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Abstract. We give a parity reversing involution on noncrossing trees that leads to a
combinatorial interpretation of a formula on noncrossing trees and symmetric ternary
trees in answer to a problem proposed by Hough. We use the representation of Pan-
holzer and Prodinger for noncrossing trees and find a correspondence between a class
of noncrossing trees, called proper noncrossing trees, and the set of symmetric ternary
trees. The second result of this paper is a parity reversing involution on connected
noncrossing graphs which leads to a relation between the number of noncrossing trees
with n edges and k descents and the number of connected noncrossing graphs with
n+ 1 vertices and m edges.
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1 Introduction

A noncrossing graph with n vertices is a graph drawn on n points numbered in coun-
terclockwise order on a circle such that the edges lie entirely within the circle and do
not cross each other. Noncrossing trees have been studied by Deutsch, Feretic and Noy
[2], Deutsch and Noy [3], Flajolet and Noy [4], Noy [6], Panholzer and Prodinger [7]. It
is well known that the number of noncrossing trees with n edges equals the generalized
Catalan number cn = 1

2n+1

(
3n
n

)
.

In this paper we are concerned with rooted noncrossing trees. We assume that 1 is
always the root. A descent is an edge (i, j) such that i > j and i is on the path from
the root 1 to the vertex j. A ternary tree is either a single node, called the root, or it is
a root associated with three ternary trees. A symmetric ternary tree is a ternary tree
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which can be decomposed into a ternary left subtree, a central symmetric ternary tree
and a ternary right subtree that is a reflection of the left subtree, as shown in Figure
1.

T R T ′

Figure 1: T ′ is the reflection of T and R is symmetric.

Let Sn be the set of symmetric ternary trees with n internal vertices. A noncrossing
tree is called even if the number of descents is even. Otherwise, it is called odd. Denote
by En and On the sets of even and odd noncrossing trees with n edges, respectively.
Let sn, en, on be the cardinalities of the sets Sn, En,On, respectively. Deutsch, Feretic
and Noy [2] have shown that

sn =


1

2m+ 1

(
3m

m

)
if n = 2m,

1

2m+ 1

(
3m+ 1

m+ 1

)
if n = 2m+ 1.

(1.1)

Recently, Hough [5] obtained the generating function for the number of noncrossing
trees with n edges and a prescribed number of descents. He also derived the following
relation:

en − on = sn. (1.2)

Hough [5] asked the natural question of finding a combinatorial interpretation of
the above identity (1.2). In this paper, we obtain a parity reversing involution on
noncrossing trees that leads to a combinatorial interpretation of (1.2).

Our combinatorial interpretation of (1.2) relies on the representation of noncrossing
trees introduced by Panholzer and Prodinger [7]. Given a noncrossing tree T , we may
represent it by a plane tree with each vertex labeled by L or R with the additional
requirement that the root is not labeled, and the children of the root are labeled by
R. Such a (L,R)-labeled tree representation of T is obtained from T (as a rooted
tree) by the following rule: Given any non-root vertex j of T , suppose that i is the
parent of j. If i > j then the label of the vertex corresponding to j is labeled by L;
otherwise, it is labeled by R. These two equivalent representations of noncrossing trees
are illustrated by Figure 2. It is obvious that a descent in the noncrossing tree in the
first representation corresponds to a L-labeled vertex in the second representation.
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Figure 2: Two representations of a noncrossing tree

The second result of this paper is an expression of the number of noncrossing trees
with n edges and k descents in terms of the number of connected noncrossing graphs
with n+ 1 vertices and k edges. Noncrossing graphs have been extensively studied by
Flajolet and Noy [4]. They derived the following formula for the number of connected
noncrossing graphs with n+ 1 vertices and k edges, that is,

Nn,k =
1

n

(
3n

n+ 1 + k

)(
k − 1

n− 1

)
. (1.3)

Hough [5] found a combinatorial interpretation of the relation between the descent
generating function of noncrossing trees and the generating function for connected
noncrossing graphs. By using the Lagrange inversion formula he obtained the following
explicit formula for the number of noncrossing trees with n edges and k descents,

dn,k =
1

n

(
n− 1 + k

n− 1

)(
2n− k
n+ 1

)
. (1.4)

As the second result of this paper, we present a parity reversing involution on
connected noncrossing graphs and obtain an expression for the number dn,k in terms
of the numbers Nn,m.

2 An involution on noncrossing trees

In this section, we give a parity reversing involution on noncrossing trees which leads
to a combinatorial interpretation of the relation (1.2). We use the representation
of noncrossing trees introduced by Panholzer and Prodinger [7]. Let T be an even
noncrossing tree with n edges and v be a non-root internal node of T . A vertex v is
called a proper vertex if it has an even number of left children but has no right child.
If T is odd, that is, T has an odd number of descents, then v is said to be proper if v
has an even number of right children but has no left child. Otherwise, v is said to be
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improper. A noncrossing tree is said to be proper if every non-root vertex is proper.
Otherwise, it is said to be improper. It is obvious that each odd noncrossing tree is
improper. Let us use Tn to denote the set of proper noncrossing trees with n internal
nodes and let tn denote the cardinality of Tn.

Let us recall that a plane tree is said to be an even tree if each vertex has an even
number of children. Chen [1] gives a bijection ψ between the set of even plane trees
with 2n edges and the set of ternary trees with n internal nodes. A similar bijection
is obtained by Deutsch, Feretic and Noy [2]. Here we give a brief description of this
bijection. Suppose that T is an even plane tree with 2n edges. We use the following
procedure to construct a ternary tree with n internal vertices.

Step 1. Construct two plane trees T1 and T2 based on T : T1 is the subtree containing the
root and the first two subtrees of T , whereas T2 is the subtree of T obtained by
removing the first two subtrees of the root.

Step 2. Combine T2 with T1 by joining T2 as the last subtree of the root of T1.

Step 3. Repeat the above procedure for all the nontrivial subtrees (with at least two
vertices) of the root.

Since each non-root vertex of a proper even noncrossing tree has only an even
number of left children and has no right child, we can discard the labels of its children
and represent a proper tree as a plane tree such that each subtree of the root is an
even tree. We define a map σ : Tn → Sn as follows.

The map σ: Let T be a proper even noncrossing tree. Let T1 be the first subtree of
the root. The map is defined by a recursive procedure.

• Step 1. Assign a vertex as the root and let ψ(T1) be the first subtree of the root
and its reflection be the third subtree of the root.

• Step 2. Let T2 be the subtree obtained from T by deleting T1, and let σ(T2) be
the second subtree of the root.

The above map σ is clearly a bijection between Tn and Sn. Figure 3 is an example.

Theorem 2.1 The map σ is a bijection between the set of proper noncrossing trees
with n edges and the set of symmetric ternary trees with n internal vertices.

By using even plane trees as an intermediate structure, we may obtain a combi-
natorial interpretation of (1.2) by constructing an involution on improper noncrossing
trees which changes the parity of the number of descents.
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⇔

Figure 3: The map σ

Theorem 2.2 There is a parity reversing involution on the set of improper noncrossing
trees with n edges. So we have the following relation

en − on = tn. (2.1)

Proof. Let T be an improper noncrossing tree with n edges. Traverse T in preorder
and let v be the first encountered improper node. Define the map φ as follows: Case
(1), if T is an odd tree and v has at least one left child, then φ(T ) is obtained by
changing its rightmost left child to a right child and changing all the children of the
non-root vertices traversed before v to left children; Case (2), if T is an odd tree and v
has no left children but has an odd number of right children, then φ(T ) is obtained by
changing all the children of v to left children and changing all the children of non-root
nodes traversed before v to left children.

If T is an even tree and v has at least one right child, then one can reverse the
construction in Case (1). If T is an even tree and v has no right child and has an odd
number of left children, then the construction in Case (2) is also reversible. Hence the
map φ is an involution on the set of improper noncrossing trees with n edges. Moreover,
one sees that this involution changes the parity of the number of descents. Thus, we
obtain the relation (2.1).

An example of the above involution is illustrated in Figure 4.

l l l r

r r

rr r r

⇔
l l r r

l l

rr r r

Figure 4: The involution φ

Combining the bijections in Theorems 2.1 and 2.2, we get a combinatorial inter-
pretation of the relation (1.2). Note that equation (1.2) leads to the following two
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combinatorial identities

2m−1∑
k=0

(−1)k
(

2m− 1 + k

k

)(
4m− k
2m+ 1

)
=

2m

2m+ 1

(
3m

m

)
,

2m∑
k=0

(−1)k
(

2m+ k

k

)(
4m+ 2− k

2m+ 2

)
=

(
3m+ 1

m+ 1

)
.

3 An involution on connected noncrossing graphs

In this section, we aim to establish a connection between the number of noncrossing
trees with n edges and k descents and the number of connected noncrossing graphs
with n+ 1 vertices and m edges.

Theorem 3.1 We have the following relation

2n−1∑
m=n

(−1)m−n
(
m− n
k

)
Nn,m = (−1)kdn,k. (3.1)

Let G be a connected noncrossing graph with vertex set {1, 2, . . . , n+ 1}. We may
construct a unique spanning tree of G, which is called the canonical spanning tree of
G. This construction can be viewed as a reformulation of the traversal procedure of
Hough [5]. Since G is noncrossing, any cycle of G can be represented by a sequence
(i1, i2, . . . , ik) such that i1 < i2 < · · · < ik, and (i1, i2), (i2, i3), . . ., (ik−1, ik) and (ik, i1)
are the edges of the cycle. For each cycle (i1, i2, . . . , ik) in this form, we delete the edge
(i1, i2) until we obtain a spanning tree. An example is shown in Figure 5. We have the
following uniqueness property of the canonical spanning tree.

Proposition 3.2 Let G be a connected noncrossing graph. The canonical spanning
tree of G does not depend on the order of the cycles in the edge deletion procedure.

Proof. Suppose that we get two different canonical spanning trees T and T ′ of a
connected noncrossing graph G by using different orders of the cycles for the edge
deletion procedures. Assume that (i1, i2) /∈ E(T ) and (i1, i2) ∈ E(T ′). Suppose that
C1, C2, · · · , Cr and C ′1, C

′
2, · · · , C ′r are the cycles encountered in the edge deletion pro-

cedures for T and T ′. Since (i1, i2) /∈ E(T ), we may assume that (i1, i2) ∈ E(Cj) and i1
and i2 are the minimum and the second minimum numbers of Cj. Since (i1, i2) ∈ E(T ′),
we may find the minimum integer t such that after breaking the cycle C ′t by deleting
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the appropriate edge, the numbers i1, i2 are no longer the minimum and second mini-
mum numbers in the cycles. Let G′t be the subgraph of G obtained by the operations
of breaking the cycles C ′1, C

′
2, . . . , C

′
t−1. Let C = (i1, i2, . . . , ik) be a cycle in G′t. Then

the cycle C ′t can be represented as (is, is+1, j1, j2, . . . , jp) or (i1, ik, j1, j2, . . . , jp). In the
first case, since the graph G is noncrossing, j1, j2, . . . , jp are on the cycle C. Assume
that jp = iq. After breaking C ′t, there is also a cycle (i1, i2, . . . , is, iq, . . . , ik) with i1, i2
being the minimum and second minimum numbers. In the second case, after breaking
C ′t, there is also a cycle (i1, i2, . . . , ik, j1, j2, . . . , jp) with i1, i2 being the minimum and
second minimum numbers. Both the above two cases contradict with the assumption
for C ′t. Thus T and T ′ are identical.
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Figure 5: The canonical spanning tree

Conversely, given a noncrossing tree T with n edges and a subset S of its descents,
we can construct a connected noncrossing graph by using the bijection of Hough [5]
which can be described as follows: For each descent (i, j) in S, find the maximal path
of consecutive descents from j back to the root, and let the first vertex on this path be
v. From the neighbors of the vertices on the path from v to i except for the vertices on
the path, choose the neighbor w as the largest vertex less than j; Then add the new
edge (w, j) to T . We call the new edge (w, j) the companion edge of the descent (i, j).

An edge in G is said to be free if it is not in the canonical spanning tree T . A
descent (i, j) in the canonical spanning tree of a connected noncrossing graph is said
to be saturated if its companion edge is contained in the connected noncrossing graph.
Otherwise, it is said to be unsaturated.

We now need to consider connected noncrossing graphs in which some of the free
edges are marked. Denote by Nn,m,k the set of connected noncrossing graphs with n+1
vertices and m edges and k marked free edges. It is clear to see that the cardinality of
the set Nn,m,k is given by (

m− n
k

)
Nn,m.

Denote byNn,k the set of connected noncrossing graphs with n+1 vertices and k marked
free edges. A descent (i, j) in the canonical spanning tree of a connected noncrossing
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graph is said to be marked if its companion edge is marked. Denote by Dn,k the set of
connected noncrossing graphs with n+1 vertices and n+k edges such that each descent
in its spanning tree is marked. It follows that |Dn,k| = dn,k. We will be concerned with
the set Nn,k−Dn,k, that is, the set of connected noncrossing graphs with n+ 1 vertices
and k marked free edges which contain at least one unmarked descent.

Note that two descents (i, j) and (i′, j′) can not share an end vertex, namely, j 6= j′.
A descent (i, j) is said to be smaller than a descent (i′, j′) if j < j′. We now give an
involution on the set Nn,k −Dn,k that reverses the parity of the number of free edges.

Theorem 3.3 There is an involution on the set Nn,k − Dn,k that reverses the parity
of the number of free edges.

Proof. Let G be a connected noncrossing graph in Nn,k −Dn,k with m− n free edges.
We define a map ψ as follows. First, find the minimum unmarked descent (i, j). We
have two cases. Case 1: The descent (i, j) is saturated in G. We delete the companion
edge of (i, j) to get a connected noncrossing graph with n + 1 vertices, m − n − 1
free edges and k marked free edges. Case 2: The descent (i, j) is not saturated in G.
We add the companion edge of (i, j) to get a connected noncrossing graph with n+ 1
vertices, m−n+1 free edges and k marked free edges. The operations in the two cases
clearly constitute an involution that changes the number of free edges by one.

As a consequence of Theorem 3.3, we obtain the identity (3.1).

To conclude this paper, we remark that Theorem 3.1 can be deduced from the
formulas (1.3) and (1.4) for Nn,k and dn,k and the following identity

2n−1∑
m=n

(−1)m−n−k
(

3n

n+ 1 +m

)(
m− 1

n− 1

)(
m− n
k

)
=

(
n− 1 + k

n− 1

)(
2n− k
n+ 1

)
, (3.2)

which can be verified by using the Vandermonde convolution [8, p. 8](
n−m
k

)
=
∑
i+j=k

(−1)i
(
m+ i− 1

i

)(
n

j

)
.
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