 67].

The aim of this paper is to establish a connection between the Cauchy identity and
the lattice path method due to Gessel and Viennot [8, 9].

The key ingredient in our lattice path construction is a flagged form of the Cauchy
determinant with respect to the sets of variables. Recall that the Cauchy determinant
in the variables X and Y is the determinant∣∣∣∣ 1

1− xiyj

∣∣∣∣
n×n

.

It is well-known that ∣∣∣∣ 1

1− xiyj

∣∣∣∣
n×n

= ∆(X) ∆(Y )
n∏

i,j=1

1

1− xiyj
, (1.2)

where we have used the common notation for the Vandermonde determinant

∆(X) :=
∣∣xn−ji

∣∣
n×n =

∏
1≤i<j≤n

(xi − xj).

This paper contains the following results:
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1. We define the flagged Cauchy determinant to be

F (X, Y ) =

∣∣∣∣∣∑
k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)

∣∣∣∣∣
n×n

, (1.3)

where hi is the complete symmetric function of degree i. As a first result, by
simple row and column operations, we prove (see Theorem 2.1):∣∣∣∣ 1

1− xiyj

∣∣∣∣
n×n

= ∆(X) ·∆(Y ) · F (X, Y ).

2. We provide an interpretation of the flagged Cauchy determinant F (X, Y ) in terms
of nonintersecting lattice paths, and we describe as well a relation with semis-
tandard tableaux. This leads us, in particular, to the Cauchy identity (1.1).

3. Choosing different starting and end points for the lattice paths, we obtain the
equality of the flagged Cauchy determinant F (X, Y ) with a determinant in com-
plete symmetric functions in the full sets of variables X and Y :

F (X, Y ) =

∣∣∣∣∣∑
k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

.

It should be noted that in the above formula there appear the same indices as
in the flagged formula (1.3). This leads us to a lattice path interpretation of the
following identity of Gessel [7, Theorem 16]:

Theorem 1.2 We have∣∣∣∣∣∑
k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑
λ

sλ(X)sλ(Y ), (1.4)

where the sum ranges over all partitions of length at most n.

We remark that in Gessel’s theorem one can actually replace X and Y by infinite
sets of variables. As we are going to show, our lattice path proof covers this case as
well, as well as a generalization involving skew Schur functions (see Theorem 3.5).

To conclude this introduction, we note that the idea of flagged Schur functions and
multi-Schur functions has proved to be very efficient in the study of Schubert poly-
nomials in connection with divided difference operators (see Lascoux [19] and Wachs
[28]). Flagged determinants with respect to the sets of variables can also be used to
give simple character formulas for the symplectic groups and the orthogonal groups,
see papers by Chen, Li and Louck [3], Hamel and King [14], and Okada [23].
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2. The Flagged Cauchy Determinant

Let hk(xi, xi+1, . . . , xn) be the complete symmetric function of degree i in xi, xi+1,
. . . , xn (cf. [22] or [26, Ch. 7]). The main theorem of this section establishes a relation
between the Cauchy determinant and the flagged form (1.3).

Theorem 2.1 We have∣∣∣∣ 1

1− xiyj

∣∣∣∣
n×n

= ∆(X) ·∆(Y ) · F (X, Y ), (2.5)

where F (X, Y ) denotes the determinant in (1.3).

Proof. First, we express the (i, j)-entry in the Cauchy determinant as

1

1− xiyj
=
∑
k≥0

(xiyj)
k =

∑
k≥0

hk(xi)hk(yj).

Next, we recall the divided difference property of the complete symmetric functions:

hk(xi, . . . , xj)− hk(xi+1, . . . , xj+1)

xi − xj+1

= hk−1(xi, . . . , xj+1).

Subtracting the (i + 1)-st row from the i-th row and dividing the resulting row by
(xi − xi+1) for i = 1, 2, . . . , n− 1, we get the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
k

hk−1(x1, x2)hk(y1)
∑
k

hk−1(x1, x2)hk(y2) · · ·
∑
k

hk−1(x1, x2)hk(yn)∑
k

hk−1(x2, x3)hk(y1)
∑
k

hk−1(x2, x3)hk(y2) · · ·
∑
k

hk−1(x2, x3)hk(yn)

...
...

...
...∑

k

hk(xn)hk(y1)
∑
k

hk(xn)hk(y2) · · ·
∑
k

hk(xn)hk(yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We continue by subtracting the (i + 1)-st row from the i-th row and dividing by
(xi − xi+2) for i = 1, 2, . . . , n − 2, then subtracting the (i + 1)-st row from the i-th
row and dividing by (xi − xi+3) for i = 1, 2, . . . , n − 3, etc. Eventually, we obtain the
determinant ∣∣∑

k hk−n+i(xi, . . . , xn)hk(yj)
∣∣
n×n .

Now we apply analogous operations to the columns of the above determinant. That is,
we subtract the (i+1)-st column from the i-th column and divide the resulting column
by (yi − yi+1) for i = 1, 2, . . . , n − 1, then we subtract the (i + 1)-st column from the
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i-th column and divide by (yi − yi+2) for i = 1, 2, . . . , n− 2, and so on. We finally get
the following flagged determinant of complete symmetric functions in X and Y :∣∣∑

k hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)
∣∣
n×n . (2.6)

This is exactly the determinant F (X, Y ). On the other hand, the division operations
yield the product of the Vandermonde determinants ∆(X) and ∆(Y ). This completes
the proof.

3. Lattice paths and the Cauchy identity

The lattice path method introduced by Gessel and Viennot [8, 9] (but actually dating
back to Karlin and McGregor [15, 16] and Lindström [20]) has been widely used as a
powerful technique for the study of symmetric functions, plane partitions and many
other combinatorial problems (see for example [1, 2, 4, 6, 10, 11, 12, 13, 18, 23, 27, 29]).

We let the underlying (lattice) digraph D be the integer lattice Z × Z, where the
arcs (or steps) are horizontal, (i, j) → (i + 1, j), or vertical, (i, j) → (i, j ± 1), with
the following restrictions: if a vertical arc lies strictly to the left of the y-axis, it must
be an up step from (i, j) to (i, j + 1); if a vertical arc lies strictly to the right of the
y-axis, then it must be a down step from (i, j) to (i, j − 1); and there are no vertical
steps on the y-axis. From now on, when we speak of a (lattice) path then we always
mean a path in D.

We define the following weights for the arcs in D:

1. A horizontal arc has weight 1.

2. For i < 0, a vertical arc from (i, j) to (i, j + 1) has weight xn+i+1.

3. For i > 0, a vertical arc from (i, j) to (i, j − 1) has weight yn−i+1.

The weight of a path P , denoted by w(P ), is defined as the product of the weights of
the arcs of the path P . Given an n-tuple (P1, P2, . . . , Pn) of lattice paths, its weight
is defined to be the product of the weights of the path Pi. We now suppose that
A1, A2, . . . , An and B1, B2, . . . , Bn are given points in the integer lattice Z × Z. Let
P(Ai, Bj) denote the set of lattice paths from Ai to Bj in D. Similarly, we use P(A,B)
to denote the set of all n-tuples (P1, P2, . . . , Pn) of lattice paths in D where Pi starts
at Ai and ends at Bi. We also adopt the notation P0(A,B) for the set of all n-tuples
(P1, P2, . . . , Pn) of nonintersecting lattice paths, where Pi has starting point Ai and
end point Bi. Here, as usual, by “nonintersecting” we mean that there are no common
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points among Pi and Pj for i 6= j. By GF(P(A,B)) and GF(P0(A,B)) we denote the
generating functions, or the sums of weights, of the n-tuples of lattice paths in P(A,B)
and P0(A,B), respectively.

For the purpose of the promised combinatorial interpretation of the flagged Cauchy
determinant F (X, Y ), we choose

Ai = (i− n− 1,−i), and Bi = (n− i+ 1,−i), i = 1, 2, . . . , n. (3.7)

We refer the reader to Figure 3.1 for an illustration of these points in the case n = 4.
(The paths should be ignored at this point.)

With the above choice, we arrive at the following lattice path interpretation of the
entries in the flagged Cauchy determinant.

Lemma 3.1 The generating function for the D-paths from Ai to Bj equals

GF(P(Ai, Bj)) =
∑
k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn). (3.8)

Proof. We classify the D-paths P from Ai to Bj by their intersection points with the
y-axis. To be more specific, assume that P intersects the y-axis in the point Q. Let k
be the y-coordinate of Q. Since there are no arcs on the y-axis, the weights of all such
paths sum to

hk+i(xi, . . . , xn)hk+j(yj, . . . , yn).

Summing over k, one gets the right-hand side of (3.8), after having done the replacement
k → k − n. This completes the proof of the lemma.

As an immediate corollary of the standard theorem on nonintersecting lattice paths
(see [9, Cor. 2] or [27, Theorem 1.2]), we obtain the promised interpretation of the
flagged Cauchy determinant in terms of nonintersecting lattice paths. We refer the
reader to Figure 3.1 for an example of a set of nonintersecting lattice paths as in the
statement of the theorem below (i.e., with the starting and points as in (3.7)), in the
case n = 4.

Theorem 3.2 We have the following relation:

F (X, Y ) = GF(P0(A,B)). (3.9)

Proof. The aforementioned theorem on nonintersecting lattice paths says that

GF(P0(A,B)) = det(GF(P(Ai, Bj)))n×n,
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Figure 3.1 Nonintersecting paths from Ai to Bi
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1 1 2 3
3 3
4 ,
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1 2 3 4
2 3
4

Figure 3.2 A pair of tableaux of the same shape

under the condition that the starting and end points are “D-compatible” (in the ter-
minology of [27]), i.e., for i < j and k < l any path from Ai to Bl and any path from
Aj to Bk have a point in common. However, the latter is entirely obvious from the
topology of the digraph D. Hence, in view of Lemma 3.1, the theorem follows.

Given the sets A and B of starting and end points, respectively, we may translate
an n-tuple (P1, P2, . . . , Pn) of nonintersecting lattice paths into a pair of semistandard
tableaux of the same shape with entries from {1, 2, . . . , n}.

Theorem 3.3 There is a one-to-one correspondence between n-tuples (P1, P2, . . . ,
Pn) of nonintersecting lattice paths, where Pi runs from Ai to Bi, and pairs of semi-
standard tableaux of the same shape with entries from {1, 2, . . . , n}. In particular, we
have

GF(P0(A,B)) =
∑

λ,`(λ)≤n

sλ(X)sλ(Y ). (3.10)

Proof. While reading this proof, it is advisable to consult in parallel the example in
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Figures 3.1 and 3.2. (There, we have chosen n = 4.) Given any n-tuple (P1, P2, . . . , Pn)
of nonintersecting paths such that Pi runs from Ai to Bi, let Qi be the intersection
point of Pi with the y-axis. We now cut each Pi into two segments Ui and Vi, where
Ui runs from Ai to Qi and Vi runs from Qi to Bi. To the n-tuple (U1, U2, . . . , Un) we
can associate a semistandard tableau S with entries from {1, 2, . . . , n}. This is done
as follows: the i-th row of S is obtained from the path Ui by reading the indices of
the weights of the vertical steps. (That is, we read i for a vertical step with weight xi.
Compare Figures 3.1 and 3.2.) The column-strictness of S is guaranteed by the fact
that the paths U1, U2, . . . , Un are nonintersecting. Similarly, the n-tuple (V1, V2, . . . , Vn)
corresponds to a semistandard tableau T with entries from {1, 2, . . . , n}. Thus, the n-
tuple (P1, P2, . . . , Pn) of nonintersecting lattice paths corresponds to a pair of tableaux
(S, T ) of the same shape. Clearly, the above procedure is reversible. Hence we obtain
the claimed bijection.

The identity (3.10) follows now by using the fact that the generating function∑
S w(S), where the sum is over all semistandard tableaux S of shape λ with entries

from {1, 2, . . . , n}, and where

w(S) =
n∏
i=1

x
#(i’s in S)
i ,

is the Schur function sλ(X).

A combination of Theorems 2.1, 3.2, and 3.3, and the evaluation (1.2) of the Cauchy
determinant yields Cauchy’s identity (Theorem 1.1).

We remark that, in fact, the flagged Cauchy determinant can be written as a de-
terminant of complete symmetric functions in the full sets of variables X and Y . Let
A′i = (−n,−i) and B′i = (n,−i). (See Figure 3.3 for the location of these points in
the case that n = 4. At this point, the paths should be ignored.) It is easy to see
that there is a one-to-one correspondence between n-tuples (P1, P2, . . . , Pn) of nonin-
tersecting lattice paths with Pi running from Ai to Bi and n-tuples (P ′1, P

′
2, . . . , P

′
n)

of nonintersecting lattice paths with P ′i running from A′i to B′i, for, restricted by the
property that paths must be nonintersecting, the path P ′i must pass the points Ai and
Bi, i = 1, 2, . . . , n; moreover, there is a unique way to extend the path Pi to the points
A′i and B′i. Figure 3.3 shows the set (P ′1, P

′
2, . . . , P

′
n) of modified paths for our example

in Figure 3.1. Thus, we have the identity

GF(P0(A,B)) = GF(P0(A
′, B′)). (3.11)

On the other hand, for the generating function of paths from A′i to B′j we have the
following result.
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Figure 3.3 Nonintersecting paths from A′i to B′i

Lemma 3.4 Let A′i = (−n,−i) and B′i = (n,−i). The generating function for paths
from A′i to B′j equals

GF(P(A′i, B
′
j)) =

∑
k

hk−n+i(X)hk−n+j(Y ). (3.12)

Thus, using the standard theorem on nonintersecting paths (see [9, Cor. 2] or [27,
Theorem 1.2]) another time, we obtain

GF(P0(A
′, B′)) =

∣∣∣∣∣∑
k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

. (3.13)

A combination of Theorem 3.3 and Eqs. (3.11) and (3.13) then yields Theorem 1.2 of
Gessel. We remark that our lattice path interpretation can also prove the general form
of Gessel’s theorem, i.e., Theorem 1.2 where X and Y are infinite sets of variables.
To accomplish the proof, one just has to “move” the starting points “to the left” and
the end points “to the right,” more precisely, we would choose A′i = (−∞,−i) and
B′i = (+∞,−i), i = 1, 2, . . . , n, and modify the labelling and the weights of the vertical
steps accordingly.

More generally, let α and β be two partitions of length at most n. If we choose
as starting points the points A′′i = (−∞, αi − i) and as end points the points B′′i =
(+∞, βi − i), then, in the same way as above, we obtain the following generalization
of Theorem 1.2, also due to Gessel [7, Theorem 16; cf. the paragraph just before
Theorem 16].
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Theorem 3.5 We have∣∣∣∣∣∑
k

hk−αi+i(X)hk−βj+j(Y )

∣∣∣∣∣
n×n

=
∑
λ

sλ/α(X)sλ/β(Y ), (3.14)

where the sum ranges over all partitions of length at most n, and where sλ/α(X) denotes
the skew Schur function of shape λ/α in the variables X (see [22] or [26, Ch. 7]), and
similarly for sλ/β(Y ).

Gessel’s proof of this theorem (as well as the proof of Theorem 1.2) is algebraic, as it
makes use of the Cauchy–Binet theorem. For a different bijective proof, which makes
use of the combinatorics of two-rowed arrays and the skew Robinson–Schensted–Knuth
correspondence due to Sagan and Stanley [25], in the formulation of Fomin [5] and Roby
[24, Section 4.1], see [17, proof of Theorem 3].

As we observed earlier, Theorem 1.2 and Theorem 3.2 present two different de-
terminants for F (X, Y ), which implies that these two determinants are equivalent.
To conclude, we present an algebraic proof of this fact by using knowledge about
multi-Schur functions. In particular, we need the following property of these functions
[19, 21].

Lemma 3.6 For any families L0, L1, . . . , Ln−1 of variables such that |Li| ≤ i, we have

sλ(H1, H2, . . . , Hn) = |hλj+j−i(Hj)|n×n = |hλj+j−i(Hj − Ln−i)|n×n, (3.15)

where H1, H2, . . . , Hn are sets of variables, and the complete super symmetric function
hk(X − Y ) is defined by the generating function

∑
k≥0

hk(X − Y ) tk =

∏
y∈Y (1− yt)∏
x∈X(1− xt)

.

We note that the matrix in Equation (1.4) can be expressed as the product of two
matrices:(∑

k

hk−n+i(X)hk−n+j(Y )

)
n×n

= (hj−i(X))n×∞ · (hi−j(Y ))∞×n . (3.16)

Let Xi = {x1, x2, . . . , xi} and Yi = {y1, y2, . . . , yi}. On the left-hand side of (3.16)
we may replace the pair of sets of variables (X, Y ) in the (i, j)-entry by (X−Xn−i, Y −
Yn−j). In accordance with this substitution on the left-hand side, we must make the
corresponding substitutions on the right-hand side of (3.16), that is, we must replace
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X in the i-th row by X −Xn−i in the first matrix and we must replace Y in the j-th
column by Y − Yn−j in the second matrix. After these substitutions, Equation (3.16)
becomes (∑

k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

)
n×n

= (hj−i(X −Xn−i))n×∞ · (hi−j(Y − Yn−j))∞×n . (3.17)

We now apply the Cauchy-Binet formula to (3.16), to obtain the identity∣∣∣∣∣∑
k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑

1≤k1<···<kn

∣∣hkj−1+j−i(X)
∣∣ · |hki−1+i−j(Y )| . (3.18)

On the other hand, the Cauchy-Binet formula applied to (3.17) yields the identity∣∣∣∣∣∑
k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

∣∣∣∣∣
n×n

=
∑

1≤k1<···<kn

∣∣hkj−1+j−i(X −Xn−i)
∣∣ · |hki−1+i−j(Y − Yn−j)| .

From Lemma 3.6 it follows that∣∣hkj−1+j−i(X)
∣∣
n×n =

∣∣hkj−1+j−i(X −Xn−i)
∣∣
n×n , (3.19)

|hki−1+i−j(Y )|n×n = |hki−1+i−j(Y − Yn−j)|n×n . (3.20)

Applying (3.19) and (3.20) to (3.18), we have∣∣∣∣∣∑
k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=
∑

k1<···<kn

∣∣hkj−1+j−i(X −Xn−i)
∣∣ · |hki−1+i−j(Y − Yn−j)|

=

∣∣∣∣∣∑
k

hk−n+i(X −Xn−i)hk−n+j(Y − Yn−j)

∣∣∣∣∣
n×n

=

∣∣∣∣∣∑
k

hk−n+i(xi, . . . , xn)hk−n+j(yj, . . . , yn)

∣∣∣∣∣
n×n

.
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The last equality comes from simultaneously reversing the order of rows and columns
of the determinant. Therefore, we have accomplished an algebraic proof of the equality
of the flagged Cauchy determinant (3.9) and the determinant (1.4) in the full sets of
variables.

In the same way, we may derive a more general theorem:

Theorem 3.7 For any two families L0, L1, . . . , Ln−1 and G0, G1, . . . , Gn−1 of variables
such that |Li| ≤ i, |Gi| ≤ i, we have∣∣∣∣∣∑

k

hk−n+i(X)hk−n+j(Y )

∣∣∣∣∣
n×n

=

∣∣∣∣∣∑
k

hk−n+i(X − Li−1)hk−n+j(Y −Gj−1)

∣∣∣∣∣
n×n

. (3.21)
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