W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu,
A telescoping method for double summations,
J. Comput. Appl. Math. 196(2) (2006) 553-566.

Cited by

  1. S.S. Chen, Bivariate extensions of Abramov's algorithm for rational summation, In: Advances in Computer Algebra, 93-104, Springer Proc. Math. Stat. 226, Springer, Cham, 2018.

  2. S.S. Chen, Q.-H. Hou, G. Labahn and R.-H. Wang, Existence problem of telescopers: beyond the bivariate case, In: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, 167-174, ACM, New York, 2016.

  3. S.S. Chen and M.F. Singer, On the summability of bivariate rational functions, J. Algebra 409 (2014) 320-343.

  4. W.Y.C. Chen and S.X.M. Pang, On the combinatorics of the Pfaff identity, Discrete Math. 309(8) (2009) 2190-2196.

  5. Q.-H. Hou and R.-H. Wang, An algorithm for deciding the summability of bivariate rational functions, Adv. in Appl. Math. 64 (2015) 31-49.

  6. C. Koutschan, Creative telescoping for holonomic functions, In: Computer Algebra in Quantum Field Theory, 171-194, Texts Monogr. Symbol. Comput., Springer, Vienna, 2013.

  7. R.J. Mathar, Yet another table of integrals, arXiv:1207.5845.

  8. Y.-P. Mu and Z.-W. Sun, Telescoping method and congruences for double sums, Int. J. Number Theory 14 (2018) 143-165.

  9. C. Schneider, Symbolic summation assists combinatorics, Sm. Lothar. Combin. 56 (2007) Article B56b, 36 pp.

  10. Z.-H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integral Transforms Spec. Funct. 26 (2015) 642-659.

  11. Z.-H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory 13 (2017) 835-851.

  12. Z.-H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory 14 (2018) 123-142.

  13. R.-H. Wang, An algorithmic approach to the q-summability problem of bivariate rational functions, J. Syst. Sci. Complex. 34(1) (2021) 107C121.

  14. C. Wang and Z.-W. Sun, Divisibility results on Franel numbers and related polynomials, Int. J. Number Theory, to appear.