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Abstract. We show that several classical bilateral summation and transformation
formulas have semi-finite forms. We obtain these semi-finite forms from unilateral
summation and transformation formulas. Our method can be applied to derive
Ramanujan’s 117 summation, Bailey’s 219 transformations, and Bailey’s gig sum-
mation.
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1. Introduction

We follow the terminology for basic hypergeometric series in [6]. Assuming |q| < 1,
let

(a;¢)o0 = (1 —a)(1 — aq)(1 — ag?) -+ - .
For any integer n, the g-shifted factorial (a;q), is given by

oy (a59)s0
(@0)n = (ag"; @)oc”

For n > 0, we have the following relation which is crucial for this paper:

1 (g
(a7q)_"_(aq‘”;q)n_ (¢/a;q)n (1.1)

For convenience, we employ the following usual notation:

(a1,a2,...,0m;@)n = (a1;@)n(a2;q)n - - - (@m; On-

The (unilateral) basic hypergeometric series ,11¢, is defined by
ai,ag, -+ ,a >
7‘+1¢7" lb,l 12); . .’ Z—H 34, Z:| = ZA(k)v (12)
b ) T _0

where ( )
a1,02, " ,Qr4+1549)k k
A(k) = 2",

( ) (b17b27”' 7b7’7q;Q)k




The bilateral basic hypergeometric series ¢, is defined as follows,

QI,GQ,"',GS‘ _ -
sws b17b2,"' ,bs 7q’Z:| _kz_: B(k)’ (13)
where
B(k) _ (CLl,CLQ,"‘ 7%7(])kzk.

(bhb?a e absaq)k‘

In this paper, we propose the following method of deriving bilateral summation
and transformation formulas using semi-finite forms. For a bilateral series ;15 as
given in (1.3), we construct a summand G(k,m) which implies a unilateral series
r+s+1®Pr+s, Where 7 is a nonnegative integer, such that

lim G(k,m)= B(k)

for all k£, and the summation
> G(k,m) (1.4)
k=—m

can be easily accomplished as a Laurent extension of the summation
o0 o)
Y Gk —m,m) =G(-m,m) ) Ak), (1.5)
k=0 k=0

where G(k,m) can be written as
G(k —m,m) = G(—m,m)A(k)

for some A(k). The bilateral series (1.3) is then obtained from (1.4) as m —
00, subject to suitable convergence conditions. We apply this procedure to derive
bilateral series identities from suitable unilateral ones. The above summation (1.4)
is called the semi-finite form of the bilateral summation (1.3). A method similar to
ours was recently used by Schlosser [9], and Jouhet and Schlosser [8], who derived
summations for bilateral series from finite forms. We also note that another method,
which uses a similar factorization as above, for deriving bilateral series identities
from unilateral ones was used by Ismail [7], and Askey and Ismail [2]. Rather than
taking limits, they apply analytic continuation as the main ingredient.

In this paper, we present semi-finite forms of several classical bilateral summa-
tion and transformation formulas such as Ramanujan’s 11 formula, Bailey’s 219
transformations, and Bailey’s gy summation.

2. From ngl to 1’¢1

Using the well known Gauss summation formula

201 [ a;b ;q,c/ab} ::(zii;iéilzi:o’ (2.1)
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where |¢/ab| < 1, we get a semi-finite form of Ramanujan’s summation of the general
1¢1a

[e.e]

(@Dk k(69 0(b/a;q)0(az;q)o0(q/a2; @)oo
e [ p 17 }_ 2 Gk (0:0)00(9/0 @)oo (2 D)oo (b/a2: @)oo (2.2)

k=—o00

where |b/a|] < |z| < 1.

Proposition 2.1 For |z| < 1, the following identity holds:

— (0)e(0q™/az; Q) 1 (G Dm(a/az;Q)m (b/a;9)se(a2;0)o
2 @ e )k (@@ )mb/azm B0z Do (2:3)

k=—m

Proof. The left hand side of (2.3) can be rewritten as

[e.9]

Z GQk mbq /aZQ)k mzkm
1+m k m(b Q)k m

=0

—m (@;9) —m(bg™ /az q Z b/az Dk

1+m.
(@™ @) -m(b;Q)-m = ")k

G (3 0)-m(bg™ /02 6) m (b/2 @)oo (247" @)
(@ @) —m (b @) —m  (b47™; @)oo (23 @)oo

W) (G@)m(0207" @) (0239)0(b/a: @)
(ag™ ™ @)m(b/az;@)m (b5 Q)oo(2; Qoo

which equals the right hand side of (2.3). ]

Taking the limit m — oo in Proposition 2.1 while assuming [b/az| < 1, we
immediately obtain (2.2).

We remark that our method is different from the method of M. Jackson’s elemen-
tary proof of (2.2) (see the exposition of Schlosser [9]) in the sense that Jackson’s
proof does not give a semi-finite form although the Gauss summation is also the
basic ingredient. We should also note that a finite form of Ramanujan’s 191 sum-
mation has been given by Schlosser [10] using the terminating ¢-Pfaff-Saalschiitz
summation.

3. From 3¢2 to 2'@/)2

In this section, we use two 3¢o summation and transformation formulas to give the
semi-finite forms of 919 formulas due to Bailey. We begin with the following 219
transformation formula [6, Ex. 5.20(1)] valid for |z|, |cd/abz|, |d/al,|c/b| < 1:

y a,b - (az,d/a,c/b,dq/abz;q)eo " a,abz/d d
272 cd’ 1 (2,d,q/b,cd/abz; @)oo az,c al’

(3.1)
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Using a g-analogue of the Kummer-Thomae-Whipple formula [6, Eq. (3.2.7)]:

a,bc de] _ (e/a,de/bciq)o b a,d/b,d/c
de Tabe| ~ (e,defabc; @) 2 | d,de/be 7q’a ’

where |de/abc| < 1 and |e/a] < 1, we get a semi-finite form of (3.1).

367 [ (3.2)

Proposition 3.1 For |z| <1 and |d/a| < 1, we have

i (a,b;q)k(cdq”"‘/abz;q);.cz,C _ (az,d/a;q)eo (¢/b,dq/abz; q)m
(¢, ds @i (a™ ™5 @)k (2,d;q)oc  (q/b, cd/abz; q)m

. i ((I, Cqm/b7 abz/d; q)k (d/a)k (33)

S (e d" T aziq)k

k=—

Proof. The left hand side of (3.3) equals

m(a,b,cdg™/abz;q)—m M bgT™, ed/abz; q)x k
(¢, d, q"*™; q) —m Z (cq™™, dq™™, q; Q)
32 _m (a,b, cdqm/abz, q),m (d/a,azq™™; q)oo
(¢, d, ¢ q)—m  (dg™™, 2 ¢)oo
k

S <aq(—m,c/b, abzq~™ /d: ) (d)q
d

= (q,cq7™ azqg " q)k
(L) (d/a,az;q) (¢/b,abzq™™ /d; @) [ d\"™
 (d59)ee  (bg™,cd/abz;q)m \az

i (a,cq™/b,abz/d; q)g—m (d/a)k_

(C7 q1+m7 az; q)k,m

k=0
which can be rewritten in the form of the right hand side of (3.3). 1
The next 2105 transformation formula we consider is the following [6, Ex. 5.20(ii)]:
a,b (az,bz,cq/abz,dq/abz; q) 0o abz/c,abz/d cd
_ ) : 3.4
e [ ! ’Z} (a/a,q/b,c.d;q) Y2 az,b 0o | 34)
Using a summation of Hall [6, Eq. (3.2.10)]:

a,b,c de (bv de/ab7 de/bCS Q)oo d/b e/b de/abc
b ) . — N , ) b 3.5
3@[&6 v abc] (d e defabeiq) P2 | dejab,defbe 9P (3)

where |de/abe| < 1 and |b| < 1, we obtain the following semi-finite form of (3.4).

Proposition 3.2 For |z| <1 and |cd/abz| < 1, we have

i (a,b;q)k(cdqm/abz;q)kzk _ (az,bz,cd/abz; q)o (cq/abz, dq/abz, z; q)m
(e d; (g™ @) (¢d,z:q)0  (a/a,q/b,cd/abz; q)m

k=—m

| i (abz/c, abz/d: 247 Q)i 1o 3

(az, bz, ¢ @)k



4. From nonterminating g¢; to ¢

In this section, we give a semi-finite form of Bailey’s g1 summation formula by
using Bailey’s 3-term transformation formula for a nonterminating very-well-poised
g¢7 series [6, Eq. (2.11.1)]:

a%, —a%,aq/b, aq/c,aq/d,aq/e,aq/ f b bede f
_ (aq,aq/de,aq/df,aq/ef, eq/c, fq/c,b/a,bef[a; )0
(aq/d,aq/e,aq/f,aq/def, q/c,efq/c,be/a,bf [a; @)oo
o [ ef Je;alef /)%, ~qlef/c)? aq/be,aq/cd cf [ae. f ]

a7qa%7 7(]@%’()’ c, dae7f a2q2
8p7 ;

(ef/c)2,—(ef/c)2 bef[a,def/a, aq/c, fg/c.eq/c
b (ag,bg/a,bq/c,bg/d,bg/e,bq/ f.d, e, f;q)oo
a (aq/b,aq/c,aq/d,aq/e,aq/f,bd/a,be/a,bf /a,def]a;q)so
(ag/be,bdef/a®, a*q/bdef;q)oo
 (ag/def,q/c,b%q/a;q)oc

b?/a, qbafé, —qbcf%, b,bc/a,bd/a,be/a,bf /a a’q?
'8¢7 ; ) (4'1)

ba~3,—ba~%,bq/a, bg/c,bg/d,ba/e,bq/f " bedef
where |bd/a| < 1 and |a?q?/bedef] < 1.

Proposition 4.1 When |bd/a| < 1 and |a®q*/bedef| < 1, we have

_ 1 1 k
(" a, fq™; @)k (qa2,—qa2,b,c,d, e;q) ( qa® )
(qm—kf/a’ q1+m7 Q)k (a%’ —a%, (Lq/b7 a,q/c7 aq/d’ aq/e; Q)k bcde

1—efq®"/c(q/a,df /a,ef /a,aq/be,aq/cd, efq" ) a; @)m
L—efqm™/c (f/a,q/b,q/c,q/d,def/a, fq"T™ [c;q)m
(aq, aq/de,aq/df, aq/ef,eq" ™ [c, f¢* T /c,b/a,be fq™ [a; @)
(GQ/d aq/e,aq/f,aq/def, ¢} [c, e fqi+™ [e,be/a,bfq™ [ a; ) oo
y Z (efq™/c,q" ™ (ef[c)3, —ql””(ef/C)2 ag' ™" [be; q)x
(g, gm(ef/c)2, —qm(ef/c)7 befq™ [a; q)
(ag't™ [ed, e fq*™ [a, e, Fq"; )i <bd>
‘(defqm/a, @(I/C fattim /e eqtm/c; q)p
b1—0%¢*"/a ( a’q ) (¢/a,bc/a; q)m (agq, bg" ™ Ja,bg" ™ /c; q) s
a1l—"b%¢™/a \bede (f/a;q)m (ag/b,aq/c,aq/d; q)o
(bg" ™™ /d, bq" T [e,bq/ f,d, e, fq™, aq/bc, bdef /a?, a*q/bdef; q)oo
(ag/e,aq/ f,bdg™ /a, beqm/a bfqzm/a def/a,aq/def,q/c, B¢ [a; q)oo
> (6%q™ [a, " ba" 2, —qFMba " 2 )y
§ Z (g™, gmba™ %, —g™ba~3; q)

k=—m

k=—m

 (bbeg™/a,bdg™ /a, beq™ /a, bfq*™ /a; @) a*¢® \" (4.2)
(bg™t2m [a, bg't™ [c,bg't™ /d, bg' ™ e, bq/ f; q)i \bedef ) :



Proof. The left hand side of (4.2) equals

i (ag™™, 4" Qi (qa?, —qa?,b,c,d, e q); < q¢*a® >k
Pl (agt=™/ f,¢*T™; q)y, (a%, —a%, aq/b,aq/c,aq/d,aq/e; q) bede f
(1.5) (ag™™, fq™, qa?, —qa?,b, ¢, d, e;q)—m ¢?a® "
 (agtm/f.q ™, a3, —a%, aq/b, aq/c, aq/d, aq/e; q)—m (b0d6f>
" i (ag™>™, ql"”:aé, —ql‘lma%; Dk
im0 (¢,g7™maz,—q ™a?;q)y
. (bg™™,cq~™,dqg™ eq”™, [; Qi < ¢*a® >k
(ag'=™/b,ag'=™/c,aq' =™ /d, aq' =™ [e,aq'~*™/ fi q)p \ bede f
(4.1) (ag™™, fq™, qa?, —qa?,b, ¢, d, e;q) m ( ¢*a? >_m
 (agt=™/f, ¢, a3, —a,aq/b,aq/c,aq/d, ag/e; ) \bedef

(ag' ™™, aq/de,ag"™™/df ,aq' =™ ef,eq/c, fg* " /c,bg™ [a,bef/a; q) oo
“(ag""/d,aq" " Je,aq' 2" [, aq/def, g\ Jc, e fq]c, bea, bfq™ [ as q)oo
X effealef /)2, —q(ef[e)?,aq/be,ag/ed, efq™ Ja,eq™, f ” bd
TN (efje)z, —(ef )% bef fa, def [a,aq =™ Jc, g+ e eqfc T a

(ag'=™/ f,q"+m, a3, —a2, aq/b,aq/c,aq/d, ag/e; q)—m \bedef
o bg™ (aq1—2m7 bq1+m/a, bq/c,bq/d, bq/e, bql—m/f’ dq~™; q)oo

a (ag'="/b,aq'=™/c,aq’ =" /d, aqg' =" /e, aq' =™/ f,bd/a, be/a; q) oo
(eq~™, f,aq/be,bdefq™ [a?, a*q*~™ [bde f; q)oo
(bfq™/a,def/a,aq/def,q"t™/c,b?q/a; q)oo

s b2/a,qba7%,—qbcf%,bq_m,bc/a, bd/a,be/a,bfq™/a a’q? ]
8P7 T 7.7l

ba~7,—ba~2,bg"*™ fa,bq/c,bq/d,bg/e,bg" " /f " bedef
which equals to the right hand side of (4.2). 1
The above proposition can be viewed as a semi-finite form of Bailey’s gg

summation formula. By taking f = b and m — oo in (4.2) while assuming
la?q/bede| < 1, we get



qa%, —qa%,b, c,d,e ] aQq
a%, —a%,aq/b, aq/c,aq/d,aq/d,aq/e "D bede
(qg/a,bd/a,aq/bc,aq/cd, aq,aq/de, aq/bd, aq/be; q)oo
(Q/b q/c, Q/d aq/b,aq/d,aq/e, aq/bde, bde/a; q)o

k
<3 e

(2.2) (q/a, bd/a,aq/bc,aq/cd,aq,aq/ale,aq/bd,aq/be;q)OO
(a/b,q/c,q/d,aq/b,aq/d,aq/e, aq/bde, bde/a; q)oo
(q,aq/ce,bde/a,aq/bde; q) o
(agq/c,q/e,bd/a, a*q/bede; q)o
(ag, aq/bc, aq/bd, aq/be, aq/ce, aq/cd, ag/de, g, q/a; q)oo
(aq/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e, ga?/bede; ) oo

6%6

Many proofs of above identity have been found, see, for example, Slater and
Lakin [11], Andrews [1], Askey and Ismail [2], Askey [3], Chen and Liu [5], Schlosser
[9] and Jouhet and Schlosser [8]. Our proof shows that the semi-finite form of the
6 summation is in essence a shifted version of the g¢7y summation. This proof
utilizes Ramanujan’s 171 summation (2.2). It would be interesting to find a proof
using a semi-finite (or even finite) form which yields Bailey’s g1)¢ summation in a
direct limit, without the need to invoke another summation formula as above.
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